US2598525A - Automatic positive pressure breathing machine - Google Patents

Automatic positive pressure breathing machine Download PDF

Info

Publication number
US2598525A
US2598525A US154841A US15484150A US2598525A US 2598525 A US2598525 A US 2598525A US 154841 A US154841 A US 154841A US 15484150 A US15484150 A US 15484150A US 2598525 A US2598525 A US 2598525A
Authority
US
United States
Prior art keywords
diaphragm
chamber
oxygen
port
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US154841A
Inventor
Le Roy G Fox
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E & J Manufacturing Co
Original Assignee
E & J Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E & J Manufacturing Co filed Critical E & J Manufacturing Co
Priority to US154841A priority Critical patent/US2598525A/en
Application granted granted Critical
Publication of US2598525A publication Critical patent/US2598525A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices

Definitions

  • My invention relates to an automatic positive pressure breathing machine, and more specifically to a device to be used as a therapeutic machine, as a resuscita-tor or an oxygenator, and which can be used to supply oxygen to aviators at high-altitudes.
  • Another object of my invention is to provide a device into which either powdered or liquid medicines can be inserted in: the flow of oxygen given to a patient to force the medicines into his lungs
  • Another object of my invention is to provide a machine which will force drugs carried by oxygen into partially inflated lungs.
  • Another object of my invention is to provide a device which will automatically adjust to the size oi the patients lungs.
  • Another object of my invention is to provide a device which will. give a warning signalif the patients throat or lungs are congested.
  • Figure- I is a sectional view of my machine with anattachment placed thereon for supplying powdered drugs, showing my device in an exhaling, position;
  • Figure 2 is a similar sectional View showing the device in the inhaling. position
  • Figure 3' is a similar sectional view to Figure 2 showing the device connected to a nebulizer for supplying liquid medicines;
  • Figure 4' is a perspective View
  • Figure 5 is a sectional view of amodification of my invention showing the device in the exhaling position taken on the line 5-5 of Figure 4.
  • Figure 6 is a sectional view similar to Figure 5 in the inhaling position
  • Figure 7' isa sectional view taken on the line T'l' cf'higure 6;
  • Figure 8' is a sectional View of the powered drug dispenser.
  • Figure 9 is a cross section or" a nebulizer.
  • An automatic positive pressure breathing ma chine constructed in accordance withmy invention has an outer case I forming two chambers, 2 and 3, separated by a diaphragm i.
  • a third chamber 6 in the case L is separated from the chambers 2- and 3 by the partitions? and 8.
  • the chamber 2 has port into which is inserted a tube iii to connect: breathi ng mask Ii.
  • the chamber 2 has port I? to atmosphere, which is opened or closed by a flat: valve 1'3 attached to the plate M on the diaphragm 4'.
  • a port 253" from the chamber 3 provides aineans iorattaching' a rubber halloon 2T so that oxygen can be driven from the chamber. 3 into the balloon.
  • Port 22 provides an opening. to the at mosphere from the chamber 3' and is closed by a valve 2 attached to a plate 25 onthe diaphragm d.
  • the connecting rod between the valve 24' and the plate 25 has two arms and 28' loosely connected thereto, which extend out- Wardly to the push rod l1 and a post 29'.
  • the arms 27 and 28 are made of resilient spring niaterial so that when. the diaphragm moves: from one position to the" other as shown Figures 1 and 2 they act as" a snap toggle.
  • the diaphragm 4 When the diaphragm 4' is moved from one position to the other the arm- 2"! will raise or" lower the push rod I1, opening or closing, as the case may be, the valves f6 and It: The diaphragm 4 also opens and closes the valves l3 and 24.
  • a port 36 from the" chamber 6 provides an opening into which a tube 3f frbni an oxygen regulator is inserted to supply oxygen to the chamber 6.
  • the diaphragm 4 will snap to the position shown in Figure 1.
  • the pressure in the patients lungs and therefore in the chamber 2 is at its maximum pressure and the diaphragm 4 will snap to the position shown in Figure 1, closing the valves I6 and 24 and opening the valves I9 and I3, again filling the rubber balloon 2
  • 3 is subject to any possible clogging as the patients exhalation never strikes any of the mechanical portions of the breathing machine.
  • the hand valve 32 When it is desired to use my invention to administer drugs, the hand valve 32 is opened to permit oxygen to pass from the valve
  • the nebuilizer 34 has a body 35 into which a small cup 36 is threaded. In this cup 36 is placed the powdered drug 31.
  • a plunger 38 is slidably positioned in the body 35 and has a port running around its perimeter at 39 to permit the oxygen entering at 40 from the tube 33 to pass on out through the port 4
  • the plunger 38 When the patient is breathing oxygen and it is desired to give him powdered medicine, the plunger 38, which is held in the position shown in Figure 8 by a spring 43 between the top of the body 35 and the flange 44 upon the plunger 38, is forced downwardly by pressure upon its top surface 45 until the bore 46 aligns with the port 40 so that the oxygen passes through the port 46 down the passage 41 into the cup 35 where it picks up the powdered drug 31 and forces the same out through the passage 48 into the tube 42 and thus into the mask I.
  • An advantage of my invention lies in the fact that no provision is necessary to compensate for size of a patients lungs as a patient with normal lungs will have oxygen forced therein by my device when the balloon 2
  • a patient with small lungs will never exhale sufficiently to completely empty the balloon 2
  • I have added an auxiliary control shown in Figures 5 and 6.
  • valve plate 50 mounted on the exterior of the case I is a valve plate 50 rotatably held on the post 5
  • the plate 50 As the plate 50 is rotatably positioned upon the post 5
