US2606010A - Mechanized production of solid fuel - Google Patents

Mechanized production of solid fuel Download PDF

Info

Publication number
US2606010A
US2606010A US625413A US62541345A US2606010A US 2606010 A US2606010 A US 2606010A US 625413 A US625413 A US 625413A US 62541345 A US62541345 A US 62541345A US 2606010 A US2606010 A US 2606010A
Authority
US
United States
Prior art keywords
coal
cutterhead
machine
retort
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US625413A
Inventor
Frank A Howard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consolidation Coal Co
Pittsburgh Consolidation Coal Co
Original Assignee
Consolidation Coal Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consolidation Coal Co filed Critical Consolidation Coal Co
Priority to US625413A priority Critical patent/US2606010A/en
Application granted granted Critical
Publication of US2606010A publication Critical patent/US2606010A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/20General features of equipment for removal of chippings, e.g. for loading on conveyor

Definitions

  • This invention relates to the production of solid fuels from underground coal seams and will be understood from the following description taken in connection with the annexed drawmgs.
  • Figure l is a cross-section through the working place in an underground coal mine showing the apparatus for the mechanical mining and transportation of the coal in side view.
  • Figure 1A is an enlarged cross-section on the line AA of Figure 1.
  • Figure 2 is a top plan view, partly in horizontal section, of a modified form of cutterhead for use on the apparatus of Figure 1.
  • Figure 3 is a section on the line 33 of Figure 2.
  • Figure 4 is a front view of the face of the cutterhead shown in Figures 2 and 3.
  • Figure 5 is a view similar to Figure 1 but showing an alternative form of apparatus in which the coal is detached from the seam and delivered to the hopper of a crushing apparatus by an augur-bit type of cutter and conveyor.
  • Figure 6 is a similar view of a still further modification in which two separate machines are used in the working place, one for digging and/ or loading the coal and the other for crushing it and delivering it into the transportation system.
  • Figure 7 is a diagrammatic elevation, partly in section, of the surface installations employed in the practice of the invention.
  • the numeral 1 in Figure 1 designates an underground working place in which a coal seam, designated 2, is exposed.
  • a moving current ofv fluid also conveys the particles through suitable confined passages from the workingplace to a sump or storage reservoir from which the coal can be lifted to the surface by mechanical elevators, or preferably, directly to the surface in the moving fluid current.
  • Such apparatus may consistofa mobile mining machine mounted on wheels, designated 3.
  • the machine carries a horizontal conduit 4 which has. universal swivel connections at the front and. rear.
  • Theend conduit section 6 istelescopic sothat the ma.- chine may advance away from the conduit without breaking the connections.
  • the joint 1, on the conduit 4 supports'a universal type of cutter which consists of a long trunk 8 enlargedand slightly up-tilted at the outer end asshown. at 9.
  • a curved cutterhead I! which may be of the rollerebit type, the actual cutting elementsbeing toothed rollers mounted on radial arms of thecutterhead.
  • roller-bits are commonly usedin drilling for oil with rotary rigs.
  • the cutterhead is. driven by shaft ll universally jointed at l2.
  • a Power is supplied to the cutterhead through a motor l3, and gears l4, mounted on the frameof the machine.
  • l-lydraulic cylinders l8' carried by the frame of: the machine are connected through crossheads i8 and connecting links l8" to the trunk 8.
  • the-cutter maybe raised and lowered and swung from side to side to cover in an arc the entire working face in a short wall working place, the connections of the links being provided with universal joints to facilitate such operation.
  • the machine may be advanced positively and forcibly against the working face by hydraulic sprag-type jacks IS on each side of the machine, the points of these jacks engaging the floor of the working place.
  • a separate crusher 20 located on top of the machine, into which the loose coal may be loaded by hand or by a separate loading machine. The crusher discharges through a suitable valve connection into the conduit 4.
  • the roller-bit cutter In is positively driven to detach the coal from the face of the seam 2 in the form of fine particles. These fine particles are caught up by an air current entering the cutterhead from the atmosphere of the working place through the space between the cutterhead and the seam. Sufiiciently fine parto be readily carried in suspension in the air current or to pass through the inclined screen I5 fall to the base of the cutter and pass beneath the constantly driven roller-crusher Hi.
  • the screen l5 must be of sufficiently large mesh to avoid blinding or blanketing.
  • the crushing roller l6. is designed to reduce all the coal toasize suflicient to permit the. particles to be carried along by the air current.
  • the cutterhead may bepositively fed toward the face of the coal s'eam by the .hydraulic sprags l9..
  • the hydraulic cylinders I 8 By the hydraulic cylinders I 8 it may be caused to traverse the 'face of the coal scam in horizontal or vertical arcs. Any combination of these movements may :be used.
  • Loose coal dislodged from the seam and falling outside of the cutterhead may be loaded by hand or by the use of any of the known mechanical loading machines or conveyors into the hopper of the crusher 20, which may be constinuously or intermittently operated to grind the loose coal and discharge it by gravity assisted, :01 any extent desired, by leakage of indrawn air, into the conduit 4.
  • the main motor l3, the front crusher motor I] and such other supplementary motors as may be required in the operation of the supplementary crusher 20, for the propulsion of the machine and for the actuation of the hydraulic mechanisms, may conveniently all be electric motors supplied with current through extensible cables drawn behind the machine in accordance with ordinary practice in the provision of power for underground mining machines.
