US2658453A - Nonclogging pumping device - Google Patents

Nonclogging pumping device Download PDF

Info

Publication number
US2658453A
US2658453A US175389A US17538950A US2658453A US 2658453 A US2658453 A US 2658453A US 175389 A US175389 A US 175389A US 17538950 A US17538950 A US 17538950A US 2658453 A US2658453 A US 2658453A
Authority
US
United States
Prior art keywords
inlet
pumping device
auxiliary
solids
inlets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US175389A
Inventor
Michael E Walters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PACIFIC PUMPS Inc
Original Assignee
PACIFIC PUMPS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PACIFIC PUMPS Inc filed Critical PACIFIC PUMPS Inc
Priority to US175389A priority Critical patent/US2658453A/en
Application granted granted Critical
Publication of US2658453A publication Critical patent/US2658453A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/006Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
    • F04D7/045Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous with means for comminuting, mixing stirring or otherwise treating

Description

Nov. 10, 1953 M. E. WALTERS 2,658,453
NONCLOGGING PUMPING DEVICE Filed July 22, 195o Patented Nov. 10, 1953 NONCLOGGING PUMPING DEVICE Michael E. Walters, Huntington Park, Calif., as-
signor to Pacific Pumps, Inc., Huntington Park, Calif., a corporation of California Application July 22, 1950, Serial No. 175,389
13 Claims. l
The present invention relates in general to pumps, and, more particularly, to a pumping device which includes a pump and means for preventing clogging of the pump by solids entrained in the iluid being pumped, the provision of such a pumping device being a primary object of the invention.
Since the present invention nds particular utility in connection with centrifugal pumps for use in oil reneries, it will be considered in such connection herein for illustrative purposes, although it will be understood that the invention has utility in connection with pumps of other types and that pumping devices embodying the invention may be used in other installations. In oil refineries, coke tends to accumulate in the lines and towers 'and pieces thereof, which irequently attain egg size, occasionally become detached from such accumulations. Such detached coke particles become entrained in the fluids ilowing through the lines and, unless they are small enough to pass through the centrifugal pumps customarily employed to circulate the fluids through the lines, tend to clog the pumps. The coke particles lodging in the pumps increase the fluid pressure drop through the pumps and, unless removed, may ultimately clog the pumps to such an extent as to substantially prevent ow therethrough.
An important object of the present invention is to eliminate the foregoing diiiculties by providing means for disintegrating such coke particles, or other solids, before they enter the pumps so as to reduce the particles to sizes sufficiently small to pass through the pumps.
More particularly, an important object of the invention is to provide a pumping device which includes a pump and disintegrating means for reducing the particle size of any solids entrained in the uid being pumped to a value suiiiciently small to pass through the pump.
Another object is to provide a pumping device which includes rotatable pumping means and which includes disintegrating means driven by the rotatable pumping means.
Still another object i's to provide such a pumping device wherein the rotatable pumping means includes a rotor mounted on a shaft and wherein the disintegrating means includes an element carried by and rotatable With the shaft, the disintegrating means traversing the inlet of the pump so as to reduce the particle size of solids entrained in the iluid entering the pump.
Another object is to provide a pumping device which includes a pump having two inlets, which includes strainer means for preventing the entry into one or" said inlets of solids exceeding a predetermined size and for diverting solids exceeding said predetermined size into the other of the two inlets, and which includes disintegrating means traversing the second inlet for reducing the par ticle size of the solids entering the second inlet.
A further object is to provide a nonclogging strainer means, the strainer means being inclined at an acute angle with respect to the direction of flow oi fluid entering the first inlet and being substantially parallel to the direction of fluid ow entering the second inlet so that solids exceeding the predetermined size are continually carried' away from the strainer means.
Another object is to provide a pumping device having a single rotatable pumping means which receives fluid from the two inlets. Another object is to provide a pumping device wherein the rotatable pumping means is of the centrifugal, double-aXial-intake, radial-discharge type.
The foregoing objects and advantages of the present invention, together with various other objects and advantages thereof which will be come apparent, may be attained With the exemplary embodiments of the invention which are illustrated in the accompanying drawing and which are described in detail hereinafter. Referring to the drawing:
Fig. 1 is a longitudinal sectional 4view of a double-aXial-intake, radial-discharge, centrifugal pump which embodies the invention;
Fig. 2 is an enlarged, fragmentary, transverse sectional View taken along the broken line 2-2 of Fig. l;
Fig. 3 is a fragmentary, longitudinal sectional View similar to Fig. l but illustrating another embodiment of the invention; and
Fig. 4 is an enlarged, fragmentary, transverse sectional View taken along the broken line li-d of Fig. 3.