  • Figure 3 I disclose a nebulizer for liquid medicines which can be used in place of the nebulizer 34.
  • the one disclosed in the drawings is a standard nebulizer for use in the other types of machines and although I have shown it in the drawings, it is well known in the art and needs no description here.
  • One of the advantages of my invention is that whenever the patients throat is congested so that oxygen cannot be forced therein the diaphragm and toggle will snap back and forth rapidly at all times, thus giving a warning buzz to the user that a congestion exists which prevents the oxygen from entering the patients lungs. Upon such warning the mask H can be removed and an aspirator used to clear the throat before the mask is reapplied.
  • a case forming three chambers, one of said chambers connected to a supply of oxygen under pressure, said chamber having ports connecting with the other two chambers, said ports being alternately opened or closed by valves connected by a push rod whereby one valve is open when the other is closed, the other two chambers being divided by a diaphragm, both of said chambers having outlet ports equipped with valves to close said ports, said valves being connected to be operated by said diaphragm so that one of said valves is open when the other is closed, means connecting said diaphragm and said push rod to move said push rod and open the valve from the first chamber to the chamber whose outlet port is closed, ports to connect one of said diaphragm-separated chambers with a breathing mask and the other chamber with an expansible balloon.
  • a case partitions in said case to define a chamber, a diaphragm between one of said partitions and the exterior wall of said case to define two diaphragm-separated chambers, said first named chamber having a connection to a source of oxygen under pressure, said chamber having ports connecting with the other two chambers, said ports being alternately opened or closed by valves connected by a push rod whereby one valve is open when the other is closed, both of said diaphragm-separated chambers having outlet ports equipped with valves to close said ports, said valves being connected to be operated by said diaphragm so that one of said valves is open when the other is closed, means connecting said diaphragm and said push rod to move said push rod and open the valve from the first chamber to the chamber whose outlet port is closed, ports to connect one of said diaphragm-separated chambers with a breathing mask and the other chamber with an expansible balloon.
  • a breathing machine a case divided into two chambers by partitions, one of said chambers having a connection to a supply of oxygen and the other chamber divided by a pressure responsive diaphragm, outlet ports in the last mentioned chamber on both sides of said diaphragm,
  • valves for said ports connected by push rods to opposite sides of said diaphragm, valves connected by a push rod to deliver oxygen from said first mentioned chamber to both sides of said diaphragm when the outlet valve on the responsive side of said diaphragm is closed, said valves being connected to be operated by said diaphragm, and ports on each side of said diaphragm adapted to connect a breathing mask and an expansible member.
  • a breathing machine a case divided into two chambers by partitions, one of said chambers having a connection to a supply of oxygen and the other chamber divided by a pressure responsive diaphragm, outlet ports in the last mentioned chamber on both sides of said diaphragm, valves for said ports connected by push rods to opposite sides of said diaphragm, valves connected by a push rod to deliver oxygen from said first mentioned chamber to both sides of said diaphragm when the outlet valve on the responsive side of said diaphragm is closed, said valves being connected to be operated by said dia phragm, and ports on each side of said diaphragm adapted to connect a breathing mask and an expansible member, a breathing mask connected to one of said ports and an expansible member attached to the other.
  • a breathing machine a case divided into two chambers by partitions, one of said chambers having a connection to a supply of oxygen and the other chamber divided by a pressure responsive diaphragm, outlet ports in the last mentioned chamber on both sides of said diaphragm, valves for said ports connected by push rods to opposite sides of said diaphragm, valves connected by a push rod to deliver oxygen from said first mentioned chamber to both sides of said diaphragm when the outlet valve on the responsive side of said diaphragm is closed, said valves being connected to be operated by said diaphragm, ports on each side of said diaphragm adapted to connect a breathing mask and an expansible member, a breathing mask connected to one of said ports and an expansible member attached to the other, a port to connect a nebulizer to the port connecting said first chamber and said second chamber on the side of said diaphragm to which said breathing mask is connected, and a nebulizer connected between said port and said mask.
  • a breathing machine a case divided into two chambers by partitions, one of said chambers having a connection to a supply of oxygen and the other chamber divided by a pressure responsive diaphragm, outlet ports in the last mentioned chamber on both sides of said diaphragm, valves for said ports connected by push rods to opposite sides of said diaphragm, valves connected by a push rod to deliver oxygen from said first mentioned chamber to both sides of said diaphragm when the outlet valve on the responsive side of said diaphragm is closed, said valves being connected to be operated by said diaphragm, ports on each side of said diaphragm adapted to connect a breathing mask and an expansible member, a breathing mask connected to one of said ports and an expansible member attached to the other, a port to connect a nebulizer to the port connecting said first chamber and said second chamber on the side of said diaphragm to which said breathing mask is connected, and a nebulizer connected between said port and said mask, said nebulizer