  • FIG. 2 there is shown a T-head design of cutter in which the trunk 8 carries a horizontal T-head made up ofa central section and two hinged end sections.
  • carries the main driving shaft 22 on which there is mounted the driving gear 23, which is driven by the main drive shaft I l as shown in Figure 1.
  • Driving gears 24 mounted on the shaft 22 drive a plurality of small roller-bit cutterheads 25 mounted in the open front end of the cutterhead.
  • the shaft 22 carries a jaw clutch 26. When the cutterhead is in operative position, as shown in Figure 2 the jaw clutch engages a similar clutch 21 in an end shaft 28.
  • the end shaft 28 in turn drives the roller-bit cutters in the end sections of the cutterhead.
  • the end sections carrying the complete assembly above described are joined to the main or central section by hinges 29 with suitable locking devices (not shown).
  • the driving gears in the cutterhead may be enclosed by casing 30 which supports the bearings for the shafts and protects the gears from direct impingement of the coal particles and permits their lubrication.
  • the T form of cutterhead shown in Figures 2, 3 and 4 may be made wide enough to extend across the entire face of a normal short Wall operation, say 16 to 20 feet. This type of cutterhead needs to be moved only vertically, such vertical feed together with the advance of the machine against the working face serving all needs.
  • the stationary central section of the T form of cutterhead will be of the approximate width of the machine itself, the balance of the width being supplied by the hinged end sections.
  • the hinged end sections By turning these hinged end sections back, as shown by the arrow in Figure 2, so they are parallel with the trunk 8, the machine may be easily maneuvered underground through narrow entries and between roof supports.
  • FIG. 5 there is shown a form of machine in which the coal is detached from the seam by a large cutter in the form of an augurbit 3
  • the 'augur-bit type of cutter acts as both cutter and conveyor and discharges at its'upper end into a hopper'34 surmounting crushing rollers 35.
  • The-crushing rollers discharge into the conduit 35.
  • Air is admitted from the atmosphere of the working place partly through the 'augur bit casingdirectly from the working face via the leakage space around the crushing rollers and partly by a supplementary valved inlet 31.
  • the conduit 36 is connected to the main vacuum system by telescopic conduit section 6 through a universal joint tides in Figure 1.
  • the augur bit is drivenby a main motor 59.
  • The' augur bit type of cutter-and-conveyor as shown in Figure'5 permits better control of the relative quantities of coal and air delivered through the conduit 6 from the workingrplace and thus may diminish the hazards'of dust ex- .plosion'in the conduit or at the cutterhead.
  • explosion hazard in the conduit may be further reduced by the admission of inert gas, for example combustion gas, through a supplementary supply conduit All parallel to the outlet conduit .5 and connected into the air conduit'just below carries a coal crusher designated 4
  • l he coal is supplied to the open hopper ll by an ordinary type of coal loading machine designated 42.
  • the body of this machine carries in the front section a digger and loaderdesignated 43 and in the rear' section a conveyor-43' which extends
  • the coal handled by the loader 453 may have beenpreviously loosened from'the seam by hand or by cutting, drilling and shooting in accordance with standard practice or it may be detached from the seam by any known form'of mechanical diggers or cutters.
  • the vacuum transportation system which may connect with any number of underground working places terminates in a cyclone dust collector 44 from which the carrier gases are withdrawn by the vacuum blower 45.
  • the cyclone is preferably of considerable size and serves'as a storage reservoir for the fine coal.
  • the fine coal flows by gravity from the bottom of the cyclone through an inclined pipe 46 which may deliver to a cleaning plant of any conventional type from which the coal again flows by gravity to the other surface installations, or the coal may flow directly to such other installations.
  • the coal in a cleaned or uncleaned condition Fri) as the case may be, flows by gravity throughthe inclined-pipe '4'! to a manifold system by which it may be diverted through aretort 48 or delivered'directly to storage.
  • the valve '41 is opened and the valve 47" closedyand the coal passes from the pipe 41 through the riser 49 into the bottom of the vertical retort 48, which is mounted in the furnace 50 heated by the combustion of fuel from spray nozzles 50'.
  • air may be injected into the pipe 4l through the line 5
  • the gravity head. on the'pipe 41 delivers a regulated stream of coal through valve 41', as indicated, to the pipejunction-below the riser 49 and'the fluidized condition being maintained by the admission of coal gas under pressure at this point, the fine coal flows upwardly into the retort.
  • a circular distributing manifold 53 below the retort delivers steam at a plurality of points around its conical bottom. This steam, together with the coal gas admitted through the pipe 52, maintains the finely divided solid contents of the retort in a constant state of agitation similar to that of a boiling liquid and this effects a rapid heat transfer from the heated wallsof the retort to the coal.
  • the time of residence of the coal in the retort is regulated with reference to the temperature of the latter so as toeifect the desired reduction in the volatilecontent of the coal. In any case, it is desirable that the residence time be long enough to reduce to a lowpercentage the coal present in the retort which in passing through the temperature range in. which plasticity may develop and interfere with the maintenance of fluid conditions.
  • the devolatilized coal is withdrawn from the retort by means of a pipe 54 which delivers into the manifold system through an appropriate valve 54.
  • the finely divided devolatilized coal withdrawn from the retort may be delivered directly to storage through the line 55 or may be diverted through the line to the briquetting plant by operation of valves 55' and 69.