Referring particularly to Fig. l, illustrated therein is a double-aXialintake, radial-discharge, centrifugal pump having a housing iii which includes an open-ended body l l and which includes closures I2 and E3 for the ends of the body, a shaft assembly I4 being carried by bearings l5 and I6 in the closures l2 and i3, respectively. The body il of the housing I0 provides a pumping chamber Il for a rotatable pumping means which includes a centrifugal rotor I3 carried by the shaft assembly I4, the rotor I6 being provided at its ends with axial inlets I9 and 2l) which communicate with radial outlets 2I through intervening passages 22 and 23, respectively. The body I I of the housing IIJ is provided with a main inlet 24 the downstream end of which communicates with two auxiliary inlets 29 and 39 respectively communicating with the inlets I9 and 20 at the ends of the rotor I8. Preferably, the inlets I9, 29, 29 and 30 are annular and encircle the shaft assembly I4. The body II of the housingr I is also provided with an annular outlet chamber 3i which encircles the rotor I8 and communi- Cates with the outlets 2I therein, the body of the housing further being provided with an outlet 32 which communicates with the annular outlet chamber.
Disposed in the main inlet 24 and traversing the auxiliary inlet 39 is a strainer means 36 which prevents the entry of solids exceeding a predetermined size into the auxiliary inlet 39 and which deflects such oversize particles of solid matter into the auxiliary inlet 29. The strainer means 36 permits the entry into the auxiliary inlet 30 of solid particles which are sufficiently small to pass through the rotor I8 readily without any danger of clogging, the oversize particles deflected into the auxiliary inlet 29 by the strainer means being reduced to sizes sufficiently small to pass through the rotor by a disintegrating means 31, as will be described in more detail hereinafter. As clearly shown in Fig. 1, the strainer means is inclined at an acute angle to the direction of iiow of fluid into the auxiliary inlet 30 and is generally parallel to the direction of fluid flow into the auxiliary inlet 29, this being accomplished by disposing the strainer means obliquely of the main inlet 24 with one edge thereof extending into the auxiliary inlet 29. The strainer means 36, in the particular construction illustrated, is supported in the desired position by means of a ring 33 seated in a groove 39 which encircles the main inlet 24. As a further deterrent to clogging of the strainer means 36, it is convex upstream with respect to the direction of flow of fluid through the main inlet 24 so that any oversize particles intercepted :by the strainer means are continually washed therefrom into the auxiliary inlet 29 by the flow of fluid into the auxiliary inlet 29, which is another feature of the invention.
While the strainer means 36 may be of wire mesh, I prefer to form it of rods 40 which are spaced apart in a direction normal to the plane of the drawing, the spacing between the rods 40 being suiciently small to screen out solids which are large enough to tend to clog the pump, but being sufliciently large to avoid any appreciable fluid pressure drop through the pump. As will be apparent, forming the strainer means 36 of rods 40 generally parallel to the direction 0f flow of fiuid entering the auxiliary inlet 29 is a further deterrent to clogging of the strainer means.
The disintegrating means 3'I is disposed in and traverses the auxiliary inlet 29 and is adapted to reduce the sizes of solids entering the auxiliary inlet 29 to values sufficiently small to pass through the rotor I8 freely, the disintegrating means being driven by the shaft assembly I4, which is a feature of the invention. The disintegrating means 3l may be of various types, two different embodiments thereof being illustrated in the drawing. Considering first the embodiment of the disintegrating means 3l' which is illustrated in Figs. 1 and 2, it is of the meat grinder type and includes a helical screw 45 which is keyed or otherwise secured to the shaft assembly I4 so as to be rotatable therewith and with the rotor I8, the screw 45 being operable in a chamber 46 formed by a recess in a member 4l which traverses the auxiliary inlet 29 and which is bolted or otherwise secured to the body I I of the housing I9. With this construction, fluid entering the auxiliary inlet 29 flows therethrough into the chamber 46 and through perforations 48 in the member 4l into the inlet I9 of the rotor I8. As will be apparent, any solid particles entering the auxiliary inlet 29 which are too large to pass through the perforations 48 are disintegrated, i. e., crushed, by the screw 45 and are forced through the perforations 473, the latter being sufficiently small to insure that the solids are reduced to particles suiciently small to pass through the rotor I8 freely. Thus, it is impossible for any particles sufficiently large to clog the passages through the rotor I8 to enter the inlet I9 thereof, which is an important feature of the invention.
The body I I of the housing I0 is provided with a clean-out opening 50 therein which is normally closed by a detachable closure 5I, the purpose of the clean-out opening 56 being to permit removal from the auxiliary outlet 29 of any solids which fail to enter the disintegrating means 3l, as by being too large to enter the screw 45. Ordinarily, it is unnecessary to clean out the auxiliary inlet 29 in this manner except after prolonged use of the pumping device.