Description

May 27, 1952 LE ROY G. FOX
AUTOMATIC POSITIVE PRESSURE BREATHING MACHINE 2 SHEETS-SHEET 1 Filed April 8, 1950 JNVENTOR. 91mm 2 SHEET$SHEET 2 INVENTOR. 07 01- Gabi-W pi H. .U
AUTOMATIC POSITIVE PRESSURE BREATHING MACHINE W N N e M .3 & Q Q n Q Q I m k Q a m 5 m N l I. m u n R W NM... em a May 27, 1952 Filed April 8 1950 Patented May 27, 1952 scroivmr c rosrrrvs PRESSURE BREATHING MACHINE Le Roy G. Fox, Glendale, Calif., assignor to E 83 I Manufacturing 00., Glendale, Calif.,. a corporation of California Application April 8, 1950,,Seriai No; 154;8'4:L
6'Claims. 1
My invention relates to an automatic positive pressure breathing machine, and more specifically to a device to be used as a therapeutic machine, as a resuscita-tor or an oxygenator, and which can be used to supply oxygen to aviators at high-altitudes.
Another object of my invention is to provide a device into which either powdered or liquid medicines can be inserted in: the flow of oxygen given to a patient to force the medicines into his lungs Another object of my invention is to provide a machine which will force drugs carried by oxygen into partially inflated lungs.
Another object of my invention is to provide a device which will automatically adjust to the size oi the patients lungs.
Another object of my invention is to provide a device which will. give a warning signalif the patients throat or lungs are congested.
Q-ther objects and advantages of my inventionwill be apparent from the following description ofthe preferred embodiments thereof.
In the drawings:
Figure- I is a sectional view of my machine with anattachment placed thereon for supplying powdered drugs, showing my device in an exhaling, position;
Figure 2 is a similar sectional View showing the device in the inhaling. position;
Figure 3' is a similar sectional view to Figure 2 showing the device connected to a nebulizer for supplying liquid medicines;
Figure 4' is a perspective View;
Figure 5 is a sectional view of amodification of my invention showing the device in the exhaling position taken on the line 5-5 of Figure 4.
Figure 6 is a sectional view similar to Figure 5 in the inhaling position;
Figure 7' isa sectional view taken on the line T'l' cf'higure 6;
Figure 8' is a sectional View of the powered drug dispenser; and
Figure 9 is a cross section or" a nebulizer.
An automatic positive pressure breathing ma chine constructed in accordance withmy invention has an outer case I forming two chambers, 2 and 3, separated by a diaphragm i. A third chamber 6 in the case L is separated from the chambers 2- and 3 by the partitions? and 8. The chamber 2 has port into which is inserted a tube iii to connect: breathi ng mask Ii. The chamber 2 has port I? to atmosphere, which is opened or closed by a flat: valve 1'3 attached to the plate M on the diaphragm 4'.
Connecting the chambers 6' and 2 is a passage [5 opened or closed by a valve it carried upon a push rod IT. 'fhrouglr'i the partition 8 is a port ['8' which connects the chambers 6 and 3. The push rod I 1 extends through the port l8' and carries a valve [9- thereon to seal the port I8.
A port 253" from the chamber 3 provides aineans iorattaching' a rubber halloon 2T so that oxygen can be driven from the chamber. 3 into the balloon. Port 22 provides an opening. to the at mosphere from the chamber 3' and is closed by a valve 2 attached to a plate 25 onthe diaphragm d. The connecting rod between the valve 24' and the plate 25 has two arms and 28' loosely connected thereto, which extend out- Wardly to the push rod l1 and a post 29'. The arms 27 and 28 are made of resilient spring niaterial so that when. the diaphragm moves: from one position to the" other as shown Figures 1 and 2 they act as" a snap toggle. When the diaphragm 4' is moved from one position to the other the arm- 2"! will raise or" lower the push rod I1, opening or closing, as the case may be, the valves f6 and It: The diaphragm 4 also opens and closes the valves l3 and 24.
A port 36 from the" chamber 6 provides an opening into which a tube 3f frbni an oxygen regulator is inserted to supply oxygen to the chamber 6. y
Inthe use of my device as a simple resuscitator oxygenator or for high altitude oxygen breathing the'm'asli H is placed over the patients face so-that' there isno leakage of air around its perimeter. The oxygen enters the chamber 6 through the port 30} and passes through the chamber 6-; the port [81 into the chamber 3 and the' rubber balloon 2L In this position the dieiphragm is the positionshown in Figure 1', the port 22- is closed h'y the valve 24- and the portl2 is open; Also thevaive: I 6 is"- closed and the oxygen passes directly into the rubber balloo'n 21,
When the pressure the chamber 3 is higher than the pressure the chamber 2' and there'- fore in the patients lungs; the" diaphragm 4' will snap over into the position shownin' Figure 2, closing the valves I- 3= and I9 and: opening the valves I6 and 22. In thisiposition the oxygen flows from the chamber 6 through the passage 15 into the chamber 2 and through the tubel0 into the mash H and into the patientslungs. The amount of pressure and the speed of the passage of this oxygen are regulated by the ordi naryvalve member on the oxygen: bottler \7Vl 1e rt the pressure in the patients. lungs" arrives at the desired maximum, for example, three or four ounces per square inch, the diaphragm 4 will snap to the position shown in Figure 1. After the oxygen in the rubber balloon 2| has escaped through the valve 24 and through the port 22 to the atmosphere the pressure in the patients lungs and therefore in the chamber 2 is at its maximum pressure and the diaphragm 4 will snap to the position shown in Figure 1, closing the valves I6 and 24 and opening the valves I9 and I3, again filling the rubber balloon 2| with oxygen and allowing the patients natural response to exhale out through the mask tube ||l into the chamber 2 and out through the port l2.