  • the admission of fine coal to the retort through the line 41 and withdrawal through line 54 is regulated by the valves 41', 49 and 54' to maintain the level of the dense phase of thefinely divided material in the retort at some point below the top of the retort. Vapors and gases, together with a certain amount of entrained dust are withdrawn from thetop of the retort through the line 6
  • the collected solids drain by gravity from the bottom of the dust collector through a dip pipe 63 which extends well below the levelof the dense phase in the retort.
  • the coal gas and associated condensable vapors evolved from the coal in the retort leave the cyclone through an outlet 64 and pass to a'suitable condensate recovery plant in which the condensable fractions are separated and recovered in accordance with known practice and the stripped coal gas separately disposed of.
  • a fluidizing gas which in this instance may be steam into the outlet line 55 through a connection 65 from whence it may pass upward to the retort through the'line' 5'4 and maintain the entire discharge system' in fluidized condition.
  • lines 49, 54 and 60 are closed off and line 55 is opened, thus permitting direct discharge of fine coal through the manifold system.
  • air is admitted through the connection 65, maintaining a fluidized condition of the discharging coal in the manifold system.
  • fiuidizing gas such as air, steam or coal gas
  • it has the effect of keeping the particles of solid coal separated by a film of gas, so that the finely divided coal is maintained in a fluid state in which it is capable of flowing more or less like a liquid.
  • the amount of fiuidizing gas need not be large, its purpose being to prevent the powdered material from packing so that it will not flow.
  • the powdered coal in the vacuum transporting system may be entrained with a relatively large volume of air, most of this being discharged in the upperpart of the collector 44.
  • the fuel deposited in the collector retains sufficient air to remain initially in a fluidized state and this condition is maintained permanently by the air admitted through line
  • the retort 48 and the lines 46, 41 and 49 is kept in a fluidized state and as the pressure head produced by the material in the collector and lines 46-and 41 is maintained greater than the pressure head of the material in the retort 48 and line 49, the finely divided coal will flow readily from the collector to the retort.
  • This effect is enhanced by the fluidizing air and coal gas admitted at 5
  • a liquid binder may be introduced through the connection 66 into the pipe 60 and fiuidizing air or steam through the connection 61 near the outlet end of the pipe 60. At its lower end the pipe 60 discharges into a distributor 68, thence on to an apron 69 which feeds a pair of briquetting rolls 10.
  • these briquetting rolls have matching recesses in their faces which serve to form and compress the finely divided fuel mixed with binder into briquettes of predetermined sizes which are discharged by an apron H onto a conveyor 12 by which they are carried to storage, being permitted to cool to any desired extent en route to storage in accordance with the usual practice.
  • solid carbonaceous fuel in predetermined lump sizes may be produced from underground coal seams by continuous and efficient mechanical processes involving the minimum of direct labor.
  • the equipment and methods described are also capable of producing low-volatile solid carbonaceous fuel in the most effective manner, by distilling the finely divided coal while still maintaining it in .a finely divided condition, which permits it to be handled as a fluid as shown and described.
  • the devolatilized finely divided fuel may be either briquetted into lumps of predetermined sizes or delivered directly to storage for use as low-volatile finely divided coal.
  • a mobile mining machine comprising a frame, a conveying conduit carried thereby, connections at the rear end of such conduit for joining it to a vacuum system, a vacuum trunk carried by the front end of the frame and connected with the conduit by a joint permitting relative angular movement of the trunk, a cutterhead including a cutter mounted on the outward end of the trunk, said cutterhead being T-shaped and comprising a fixed central section and hinged end sections adapted to be swung backwards to reduce the width of the machine, power means located on the machine for driving the cutter mounted in such cutterhead, power means for driving the cutterhead across the exposed face of the seam by angular movement of the trunk and power means for advancing the machine toward the face of the seam.
  • a mobile mining machine comprising a frame, a cutterhead carried by said frame and comprising a plurality of sections, each section comprising a plurality of cutters mounted on a plurality of rotatable shafts which are arranged in substantially parallel relationship and in substantially the same plane and which are so positioned with respect to one another that upon rotation of said shafts substantially contiguous circles are described by the cutters in substantially the same plane, driving means for effecting rotation of said rotatable shafts, at least one of said sections being adapted to be disengaged from said driving means while another section is retained in operative relationship with said driving means, and power means for advancing the machine toward the face of the seam.
  • a mobile mining machine comprising a frame, a cutterhead carried by said frame com prising a plurality of sections, each section comprising a plurality of cutters mounted on a plurality of rotatable shafts which are arranged in substantially parallel relationship and in substantially the same plane and which are so positioned with respect to one another that upon rotation of said shafts substantially contiguous circles are described by the cutters in substantially the same plane, driving means for effecting rotation of said rotatable shafts, at least one of said sections being movable with respect to another section to alter the width of said cutterhead, and power means for advancing the machine toward the face of the seam.
  • a mobile mining machine comprising a:
  • a cutterhead carried by said frame comprising a fixed central section and hinged end sections adapted to be swung backwards to reduce the width of the machine, each of said sections including a cutter, power means located on the machine for driving the cutters mounted in the cutterhead, and power means for advancing the machine toward the face of the seam.