In Figs. 3 and 4 of the drawing, I show an embodiment of the disintegrating means 3l which is similar to the embodiment illustrated in Figs. 1 and 2, the only difference being that a propeller member 55, keyed or otherwise secured to the shaft assembly I4, is substituted for the screw 45, the same reference numerals being employed for all other components. The propeller member 55 includes a hub carrying a plurality of radial vanes 56 which disintegrate solids entering the auxiliary inlet 29 by a chopping action, the pitch of the vanes being such that they propel the fluid and the solids disintegrated thereby through the perforations 48.
Thus, it will be apparent that the present invention provides a pumping device which cannot Ibecome clogged by solids and, although I have disclosed exemplary embodiments of the invention herein for purposes of illustration, it will be understood that various changes, modications and substitutions may be incorporated in such embodiments without departing from the spirit of the invention.
I claim as my invention:
l. In a pumping device, the combination of: a pump having a main inlet and an outlet and having two auxiliary inlets communicating with the downstream end of said main inlet; means for separating solids exceeding a predetermined size from solids of said predetermined size, or smaller, and for directing the solids exceeding said predetermined size into one of said auxiliary inlets and the solids of said predetermined size, or smaller, into the other of said auxiliary inlets; and means traversing said one inlet for disintegrating the solids exceeding said predetermined size.
2. In a pumping device, the combination of: a pump having a main inlet and an outlet and having two auxiliary inlets communicating with the downstream end of said main inlet; strainer means traversing one of said auxiliary inlets for preventing entry thereinto of solids exceeding a predetermined size, solids exceeding said predetermined size entering the other of said auxiliary inlets; and disintegrating means traversing said other auxiliary inlet.
3. A pumping device according to claim 2 wherein said strainer means is inclined at an acute angle to the direction of flow through said one auxiliary inlet so as to prevent clogging of said strainer means.
4. A pumping device according to claim 2 wherein said strainer means is inclined at an acute angle to the direction of ow into said one auxiliary inlet and is generally parallel to the direction of iiow into said other auxiliary inlet so as to prevent clogging of said strainer means.
5. A pumping device according to claim 4 wherein said strainer means comprises a plurality of spaced, substantially parallel rods inclined at an acute angle to the direction of iiow into said one auxiliary inlet and generally parallel to the direction of fiow into said other auxiliary inlet.
6. A pumping device as dened in claim 2 wherein said pump includes a rotatable pumping means and wherein said disintegrating means includes an element carried by and rotatable with said rotatable pumping means.
7. A pumping device according to claim 6 wherein said rotatable pumping means includes a shaft carrying a rotor, said element of said disintegrating means being carried by and rotatable with said shaft.
8. In a pumping device, the combination of a double-axial-intake, radial-discharge, centrifugal pump having a main inlet and having two axial, auxiliary inlets spaced apart axially of said pump and communicating with the downstream end of said main inlet, said pump including rotatable pumping means comprising a shaft extending through said auxiliary inlets and carrying a rotor disposed between said auxiliary inlets; strainer means traversing one of said auxiliary inlets for preventing entry thereinto of solids exu ceeding a predetermined size and for deflecting into the other of said auxiliary inlets solids exceeding said predetermined size; and disintegrat ing means traversing said other auxiliary inlet and including an element carried by and rotatable with said shaft for reducing solids exceeding said predetermined size to a size suii ciently small to pass through said rotatable pumping means.
9. A pumping device according to claim 8 wherein said disintegrating means includes a stationary element cooperating with said rotatable element to reduce the size of the particles exceeding said predetermined size.
10. A pumping device according to claim 8 wherein said strainer means is inclined at an acute angle to the direction of flow of fluid into said one auxiliary inlet and is generally parallel to the direction of flow of iuid into said other auxiliary inlet so as to prevent clogging of said strainer means.
11. A pumping device according to claim i() wherein said strainer means includes spaced, subn stantially parallel rods inclined at acute angles relative to the direction of ow of liuid into said one auxiliary inlet and generally parallel to the direction of ow of uid into said other auxiliary inlet.
12. A pumping device according to claim 2 wherein said strainer means is convex upstream.
13. In a pumping device, the combination of: pumping means having two inlets; means, including strainer means traversing one of said inlets, for diverting to the other of said inlets any solids exceeding a predetermined size; and disintegrating means in said other inlet.
MICHAEL E. WALTERS.
References Cited in the le of this patent UNITED STATES PATENTS Number Name Date 367,564 Wade Aug. 2, 1887 2,027,015 Bell Jan. 7, 1936 2,029,766 Durdin Feb. 4, 1936 2,042,641 Victoria June 2, 1936` 2,496,359 Rymann Feb. 7, 1950 FOREIGN PATENTS Number Country Date 146,935 Switzerland May l5, 193i
US175389A 1950-07-22 1950-07-22 Nonclogging pumping device Expired - Lifetime US2658453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US175389A US2658453A (en) 1950-07-22 1950-07-22 Nonclogging pumping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US175389A US2658453A (en) 1950-07-22 1950-07-22 Nonclogging pumping device