It should be noted that none of the valves or working mechanism except the valve |3 is subject to any possible clogging as the patients exhalation never strikes any of the mechanical portions of the breathing machine.
When it is desired to use my invention to administer drugs, the hand valve 32 is opened to permit oxygen to pass from the valve |6 into a tube 33, leading to a special nebulizer 34. The nebuilizer 34 has a body 35 into which a small cup 36 is threaded. In this cup 36 is placed the powdered drug 31. A plunger 38 is slidably positioned in the body 35 and has a port running around its perimeter at 39 to permit the oxygen entering at 40 from the tube 33 to pass on out through the port 4| through the tube 42 into an opening on the mask I.
It should be noted that I have shown in Figures 1 and 2 the tube 42 connected with the mask When my device is used for a simple oxygenator, resuscitator or high altitude breathing machine, there is no opening in the tube l0 for the tube 42.
When the patient is breathing oxygen and it is desired to give him powdered medicine, the plunger 38, which is held in the position shown in Figure 8 by a spring 43 between the top of the body 35 and the flange 44 upon the plunger 38, is forced downwardly by pressure upon its top surface 45 until the bore 46 aligns with the port 40 so that the oxygen passes through the port 46 down the passage 41 into the cup 35 where it picks up the powdered drug 31 and forces the same out through the passage 48 into the tube 42 and thus into the mask I.
An advantage of my invention lies in the fact that no provision is necessary to compensate for size of a patients lungs as a patient with normal lungs will have oxygen forced therein by my device when the balloon 2| is filled and he will exhale until the balloon 2| is empty. However, a patient with small lungs will never exhale sufficiently to completely empty the balloon 2| and the drop in pressure in the chamber 2 will be faster causing the diaphragm 4 to reverse and start oxygen into his lungs before the balloon 2| is empty. This leaves a residue of oxygen in the balloon 2|, which counter-balances the small capacity in the lungs and reverses the diaphragm 4 before an excess of oxygen is forced into the lungs. However, for certain medical precautions I have added an auxiliary control shown in Figures 5 and 6. Mounted on the exterior of the case I is a valve plate 50 rotatably held on the post 5|, which can completely close the outlet 22. As the plate 50 is rotatably positioned upon the post 5| and is held in position to close the port 22 by a spring 52, it can be rotated to open or close the port 22 to any degree from clear open to clear closed to regulate the speed with which 4 the oxygen passes from the rubber balloon 2| to the atmosphere.
In Figure 3 I disclose a nebulizer for liquid medicines which can be used in place of the nebulizer 34. The one disclosed in the drawings is a standard nebulizer for use in the other types of machines and although I have shown it in the drawings, it is well known in the art and needs no description here.
In the modifications shown in Figures 5 and 6, the only changes in the operation of the diaphragm 4 is to place a spring 53 to act as a positive snapover on the toggle.
One of the advantages of my invention is that whenever the patients throat is congested so that oxygen cannot be forced therein the diaphragm and toggle will snap back and forth rapidly at all times, thus giving a warning buzz to the user that a congestion exists which prevents the oxygen from entering the patients lungs. Upon such warning the mask H can be removed and an aspirator used to clear the throat before the mask is reapplied.
While I have described the preferred embodiments of my invention, I do not wish to be limited to any of the details herein set forth except as described in the following claims.
I claim:
1. In a breathing machine, a case forming three chambers, one of said chambers connected to a supply of oxygen under pressure, said chamber having ports connecting with the other two chambers, said ports being alternately opened or closed by valves connected by a push rod whereby one valve is open when the other is closed, the other two chambers being divided by a diaphragm, both of said chambers having outlet ports equipped with valves to close said ports, said valves being connected to be operated by said diaphragm so that one of said valves is open when the other is closed, means connecting said diaphragm and said push rod to move said push rod and open the valve from the first chamber to the chamber whose outlet port is closed, ports to connect one of said diaphragm-separated chambers with a breathing mask and the other chamber with an expansible balloon.