Description

Aug. 5, 1952 F. A. HOWARD 2,695,010
MECHANIZED PRODUCTION OF soLID FUEL 5 Sheets-Sheet 1 I 1 v Q N t. .k\ H 51 v, ...II I 2 L. l 11"- n Q v mm m, s Q
n/v/r A? How Filed Oct. 29, 1945 g- 5, 1952 F. A. HOWARD MECHANIZED PRODUCTION OF SOLID FUEL 5 Sheets-Sheet 2 Filed 001;. 29, 1945 INVENTOR. I .FPA/v/r A? Harm/P0 Aug. 5, 1952 7 F. A. HOWARD MECHANIZED PRODUCTION OF SOLID FUEL 5 Shets-Sheet 5 Filed Oct. 29, 1945 INVENTOR. fkwn ,4. //a W4/P0 14 T TOP/V5 Y Aug. 5, 1952 F. HOWARD v 2,606,010
'MECHANIZED PRODUCTION O SIOLID FUEL I 37. 69 l I .1 E. INVENTOR. FPA/v/rA flow/9 0 Aug. 5, 1952 F. A. HOWARD MECHANIZED PRODUCTION OF SOLID FUEL 5 Sheets-Sheet 5 Filed 001;. 29, 1945 TU NTQU JISQK ,HFP
ATTOIP/Vfy Patented Aug. 5, 1952 MECHANIZED PRODUCTION OF SOLID FUEL Frank A. Howard, New York, N. Y., assignor, by mesne assignments, of one-tenth to Pittsburgh Consolidation Coal Company, Pittsburgh, Pa., a corporation of Pennsylvania Application October 29, 1945, Serial No. 625,413
Claims.
This invention relates to the production of solid fuels from underground coal seams and will be understood from the following description taken in connection with the annexed drawmgs.
In these drawings, Figure l is a cross-section through the working place in an underground coal mine showing the apparatus for the mechanical mining and transportation of the coal in side view.
Figure 1A is an enlarged cross-section on the line AA of Figure 1.
Figure 2 is a top plan view, partly in horizontal section, of a modified form of cutterhead for use on the apparatus of Figure 1.
Figure 3 is a section on the line 33 of Figure 2.
Figure 4 is a front view of the face of the cutterhead shown in Figures 2 and 3.
Figure 5 is a view similar to Figure 1 but showing an alternative form of apparatus in which the coal is detached from the seam and delivered to the hopper of a crushing apparatus by an augur-bit type of cutter and conveyor.
Figure 6 is a similar view of a still further modification in which two separate machines are used in the working place, one for digging and/ or loading the coal and the other for crushing it and delivering it into the transportation system.
Figure 7 is a diagrammatic elevation, partly in section, of the surface installations employed in the practice of the invention.
Referring more particularly to the drawings, the numeral 1 in Figure 1 designates an underground working place in which a coal seam, designated 2, is exposed.
There are two main steps in the underground mining-of coal: First, breaking the coal loose from the seam, vein 'or formation in which it occurs, and second, transporting the loosened coal to the surface. In the preferred embodiment of my invention, substantially the entire body of the coal mined is broken loose by mechanical cutters designed and operated so as to detach the coal from the seam very largely in the form of fine particles which are small enough to be carried away from the working face by a current of moving fluid.
A moving current ofv fluid, either the same one which carries the particles away from the face as they are detached or an augmentedv current, also conveys the particles through suitable confined passages from the workingplace to a sump or storage reservoir from which the coal can be lifted to the surface by mechanical elevators, or preferably, directly to the surface in the moving fluid current.
To carryout this operation there may be'used apparatus of the-form shown diagrammatically in Figure 1.. Such apparatus may consistofa mobile mining machine mounted on wheels, designated 3. The machine carries a horizontal conduit 4 which has. universal swivel connections at the front and. rear. At the rear connection ,5 there is fastened an end section 6.01 theftr'ansportation conduit forming .a part. ofa vacuum transportation system leading from. the working placeto some remote point, Theend conduit section 6 istelescopic sothat the ma.- chine may advance away from the conduit without breaking the connections. The joint 1, on the conduit 4 supports'a universal type of cutter which consists of a long trunk 8 enlargedand slightly up-tilted at the outer end asshown. at 9. In this outer end there is carried acurved cutterhead I!) which may be of the rollerebit type, the actual cutting elementsbeing toothed rollers mounted on radial arms of thecutterhead. Such roller-bits are commonly usedin drilling for oil with rotary rigs. The cutterhead is. driven by shaft ll universally jointed at l2. a Power is supplied to the cutterhead through a motor l3, and gears l4, mounted on the frameof the machine. Inthe up-tilted and enlarged end 9, there may be mounted an inclined screen 15 intended to catch lumps and large particles, of coal and divert them to the bottom of the'head where they pass under the screen and-are crushed by a corrugated roller I6 which turns-against a small idle roller Ilia, as shown in Figure-1A. and is driven by chain or belt from a motor 11 supported near the base of the trunk '8. l-lydraulic cylinders l8' carried by the frame of: the machine are connected through crossheads i8 and connecting links l8" to the trunk 8. Through the control of two such cylinders, one on each side of the machine, the-cutter maybe raised and lowered and swung from side to side to cover in an arc the entire working face in a short wall working place, the connections of the links being provided with universal joints to facilitate such operation. The machine may be advanced positively and forcibly against the working face by hydraulic sprag-type jacks IS on each side of the machine, the points of these jacks engaging the floor of the working place. To take care of such portion of the coal as may be dislodged from the seam and fall outside of the cutterhead, there may be provided a separate crusher 20 located on top of the machine, into which the loose coal may be loaded by hand or by a separate loading machine. The crusher discharges through a suitable valve connection into the conduit 4.
The mining of coal according to my invention may be carried out with the machine illustrated in Figure 1 as follows: V
By the motor I3 the roller-bit cutter In is positively driven to detach the coal from the face of the seam 2 in the form of fine particles. These fine particles are caught up by an air current entering the cutterhead from the atmosphere of the working place through the space between the cutterhead and the seam. Sufiiciently fine parto be readily carried in suspension in the air current or to pass through the inclined screen I5 fall to the base of the cutter and pass beneath the constantly driven roller-crusher Hi. The screen l5 must be of sufficiently large mesh to avoid blinding or blanketing. The crushing roller l6.is designed to reduce all the coal toasize suflicient to permit the. particles to be carried along by the air current. The cutterhead may bepositively fed toward the face of the coal s'eam by the .hydraulic sprags l9.. By the hydraulic cylinders I 8 it may be caused to traverse the 'face of the coal scam in horizontal or vertical arcs. Any combination of these movements may :be used. Loose coal dislodged from the seam and falling outside of the cutterhead may be loaded by hand or by the use of any of the known mechanical loading machines or conveyors into the hopper of the crusher 20, which may be constinuously or intermittently operated to grind the loose coal and discharge it by gravity assisted, :01 any extent desired, by leakage of indrawn air, into the conduit 4. f By the operation of the apparatus in the man- 'ner described, it will be seen that the coal is continuously detached by mechanicalaction from the face of the coal seam, reduced to small particles and transported from the working place to a remote point by an air current drawn from the atmosphere of the working place andQmoving outward in a confined passage to some indefinitely remote point where the coal is separated and collected from the air current by known procedure. Themining and transportation of coal is, by this procedure, made continuous and completely mechanized, save for the handling of small portions of coal accidentally dislodged by the cutterhead and falling outside of the cutterhead or trimmed from the seam by hand for other incidental reasons. This small portion of separately dislodged coal may require supple mentary hand labor to collect it and deliver it 4 into the supplementary crusher forming a part of the machine. It will be noted that since the air current used for conveying the coal from the working place is drawn from the atmosphere of the working place, the mining method and apparatus in itself forms a supplementary mine ventillation system in which fresh air is continuously drawn from the outside to the working place and delivered from the working place in a confined passage along with the outgoing coal. This greatly reduces the dust nuisance and the fire and explosion hazardsof dust and gas in the working place. The complete elimination of the drilling and shooting of the coal seam further contributes to the safety and economy of the operation and makes possible complete continuity of actual coal recovery operations.