Publications (1)

Publication Number Publication Date
US2658453A true US2658453A (en) 1953-11-10

Family

ID=22640053

Family Applications (1)

Application Number Title Priority Date Filing Date
US175389A Expired - Lifetime US2658453A (en) 1950-07-22 1950-07-22 Nonclogging pumping device

Country Status (1)

Country Link
US (1) US2658453A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2989925A (en) * 1956-12-21 1961-06-27 Int Harvester Co Water pump assembly
US3048377A (en) * 1958-05-13 1962-08-07 Braitsch Eugen Concrete or mortar mixer
US3091436A (en) * 1960-06-17 1963-05-28 Finn Equipment Company Method for producing a sprayable fibre mulch
US3113733A (en) * 1960-10-13 1963-12-10 United States Gypsum Co Apparatus and method for extracting trash
US3371720A (en) * 1966-08-25 1968-03-05 Outboard Marine Corp Fish line cutter
US3415378A (en) * 1966-02-10 1968-12-10 Fukuda Fukuichi Sewage treatment system
US3444818A (en) * 1966-10-10 1969-05-20 Robert W Sutton Centrifugal pump
US3643877A (en) * 1970-01-28 1972-02-22 Robbins & Myers Pump with macerator
US3866841A (en) * 1972-09-11 1975-02-18 Elepon Technical Center Submersible pump equipped with cutter
US3961758A (en) * 1974-08-23 1976-06-08 Peabody Barnes, Inc. Centrifugal pump with integral grinder
WO1994001218A1 (en) * 1992-07-09 1994-01-20 Arde, Inc. Grinding pump
US5413460A (en) * 1993-06-17 1995-05-09 Goulds Pumps, Incorporated Centrifugal pump for pumping fiber suspensions
WO2000005505A1 (en) * 1998-07-22 2000-02-03 Alusuisse Technology & Management Ltd. Improved slurry pump
US6149383A (en) * 1996-02-16 2000-11-21 United Utilities Plc Rotating machine
US20040146416A1 (en) * 2001-06-13 2004-07-29 Burgess Kevin Edward Apparatus for use in slurry pumps
US20090278357A1 (en) * 2006-07-14 2009-11-12 Herbert Williams Tidal flow hydroelectric turbine
US20100025998A1 (en) * 2006-07-14 2010-02-04 Openhydro Group Limited Submerged hydroelectric turbines having buoyancy chambers
US20100026002A1 (en) * 2006-07-14 2010-02-04 Openhydro Group Limited hydroelectric turbine
US20100068037A1 (en) * 2006-07-14 2010-03-18 Openhydro Group Limited Turbines having a debris release chute
EP2199599A1 (en) * 2008-12-18 2010-06-23 OpenHydro IP Limited A hydroelectric turbine with a debris expeller
US20100172698A1 (en) * 2007-04-11 2010-07-08 Openhydro Group Limited System and method for the deployment of a hydroelectric turbine
US20100232885A1 (en) * 2007-04-11 2010-09-16 Openhydro Group Limited Method of installing a hydroelectric turbine
US20100295388A1 (en) * 2007-12-12 2010-11-25 Openhydro Group Limited Hydroelectric turbine generator component
US20100322756A1 (en) * 2009-06-23 2010-12-23 Schmidt P E William Grinder Pump