2. In a breathing machine, a case, partitions in said case to define a chamber, a diaphragm between one of said partitions and the exterior wall of said case to define two diaphragm-separated chambers, said first named chamber having a connection to a source of oxygen under pressure, said chamber having ports connecting with the other two chambers, said ports being alternately opened or closed by valves connected by a push rod whereby one valve is open when the other is closed, both of said diaphragm-separated chambers having outlet ports equipped with valves to close said ports, said valves being connected to be operated by said diaphragm so that one of said valves is open when the other is closed, means connecting said diaphragm and said push rod to move said push rod and open the valve from the first chamber to the chamber whose outlet port is closed, ports to connect one of said diaphragm-separated chambers with a breathing mask and the other chamber with an expansible balloon.
3. In a breathing machine, a case divided into two chambers by partitions, one of said chambers having a connection to a supply of oxygen and the other chamber divided by a pressure responsive diaphragm, outlet ports in the last mentioned chamber on both sides of said diaphragm,
valves for said ports connected by push rods to opposite sides of said diaphragm, valves connected by a push rod to deliver oxygen from said first mentioned chamber to both sides of said diaphragm when the outlet valve on the responsive side of said diaphragm is closed, said valves being connected to be operated by said diaphragm, and ports on each side of said diaphragm adapted to connect a breathing mask and an expansible member.
4. In a breathing machine, a case divided into two chambers by partitions, one of said chambers having a connection to a supply of oxygen and the other chamber divided by a pressure responsive diaphragm, outlet ports in the last mentioned chamber on both sides of said diaphragm, valves for said ports connected by push rods to opposite sides of said diaphragm, valves connected by a push rod to deliver oxygen from said first mentioned chamber to both sides of said diaphragm when the outlet valve on the responsive side of said diaphragm is closed, said valves being connected to be operated by said dia phragm, and ports on each side of said diaphragm adapted to connect a breathing mask and an expansible member, a breathing mask connected to one of said ports and an expansible member attached to the other.
5. In a breathing machine, a case divided into two chambers by partitions, one of said chambers having a connection to a supply of oxygen and the other chamber divided by a pressure responsive diaphragm, outlet ports in the last mentioned chamber on both sides of said diaphragm, valves for said ports connected by push rods to opposite sides of said diaphragm, valves connected by a push rod to deliver oxygen from said first mentioned chamber to both sides of said diaphragm when the outlet valve on the responsive side of said diaphragm is closed, said valves being connected to be operated by said diaphragm, ports on each side of said diaphragm adapted to connect a breathing mask and an expansible member, a breathing mask connected to one of said ports and an expansible member attached to the other, a port to connect a nebulizer to the port connecting said first chamber and said second chamber on the side of said diaphragm to which said breathing mask is connected, and a nebulizer connected between said port and said mask.
6. In a breathing machine, a case divided into two chambers by partitions, one of said chambers having a connection to a supply of oxygen and the other chamber divided by a pressure responsive diaphragm, outlet ports in the last mentioned chamber on both sides of said diaphragm, valves for said ports connected by push rods to opposite sides of said diaphragm, valves connected by a push rod to deliver oxygen from said first mentioned chamber to both sides of said diaphragm when the outlet valve on the responsive side of said diaphragm is closed, said valves being connected to be operated by said diaphragm, ports on each side of said diaphragm adapted to connect a breathing mask and an expansible member, a breathing mask connected to one of said ports and an expansible member attached to the other, a port to connect a nebulizer to the port connecting said first chamber and said second chamber on the side of said diaphragm to which said breathing mask is connected, and a nebulizer connected between said port and said mask, said nebulizer comprising a body having an inlet and an outlet, a plunger valve, a cup adapted to contain a drug, said plunger valve normally directly connecting said inlet and said outlet, but movable to port oxygen from said inlet into said cup and then to said outlet, and hence to said breathing mask.
LE ROY G. FOX.
No references cited.
US154841A 1950-04-08 1950-04-08 Automatic positive pressure breathing machine Expired - Lifetime US2598525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US154841A US2598525A (en) 1950-04-08 1950-04-08 Automatic positive pressure breathing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US154841A US2598525A (en) 1950-04-08 1950-04-08 Automatic positive pressure breathing machine