The main motor l3, the front crusher motor I] and such other supplementary motors as may be required in the operation of the supplementary crusher 20, for the propulsion of the machine and for the actuation of the hydraulic mechanisms, may conveniently all be electric motors supplied with current through extensible cables drawn behind the machine in accordance with ordinary practice in the provision of power for underground mining machines.
In Figures 2 to 4 I have shown various modifications of the apparatus illustrated in Figure 1. In Figure 2 there is shown a T-head design of cutter in which the trunk 8 carries a horizontal T-head made up ofa central section and two hinged end sections. The central section designated 2| carries the main driving shaft 22 on which there is mounted the driving gear 23, which is driven by the main drive shaft I l as shown in Figure 1. Driving gears 24 mounted on the shaft 22 drive a plurality of small roller-bit cutterheads 25 mounted in the open front end of the cutterhead. At each end the shaft 22 carries a jaw clutch 26. When the cutterhead is in operative position, as shown in Figure 2 the jaw clutch engages a similar clutch 21 in an end shaft 28. The end shaft 28 in turn drives the roller-bit cutters in the end sections of the cutterhead. The end sections carrying the complete assembly above described are joined to the main or central section by hinges 29 with suitable locking devices (not shown). The driving gears in the cutterhead may be enclosed by casing 30 which supports the bearings for the shafts and protects the gears from direct impingement of the coal particles and permits their lubrication. The T form of cutterhead shown in Figures 2, 3 and 4 may be made wide enough to extend across the entire face of a normal short Wall operation, say 16 to 20 feet. This type of cutterhead needs to be moved only vertically, such vertical feed together with the advance of the machine against the working face serving all needs. Preferably the stationary central section of the T form of cutterhead will be of the approximate width of the machine itself, the balance of the width being supplied by the hinged end sections. By turning these hinged end sections back, as shown by the arrow in Figure 2, so they are parallel with the trunk 8, the machine may be easily maneuvered underground through narrow entries and between roof supports.
In Figure 5 there is shown a form of machine in which the coal is detached from the seam by a large cutter in the form of an augurbit 3| turning inside of a trunk or casing 32 which is universally jointed at 33 and may be controlled by hydraulic power cylinders and connecting rods over the open top of the hopper 4|.
inJthe same manner as the machine shown in Figure '1 so as totraverse the'entire face of the short wall. The 'augur-bit type of cutter acts as both cutter and conveyor and discharges at its'upper end into a hopper'34 surmounting crushing rollers 35. The-crushing rollers discharge into the conduit 35. Air is admitted from the atmosphere of the working place partly through the 'augur bit casingdirectly from the working face via the leakage space around the crushing rollers and partly by a supplementary valved inlet 31. The conduit 36 is connected to the main vacuum system by telescopic conduit section 6 through a universal joint tides in Figure 1. The augur bit is drivenby a main motor 59. The' augur bit type of cutter-and-conveyor as shown in Figure'5 permits better control of the relative quantities of coal and air delivered through the conduit 6 from the workingrplace and thus may diminish the hazards'of dust ex- .plosion'in the conduit or at the cutterhead. The
explosion hazard in the conduit may be further reduced by the admission of inert gas, for example combustion gas, through a supplementary supply conduit All parallel to the outlet conduit .5 and connected into the air conduit'just below carries a coal crusher designated 4| mounted in the base of an open hopper and delivering into a conduit in the same manner as heretofore described in connection with Figure 5. l he coal is supplied to the open hopper ll by an ordinary type of coal loading machine designated 42. The body of this machine carries in the front section a digger and loaderdesignated 43 and in the rear' section a conveyor-43' which extends The coal handled by the loader 453 may have beenpreviously loosened from'the seam by hand or by cutting, drilling and shooting in accordance with standard practice or it may be detached from the seam by any known form'of mechanical diggers or cutters.
In Figure '7 I haveshown diagrammatically those'elements of the surface installations which are-directly involved in the practice of the invention and have indicated their relations to other-usual elements of surface installations not so directly involved.
The vacuum transportation system which may connect with any number of underground working places terminates in a cyclone dust collector 44 from which the carrier gases are withdrawn by the vacuum blower 45. The cyclone is preferably of considerable size and serves'as a storage reservoir for the fine coal. The fine coal flows by gravity from the bottom of the cyclone through an inclined pipe 46 which may deliver to a cleaning plant of any conventional type from which the coal again flows by gravity to the other surface installations, or the coal may flow directly to such other installations.
The coal, in a cleaned or uncleaned condition Fri) as the case may be, flows by gravity throughthe inclined-pipe '4'! to a manifold system by which it may be diverted through aretort 48 or delivered'directly to storage. In the event-thecoal isto be delivered'through the retort, the valve '41 is opened and the valve 47" closedyand the coal passes from the pipe 41 through the riser 49 into the bottom of the vertical retort 48, which is mounted in the furnace 50 heated by the combustion of fuel from spray nozzles 50'. To maintain the fine coal in a fluidized condition, air may be injected into the pipe 4l through the line 5| and coal gas may be injected just below theri-ser-GB through the pipe 52. By maintaining the fine coalin fluidized condition, the gravity head. on the'pipe 41 delivers a regulated stream of coal through valve 41', as indicated, to the pipejunction-below the riser 49 and'the fluidized condition being maintained by the admission of coal gas under pressure at this point, the fine coal flows upwardly into the retort. A circular distributing manifold 53 below the retort delivers steam at a plurality of points around its conical bottom. This steam, together with the coal gas admitted through the pipe 52, maintains the finely divided solid contents of the retort in a constant state of agitation similar to that of a boiling liquid and this effects a rapid heat transfer from the heated wallsof the retort to the coal.
The time of residence of the coal in the retort is regulated with reference to the temperature of the latter so as toeifect the desired reduction in the volatilecontent of the coal. In any case, it is desirable that the residence time be long enough to reduce to a lowpercentage the coal present in the retort which in passing through the temperature range in. which plasticity may develop and interfere with the maintenance of fluid conditions. The devolatilized coal is withdrawn from the retort by means of a pipe 54 which delivers into the manifold system through an appropriate valve 54. From the manifold system the finely divided devolatilized coal withdrawn from the retort may be delivered directly to storage through the line 55 or may be diverted through the line to the briquetting plant by operation of valves 55' and 69. The admission of fine coal to the retort through the line 41 and withdrawal through line 54 is regulated by the valves 41', 49 and 54' to maintain the level of the dense phase of thefinely divided material in the retort at some point below the top of the retort. Vapors and gases, together with a certain amount of entrained dust are withdrawn from thetop of the retort through the line 6| and put through a cyclone dust collector 62. The collected solids drain by gravity from the bottom of the dust collector through a dip pipe 63 which extends well below the levelof the dense phase in the retort. The coal gas and associated condensable vapors evolved from the coal in the retort, leave the cyclone through an outlet 64 and pass to a'suitable condensate recovery plant in which the condensable fractions are separated and recovered in accordance with known practice and the stripped coal gas separately disposed of.