US20110018274A1 (en) * 2008-02-05 2011-01-27 Openhydro Group Limited hydroelectric turbine with floating rotor
US20110088253A1 (en) * 2008-04-17 2011-04-21 Openhydro Group Limited turbine installation method
US20110110770A1 (en) * 2008-04-22 2011-05-12 Openhydro Group Limited Hydroelectric turbine having a magnetic bearing
US8690526B2 (en) 2008-12-18 2014-04-08 Openhydro Ip Limited Hydroelectric turbine with passive braking
US20140119975A1 (en) * 2011-06-17 2014-05-01 Jets Invest As Screw type liquid ring pump with integrated macerator
US8872371B2 (en) 2009-04-17 2014-10-28 OpenHydro IP Liminted Enhanced method of controlling the output of a hydroelectric turbine generator
US8933598B2 (en) 2009-09-29 2015-01-13 Openhydro Ip Limited Hydroelectric turbine with coil cooling
US9054512B2 (en) 2008-12-19 2015-06-09 Openhydro Ip Limited Method of installing a hydroelectric turbine generator
US9236725B2 (en) 2009-09-29 2016-01-12 Openhydro Ip Limited Hydroelectric turbine cabling system
US9234492B2 (en) 2010-12-23 2016-01-12 Openhydro Ip Limited Hydroelectric turbine testing method
US9473046B2 (en) 2009-09-29 2016-10-18 Openhydro Ip Limited Electrical power conversion system and method
US9765647B2 (en) 2010-11-09 2017-09-19 Openhydro Ip Limited Hydroelectric turbine recovery system and a method therefor
US10316846B2 (en) * 2015-06-11 2019-06-11 Eco-Flo Products, Inc. Hybrid radial axial cutter
US11512701B2 (en) * 2020-11-10 2022-11-29 Chengli Li Cutting system for a grinding pump and related grinding pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US367564A (en) * 1887-08-02 Joseph a
CH146935A (en) * 1930-06-28 1931-05-15 Schuetz Alois Device on turbines and pumps with impellers without an outer ring for removing foreign bodies that are trapped between the housing and the outer edge of the blades.
US2027015A (en) * 1932-11-11 1936-01-07 Gertrude F Bell Pump
US2029766A (en) * 1934-08-18 1936-02-04 Chicago Pump Co Screw feed centrifugal pump
US2042641A (en) * 1934-11-13 1936-06-02 Frank F Victoria Pulp and liquid pump
US2496359A (en) * 1946-03-30 1950-02-07 Sulzer Ag Pump disintegrator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US367564A (en) * 1887-08-02 Joseph a
CH146935A (en) * 1930-06-28 1931-05-15 Schuetz Alois Device on turbines and pumps with impellers without an outer ring for removing foreign bodies that are trapped between the housing and the outer edge of the blades.
US2027015A (en) * 1932-11-11 1936-01-07 Gertrude F Bell Pump
US2029766A (en) * 1934-08-18 1936-02-04 Chicago Pump Co Screw feed centrifugal pump
US2042641A (en) * 1934-11-13 1936-06-02 Frank F Victoria Pulp and liquid pump
US2496359A (en) * 1946-03-30 1950-02-07 Sulzer Ag Pump disintegrator