Publications (1)

Publication Number Publication Date
US2598525A true US2598525A (en) 1952-05-27

Family

ID=22553027

Family Applications (1)

Application Number Title Priority Date Filing Date
US154841A Expired - Lifetime US2598525A (en) 1950-04-08 1950-04-08 Automatic positive pressure breathing machine

Country Status (1)

Country Link
US (1) US2598525A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2695609A (en) * 1952-01-28 1954-11-30 Garrett Corp Breathing apparatus
US2814291A (en) * 1952-04-25 1957-11-26 Bendix Aviat Corp Respiratory apparatus
US2814290A (en) * 1952-04-25 1957-11-26 Bendix Aviat Corp Respiratory apparatus
US2870763A (en) * 1957-03-15 1959-01-27 Philip L Stanton Pressure breathing therapy apparatus
DE1106928B (en) * 1953-03-09 1961-05-18 Conitech Ltd Pressure valve for devices for artificial ventilation
US3068856A (en) * 1958-02-14 1962-12-18 Forrest M Bird Fluid control device
US3083707A (en) * 1956-02-13 1963-04-02 Henry W Seeler Device for treatment of pulmonary diseases
US3088455A (en) * 1958-11-19 1963-05-07 British Oxygen Co Ltd Apparatus for controlling or assisting respiration
US3105488A (en) * 1959-09-17 1963-10-01 Albert M Richards Respiratory devices
US3189027A (en) * 1962-11-29 1965-06-15 Jr Roscoe G Bartlett Anti-suffocant apparatus for oxygen supply systems
US3280832A (en) * 1963-11-18 1966-10-25 Retec Inc Cycling valve
US3301255A (en) * 1963-10-18 1967-01-31 Harris A Thompson Method and apparatus for application of nebulized medication in positive pressure respiratory equipment
US4572175A (en) * 1983-07-20 1986-02-25 Flynn Stephen D Multi-mode demand valve
US4722326A (en) * 1985-11-04 1988-02-02 Ruderian Max J Vibratory therapeutic device
US4879996A (en) * 1987-01-13 1989-11-14 Harwood Jr Van N Closed circuit breathing apparatus
US5161524A (en) * 1991-08-02 1992-11-10 Glaxo Inc. Dosage inhalator with air flow velocity regulating means
US5458135A (en) * 1991-07-02 1995-10-17 Inhale Therapeutic Systems Method and device for delivering aerosolized medicaments
US5540221A (en) * 1994-11-17 1996-07-30 Respironics, Inc. Resuscitator
US5780014A (en) * 1995-04-14 1998-07-14 Inhale Therapeutic Systems Method and apparatus for pulmonary administration of dry powder alpha 1-antitrypsin
US5997848A (en) * 1994-03-07 1999-12-07 Inhale Therapeutic Systems Methods and compositions for pulmonary delivery of insulin
US6051256A (en) * 1994-03-07 2000-04-18 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
US6509006B1 (en) 1992-07-08 2003-01-21 Inhale Therapeutic Systems, Inc. Devices compositions and methods for the pulmonary delivery of aerosolized medicaments
US6543448B1 (en) 1994-09-21 2003-04-08 Inhale Therapeutic Systems, Inc. Apparatus and methods for dispersing dry powder medicaments
US20030068279A1 (en) * 1995-04-14 2003-04-10 Platz Robert M. Devices, compositions and methods for the pulmonary delivery of aerosolized medicaments
US6546929B2 (en) 1998-06-04 2003-04-15 Inhale Therapeutic Systems, Inc. Dry powder dispersing apparatus and methods for their use
US20030086877A1 (en) * 1992-07-08 2003-05-08 Platz Robert M. Devices, compositions and methods for the pulmonary delivery of aerosolized medicaments
US20030232020A1 (en) * 2002-04-24 2003-12-18 Peter York Particulate materials
US6681767B1 (en) 1991-07-02 2004-01-27 Nektar Therapeutics Method and device for delivering aerosolized medicaments
WO2006009607A2 (en) * 2004-06-16 2006-01-26 The General Hospital Corporation D/B/A Massachusetts General Hospital Methods and devices for assisting drug delivery to the lungs
US20090285905A1 (en) * 1996-12-31 2009-11-19 Gordon Marc S Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US20100034910A1 (en) * 2000-06-30 2010-02-11 Novartis Pharma Ag Spray drying process control of drying kinetics
US9700529B2 (en) 2002-05-03 2017-07-11 Nektar Therapeutics Particulate materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2695609A (en) * 1952-01-28 1954-11-30 Garrett Corp Breathing apparatus
US2814291A (en) * 1952-04-25 1957-11-26 Bendix Aviat Corp Respiratory apparatus
US2814290A (en) * 1952-04-25 1957-11-26 Bendix Aviat Corp Respiratory apparatus
DE1106928B (en) * 1953-03-09 1961-05-18 Conitech Ltd Pressure valve for devices for artificial ventilation
US3083707A (en) * 1956-02-13 1963-04-02 Henry W Seeler Device for treatment of pulmonary diseases
US2870763A (en) * 1957-03-15 1959-01-27 Philip L Stanton Pressure breathing therapy apparatus
US3068856A (en) * 1958-02-14 1962-12-18 Forrest M Bird Fluid control device
US3088455A (en) * 1958-11-19 1963-05-07 British Oxygen Co Ltd Apparatus for controlling or assisting respiration
US3105488A (en) * 1959-09-17 1963-10-01 Albert M Richards Respiratory devices
US3189027A (en) * 1962-11-29 1965-06-15 Jr Roscoe G Bartlett Anti-suffocant apparatus for oxygen supply systems
US3301255A (en) * 1963-10-18 1967-01-31 Harris A Thompson Method and apparatus for application of nebulized medication in positive pressure respiratory equipment
US3280832A (en) * 1963-11-18 1966-10-25 Retec Inc Cycling valve
US4572175A (en) * 1983-07-20 1986-02-25 Flynn Stephen D Multi-mode demand valve
US4722326A (en) * 1985-11-04 1988-02-02 Ruderian Max J Vibratory therapeutic device
US4879996A (en) * 1987-01-13 1989-11-14 Harwood Jr Van N Closed circuit breathing apparatus
US5458135A (en) * 1991-07-02 1995-10-17 Inhale Therapeutic Systems Method and device for delivering aerosolized medicaments
US20050279349A1 (en) * 1991-07-02 2005-12-22 Patton John S Method and device for delivering aerosolized medicaments
US5775320A (en) * 1991-07-02 1998-07-07 Inhale Therapeutic Systems Method and device for delivering aerosolized medicaments
US6681767B1 (en) 1991-07-02 2004-01-27 Nektar Therapeutics Method and device for delivering aerosolized medicaments
US6138668A (en) * 1991-07-02 2000-10-31 Inhale Therpeutic Systems Method and device for delivering aerosolized medicaments