In the event the devolatilized finely divided coal is to be delivered from the retort 48 directly to storage, it is advisable to inject a fluidizing gas, which in this instance may be steam into the outlet line 55 through a connection 65 from whence it may pass upward to the retort through the'line' 5'4 and maintain the entire discharge system' in fluidized condition. In the event it is desired to by-pass the retort and deliver the fine coal directly to storage, lines 49, 54 and 60 are closed off and line 55 is opened, thus permitting direct discharge of fine coal through the manifold system. In this case, air is admitted through the connection 65, maintaining a fluidized condition of the discharging coal in the manifold system.
Wherever fiuidizing gas, such as air, steam or coal gas, is employed, it has the effect of keeping the particles of solid coal separated by a film of gas, so that the finely divided coal is maintained in a fluid state in which it is capable of flowing more or less like a liquid. The amount of fiuidizing gas need not be large, its purpose being to prevent the powdered material from packing so that it will not flow. On the other hand, the powdered coal in the vacuum transporting system may be entrained with a relatively large volume of air, most of this being discharged in the upperpart of the collector 44. The fuel deposited in the collector, however, retains sufficient air to remain initially in a fluidized state and this condition is maintained permanently by the air admitted through line As the finely divided coal in the collector, the retort 48 and the lines 46, 41 and 49 is kept in a fluidized state and as the pressure head produced by the material in the collector and lines 46-and 41 is maintained greater than the pressure head of the material in the retort 48 and line 49, the finely divided coal will flow readily from the collector to the retort. This effect is enhanced by the fluidizing air and coal gas admitted at 5| and 52, as they decrease the bulk density of the material in the retort and in line 49 and accordingly the pressure head produced by this material.
In the event it is desired to produce a solid fuel in predetermined sizes, this may be accomplished through the briquetting plant to which the line 60 delivers. A liquid binder may be introduced through the connection 66 into the pipe 60 and fiuidizing air or steam through the connection 61 near the outlet end of the pipe 60. At its lower end the pipe 60 discharges into a distributor 68, thence on to an apron 69 which feeds a pair of briquetting rolls 10. As shown, these briquetting rolls have matching recesses in their faces which serve to form and compress the finely divided fuel mixed with binder into briquettes of predetermined sizes which are discharged by an apron H onto a conveyor 12 by which they are carried to storage, being permitted to cool to any desired extent en route to storage in accordance with the usual practice.
Through the use of the surface equipment shown diagrammatically in Figure 7, in combination with the underground equipment shown in Figures 1 to 6, solid carbonaceous fuel in predetermined lump sizes may be produced from underground coal seams by continuous and efficient mechanical processes involving the minimum of direct labor. The equipment and methods described are also capable of producing low-volatile solid carbonaceous fuel in the most effective manner, by distilling the finely divided coal while still maintaining it in .a finely divided condition, which permits it to be handled as a fluid as shown and described. The devolatilized finely divided fuel may be either briquetted into lumps of predetermined sizes or delivered directly to storage for use as low-volatile finely divided coal.
By the use of the methods, apparatus and machines of my invention, the art of solid fuel pro- 8 duction becomes a completely mechanized, continuous and integrated operation for recovering coal from underground coal deposits, delivering it to the surface and handling it at the surface by the most efficient processes for the production of the most valuable products.
While I have shown and described in some detail in the foregoing specification several methods of carrying out my invention, it will be understood that these details are illustrative only and for the purpose of making the invention more clear, and that I do not intend to indicate that my invention is limited to such details or any of them, save insofar as they are included within the terms of the following claims in which it is my intention to claim all novelty inherent in the invention as broadly as possible in view of the prior art.
I claim:
1. A mobile mining machine comprising a frame, a conveying conduit carried thereby, connections at the rear end of such conduit for joining it to a vacuum system, a vacuum trunk carried by the front end of the frame and connected with the conduit by a joint permitting relative angular movement of the trunk, a cutterhead including a cutter mounted on the outward end of the trunk, said cutterhead being T-shaped and comprising a fixed central section and hinged end sections adapted to be swung backwards to reduce the width of the machine, power means located on the machine for driving the cutter mounted in such cutterhead, power means for driving the cutterhead across the exposed face of the seam by angular movement of the trunk and power means for advancing the machine toward the face of the seam.
2. A mobile mining machine comprising a frame, a cutterhead carried by said frame and comprising a plurality of sections, each section comprising a plurality of cutters mounted on a plurality of rotatable shafts which are arranged in substantially parallel relationship and in substantially the same plane and which are so positioned with respect to one another that upon rotation of said shafts substantially contiguous circles are described by the cutters in substantially the same plane, driving means for effecting rotation of said rotatable shafts, at least one of said sections being adapted to be disengaged from said driving means while another section is retained in operative relationship with said driving means, and power means for advancing the machine toward the face of the seam.
3. A mobile mining machine comprising a frame, a cutterhead carried by said frame com prising a plurality of sections, each section comprising a plurality of cutters mounted on a plurality of rotatable shafts which are arranged in substantially parallel relationship and in substantially the same plane and which are so positioned with respect to one another that upon rotation of said shafts substantially contiguous circles are described by the cutters in substantially the same plane, driving means for effecting rotation of said rotatable shafts, at least one of said sections being movable with respect to another section to alter the width of said cutterhead, and power means for advancing the machine toward the face of the seam.
4. A machine constructed in accordance with claim 3 in which the cutterhead comprises a fixed central section and hinged end sections adapted to be swung backwards.
5. A mobile mining machine comprising a:
frame, a cutterhead carried by said frame comprising a fixed central section and hinged end sections adapted to be swung backwards to reduce the width of the machine, each of said sections including a cutter, power means located on the machine for driving the cutters mounted in the cutterhead, and power means for advancing the machine toward the face of the seam.
FRANK A. HOWARD.
REFERENCES CITED The following references are of record in the file of this patent:
Number Number Great Britain July 10, 1922
US625413A 1945-10-29 1945-10-29 Mechanized production of solid fuel Expired - Lifetime US2606010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US625413A US2606010A (en) 1945-10-29 1945-10-29 Mechanized production of solid fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US625413A US2606010A (en) 1945-10-29 1945-10-29 Mechanized production of solid fuel

Publications (1)

Publication Number Publication Date
US2606010A true US2606010A (en) 1952-08-05

Family

ID=24505961

Family Applications (1)

Application Number Title Priority Date Filing Date
US625413A Expired - Lifetime US2606010A (en) 1945-10-29 1945-10-29 Mechanized production of solid fuel

Country Status (1)

Country Link
US (1) US2606010A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694562A (en) * 1948-03-02 1954-11-16 Colmol Company Apparatus for continuously digging coal
US2776126A (en) * 1951-05-05 1957-01-01 Colmol Company Mine face traversing mining head
US2793848A (en) * 1955-06-15 1957-05-28 Jeffrey Mfg Co Continuous mining machine having a laterally movable mining head
US2839281A (en) * 1953-05-11 1958-06-17 Union Carbide Corp Boring type mining machine having an adjustable boring head
US2868527A (en) * 1951-05-23 1959-01-13 Bituminous Coal Research Continuous mining machine
US2868526A (en) * 1951-05-22 1959-01-13 Bituminous Coal Research Mining equipment having cutting rotors adaptable to varying conditions
US2950907A (en) * 1951-05-05 1960-08-30 Calomol Company Mine face traversing mining head
US2981527A (en) * 1957-10-21 1961-04-25 Gelsenkirchener Bergwerks Ag Mining machine having cutting and breaking rolls and suction transporting means
US3005627A (en) * 1958-08-05 1961-10-24 Tinlin William Tunneling machine having suction exhaust means
US3062519A (en) * 1958-11-10 1962-11-06 Joy Mfg Co Mining and loading machine having pivotally mounted rotary disintegrating mechanism
DE1188532B (en) * 1957-04-29 1965-03-11 Ibis Entpr Ltd Self-propelled mining machine
FR2367905A1 (en) * 1976-10-15 1978-05-12 Us Commerce CONTIN FELLING MACHINE
US4305620A (en) * 1980-02-20 1981-12-15 Hart Gwyn G Pneumatic separating system for continuous mining machine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US550051A (en) * 1895-11-19 Apparatus for and art of transporting coal
US957364A (en) * 1909-05-19 1910-05-10 Edward O'toole Removing coal from mines.
US1011994A (en) * 1910-06-28 1911-12-19 Edward O'toole Excavating-machine.
US1191864A (en) * 1911-07-03 1916-07-18 William F Wittich Tunneling-machine.
GB182860A (en) * 1921-03-09 1922-07-10 Salvatore Bruno Rock tunneling apparatus
US1603621A (en) * 1923-04-26 1926-10-19 Mckinlay Mining And Loading Ma Coal mining and loading machine
US1999261A (en) * 1932-06-22 1935-04-30 American Car & Foundry Co Machine for handling mine cuttings
US2064660A (en) * 1934-11-12 1936-12-15 William H Haas Apparatus for extracting materials
US2118490A (en) * 1936-06-01 1938-05-24 Robert H D Challacombe Rotary boring apparatus
US2269781A (en) * 1940-03-08 1942-01-13 Sullivan Machinery Co Coal mining apparatus
US2375689A (en) * 1943-12-27 1945-05-08 David H Reeder Apparatus for mining coal