US5161524A (en) * 1991-08-02 1992-11-10 Glaxo Inc. Dosage inhalator with air flow velocity regulating means
US20030129141A1 (en) * 1992-07-08 2003-07-10 Platz Robert M. Composition for pulmonary administration comprising a drug and a hydrophobic amino acid
US20030086877A1 (en) * 1992-07-08 2003-05-08 Platz Robert M. Devices, compositions and methods for the pulmonary delivery of aerosolized medicaments
US6921527B2 (en) 1992-07-08 2005-07-26 Nektar Therapeutics Composition for pulmonary administration comprising a drug and a hydrophobic amino acid
US6797258B2 (en) 1992-07-08 2004-09-28 Nektar Therapeutics Compositions and methods for the pulmonary delivery of aerosolized macromolecules
US20030198601A1 (en) * 1992-07-08 2003-10-23 Platz Robert M. Compositions and methods for the pulmonary delivery of aerosolized medicaments
US6509006B1 (en) 1992-07-08 2003-01-21 Inhale Therapeutic Systems, Inc. Devices compositions and methods for the pulmonary delivery of aerosolized medicaments
US20030185765A1 (en) * 1992-07-08 2003-10-02 Platz Robert M. Composition for pulmonary administration comprising a drug and a hydrophobic amino acid
US6582728B1 (en) 1992-07-08 2003-06-24 Inhale Therapeutic Systems, Inc. Spray drying of macromolecules to produce inhaleable dry powders
US8173168B2 (en) 1994-03-07 2012-05-08 Novartis Pharma Ag Dispersible macromolecule compositions and methods for their preparation and use
US6685967B1 (en) 1994-03-07 2004-02-03 Nektar Therapeutics Methods and compositions for pulmonary delivery of insulin
US20070020199A1 (en) * 1994-03-07 2007-01-25 Platz Robert M Dispersible macromolecule compositions and methods for their preparation and use
US7138141B2 (en) 1994-03-07 2006-11-21 Nektar Therapeutics Dispersible macromolecule compositions and methods for their preparation and use
US6592904B2 (en) 1994-03-07 2003-07-15 Inhale Therapeutic Systems, Inc. Dispersible macromolecule compositions and methods for their preparation and use
US7521069B2 (en) 1994-03-07 2009-04-21 Novartis Ag Methods and compositions for pulmonary delivery of insulin
US20020192164A1 (en) * 1994-03-07 2002-12-19 Patton John S. Methods and compositions for the pulmonary delivery insulin
US5997848A (en) * 1994-03-07 1999-12-07 Inhale Therapeutic Systems Methods and compositions for pulmonary delivery of insulin
US20030215514A1 (en) * 1994-03-07 2003-11-20 Platz Robert M. Dispersible macromolecule compositions and methods for their preparation and use
US6051256A (en) * 1994-03-07 2000-04-18 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
US6423344B1 (en) 1994-03-07 2002-07-23 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
US20040096401A1 (en) * 1994-03-07 2004-05-20 Patton John S. Methods and compositions for the pulmonary delivery of insulin
US6737045B2 (en) 1994-03-07 2004-05-18 Nektar Therapeutics Methods and compositions for the pulmonary delivery insulin
CN1318104C (en) * 1994-09-21 2007-05-30 耐科塔医药公司 Method for spraying dried powder medicine and its equipment
US6543448B1 (en) 1994-09-21 2003-04-08 Inhale Therapeutic Systems, Inc. Apparatus and methods for dispersing dry powder medicaments
US5540221A (en) * 1994-11-17 1996-07-30 Respironics, Inc. Resuscitator
US5780014A (en) * 1995-04-14 1998-07-14 Inhale Therapeutic Systems Method and apparatus for pulmonary administration of dry powder alpha 1-antitrypsin
US7097827B2 (en) 1995-04-14 2006-08-29 Inhale Therapeutic Systems, Inc. Devices, compositions and methods for the pulmonary delivery of aerosolized medicaments
US5993783A (en) * 1995-04-14 1999-11-30 Inhale Therapeutic Systems Method and apparatus for pulmonary administration of dry powder α1-antitrypsin
US20030068279A1 (en) * 1995-04-14 2003-04-10 Platz Robert M. Devices, compositions and methods for the pulmonary delivery of aerosolized medicaments
US20070042048A1 (en) * 1995-04-14 2007-02-22 Nektar Therapeutics Devices, Compositions and Methods for the Pulmonary Delivery of Aerosolized Medicaments
US8802149B2 (en) 1996-12-31 2014-08-12 Novartis Pharma Ag Systems and processes for spray drying hydrophobic and hydrophilic components
US20090285905A1 (en) * 1996-12-31 2009-11-19 Gordon Marc S Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US6901929B2 (en) 1998-06-04 2005-06-07 Nektar Therapeutics Dry powder dispersing apparatus and methods for their use
US8161969B2 (en) 1998-06-04 2012-04-24 Novartis Ag Dry powder dispersing apparatus and methods for their use
US7422013B2 (en) 1998-06-04 2008-09-09 Nektar Therapeutics Dry powder dispersing apparatus and methods for their use
US20080230058A1 (en) * 1998-06-04 2008-09-25 Nektar Therapeutics Dry powder dispersing apparatus and methods for their use
US6546929B2 (en) 1998-06-04 2003-04-15 Inhale Therapeutic Systems, Inc. Dry powder dispersing apparatus and methods for their use
US20030209243A1 (en) * 1998-06-04 2003-11-13 Inhale Therapeutic Systems Dry powder dispersing apparatus and methods for their use
US8337895B2 (en) 2000-06-30 2012-12-25 Novartis Ag Spray drying process control of drying kinetics
US20100034910A1 (en) * 2000-06-30 2010-02-11 Novartis Pharma Ag Spray drying process control of drying kinetics
US20030232020A1 (en) * 2002-04-24 2003-12-18 Peter York Particulate materials
US8273330B2 (en) 2002-04-25 2012-09-25 Nektar Therapeutics Particulate materials
US9700529B2 (en) 2002-05-03 2017-07-11 Nektar Therapeutics Particulate materials
US10188614B2 (en) 2002-05-03 2019-01-29 Nektar Therapeutics Particulate materials
US10945972B2 (en) 2002-05-03 2021-03-16 Nektar Therapeutics Particulate materials
WO2006009607A3 (en) * 2004-06-16 2007-04-19 Gen Hospital Corp Methods and devices for assisting drug delivery to the lungs
WO2006009607A2 (en) * 2004-06-16 2006-01-26 The General Hospital Corporation D/B/A Massachusetts General Hospital Methods and devices for assisting drug delivery to the lungs