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US550051A (en) * 1895-11-19 Apparatus for and art of transporting coal
US957364A (en) * 1909-05-19 1910-05-10 Edward O'toole Removing coal from mines.
US1011994A (en) * 1910-06-28 1911-12-19 Edward O'toole Excavating-machine.
US1191864A (en) * 1911-07-03 1916-07-18 William F Wittich Tunneling-machine.
GB182860A (en) * 1921-03-09 1922-07-10 Salvatore Bruno Rock tunneling apparatus
US1603621A (en) * 1923-04-26 1926-10-19 Mckinlay Mining And Loading Ma Coal mining and loading machine
US1999261A (en) * 1932-06-22 1935-04-30 American Car & Foundry Co Machine for handling mine cuttings
US2064660A (en) * 1934-11-12 1936-12-15 William H Haas Apparatus for extracting materials
US2118490A (en) * 1936-06-01 1938-05-24 Robert H D Challacombe Rotary boring apparatus
US2269781A (en) * 1940-03-08 1942-01-13 Sullivan Machinery Co Coal mining apparatus
US2375689A (en) * 1943-12-27 1945-05-08 David H Reeder Apparatus for mining coal

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694562A (en) * 1948-03-02 1954-11-16 Colmol Company Apparatus for continuously digging coal
US2776126A (en) * 1951-05-05 1957-01-01 Colmol Company Mine face traversing mining head
US2950907A (en) * 1951-05-05 1960-08-30 Calomol Company Mine face traversing mining head
US2868526A (en) * 1951-05-22 1959-01-13 Bituminous Coal Research Mining equipment having cutting rotors adaptable to varying conditions
US2868527A (en) * 1951-05-23 1959-01-13 Bituminous Coal Research Continuous mining machine
US2839281A (en) * 1953-05-11 1958-06-17 Union Carbide Corp Boring type mining machine having an adjustable boring head
US2793848A (en) * 1955-06-15 1957-05-28 Jeffrey Mfg Co Continuous mining machine having a laterally movable mining head
DE1188532B (en) * 1957-04-29 1965-03-11 Ibis Entpr Ltd Self-propelled mining machine
US2981527A (en) * 1957-10-21 1961-04-25 Gelsenkirchener Bergwerks Ag Mining machine having cutting and breaking rolls and suction transporting means
US3005627A (en) * 1958-08-05 1961-10-24 Tinlin William Tunneling machine having suction exhaust means
US3062519A (en) * 1958-11-10 1962-11-06 Joy Mfg Co Mining and loading machine having pivotally mounted rotary disintegrating mechanism
FR2367905A1 (en) * 1976-10-15 1978-05-12 Us Commerce CONTIN FELLING MACHINE
US4305620A (en) * 1980-02-20 1981-12-15 Hart Gwyn G Pneumatic separating system for continuous mining machine

Similar Documents

Publication Publication Date Title
US2606010A (en) Mechanized production of solid fuel
US8016216B2 (en) Mobile oil sands mining system
US4505516A (en) Hydrocarbon fuel recovery
US3726562A (en) Mining machine including means for utilizing vacuum at working face and methods of operation thereof
US20070180741A1 (en) Mobile oil sands mining system
US3362752A (en) Mining apparatus and method
USRE24004E (en) Collapsible mining head
CN209138710U (en) Coal cinder crushing conveyer
US4441761A (en) Mining machine
CN109201187A (en) Coal cinder crushing conveyer
US2821374A (en) Coal mining machine having a pivotally mounted cutter tube
US3602551A (en) Underground fluid conveyor transportation method and system
US2630308A (en) Mining and loading machine
US3225678A (en) Mine ventilation scheme
US4023862A (en) Hydraulic mining and transportation of coal using hot oil under pressure
US1585694A (en) Apparatus for loading material
US550051A (en) Apparatus for and art of transporting coal
US1116357A (en) System of mining coal.
US1116356A (en) Coal-mining apparatus.
US2430364A (en) Apparatus for mining and loading coal
US5219440A (en) System for cutting and conveying coal and the like
US2978235A (en) Continuous mining machine having roof fall receiving conveying means
US3026098A (en) Auger type mining machine
US1764113A (en) Apparatus for rock dusting mines
CN218490800U (en) Automatic cleaning device for accumulated coal at machine head of belt conveyor