Similar Documents

Publication Publication Date Title
US2598525A (en) Automatic positive pressure breathing machine
US2693178A (en) Demand type gas regulator
US3817246A (en) Flow responsive respiration apparatus
US3584621A (en) Respiratory apparatus
US2408136A (en) Resuscitator insufflator aspirator
US3662751A (en) Automatic respirator-inhalation therapy device
US3068856A (en) Fluid control device
US4044763A (en) Ventilator and method
US3769973A (en) Intermittent positive pressure breathing apparatus
US4821713A (en) Resuscitator
US3473529A (en) Squeeze-bag resuscitator
US2774346A (en) Respirator
DE69829868T2 (en) LUNG PRESSURE MODULATOR
US3046979A (en) Lung ventilators and control mechanism therefor
US4164219A (en) Ventilator
US3114365A (en) Apparatus for pulmonary ventilation during anesthesia
JPS6041975A (en) Oxygen inhalator
US3730180A (en) Pneumatically operated ventilator
GB899137A (en) Resuscitation apparatus
US3581742A (en) Intermittent positive pressure breathing device
US3385295A (en) Apparatus for use in administering intermittent positive pressure breathing therapy
US3467078A (en) Spirometer
US3753436A (en) Automatic respirator
US2774352A (en) Breathing assistor valve
US3598116A (en) Respirator with fluid amplifiers