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2989925A (en) * 1956-12-21 1961-06-27 Int Harvester Co Water pump assembly
US3048377A (en) * 1958-05-13 1962-08-07 Braitsch Eugen Concrete or mortar mixer
US3091436A (en) * 1960-06-17 1963-05-28 Finn Equipment Company Method for producing a sprayable fibre mulch
US3113733A (en) * 1960-10-13 1963-12-10 United States Gypsum Co Apparatus and method for extracting trash
US3415378A (en) * 1966-02-10 1968-12-10 Fukuda Fukuichi Sewage treatment system
US3371720A (en) * 1966-08-25 1968-03-05 Outboard Marine Corp Fish line cutter
US3444818A (en) * 1966-10-10 1969-05-20 Robert W Sutton Centrifugal pump
US3643877A (en) * 1970-01-28 1972-02-22 Robbins & Myers Pump with macerator
US3866841A (en) * 1972-09-11 1975-02-18 Elepon Technical Center Submersible pump equipped with cutter
US3961758A (en) * 1974-08-23 1976-06-08 Peabody Barnes, Inc. Centrifugal pump with integral grinder
WO1994001218A1 (en) * 1992-07-09 1994-01-20 Arde, Inc. Grinding pump
US5302082A (en) * 1992-07-09 1994-04-12 Arde, Inc. Improved efficiency grinding pump for slurry
US5413460A (en) * 1993-06-17 1995-05-09 Goulds Pumps, Incorporated Centrifugal pump for pumping fiber suspensions
US6149383A (en) * 1996-02-16 2000-11-21 United Utilities Plc Rotating machine
WO2000005505A1 (en) * 1998-07-22 2000-02-03 Alusuisse Technology & Management Ltd. Improved slurry pump
US20040146416A1 (en) * 2001-06-13 2004-07-29 Burgess Kevin Edward Apparatus for use in slurry pumps
US6951445B2 (en) 2001-06-13 2005-10-04 Weir Warman Ltd Apparatus for use in slurry pumps
US20100068037A1 (en) * 2006-07-14 2010-03-18 Openhydro Group Limited Turbines having a debris release chute
US20100025998A1 (en) * 2006-07-14 2010-02-04 Openhydro Group Limited Submerged hydroelectric turbines having buoyancy chambers
US20100026002A1 (en) * 2006-07-14 2010-02-04 Openhydro Group Limited hydroelectric turbine
US8308422B2 (en) 2006-07-14 2012-11-13 Openhydro Group Limited Submerged hydroelectric turbines having buoyancy chambers
US20090278357A1 (en) * 2006-07-14 2009-11-12 Herbert Williams Tidal flow hydroelectric turbine
US8864439B2 (en) 2006-07-14 2014-10-21 Openhydro Ip Limited Tidal flow hydroelectric turbine
US8596964B2 (en) 2006-07-14 2013-12-03 Openhydro Group Limited Turbines having a debris release chute
US8466595B2 (en) 2006-07-14 2013-06-18 Openhydro Group Limited Hydroelectric turbine
US9284709B2 (en) 2007-04-11 2016-03-15 Openhydro Group Limited Method of installing a hydroelectric turbine
US20100172698A1 (en) * 2007-04-11 2010-07-08 Openhydro Group Limited System and method for the deployment of a hydroelectric turbine
US20100232885A1 (en) * 2007-04-11 2010-09-16 Openhydro Group Limited Method of installing a hydroelectric turbine
US20100295388A1 (en) * 2007-12-12 2010-11-25 Openhydro Group Limited Hydroelectric turbine generator component
US20110018274A1 (en) * 2008-02-05 2011-01-27 Openhydro Group Limited hydroelectric turbine with floating rotor
US8754540B2 (en) 2008-02-05 2014-06-17 James Ives Hydroelectric turbine with floating rotor
US20110088253A1 (en) * 2008-04-17 2011-04-21 Openhydro Group Limited turbine installation method
US8784005B2 (en) 2008-04-17 2014-07-22 Openhydro Group Limited Turbine installation method
US20110110770A1 (en) * 2008-04-22 2011-05-12 Openhydro Group Limited Hydroelectric turbine having a magnetic bearing
US8690526B2 (en) 2008-12-18 2014-04-08 Openhydro Ip Limited Hydroelectric turbine with passive braking
EP2199599A1 (en) * 2008-12-18 2010-06-23 OpenHydro IP Limited A hydroelectric turbine with a debris expeller
US9054512B2 (en) 2008-12-19 2015-06-09 Openhydro Ip Limited Method of installing a hydroelectric turbine generator
US8872371B2 (en) 2009-04-17 2014-10-28 OpenHydro IP Liminted Enhanced method of controlling the output of a hydroelectric turbine generator
US8562287B2 (en) 2009-06-23 2013-10-22 Zoeller Pump Company, Llc Grinder pump
US20100322756A1 (en) * 2009-06-23 2010-12-23 Schmidt P E William Grinder Pump
US8933598B2 (en) 2009-09-29 2015-01-13 Openhydro Ip Limited Hydroelectric turbine with coil cooling
US9236725B2 (en) 2009-09-29 2016-01-12 Openhydro Ip Limited Hydroelectric turbine cabling system
US9473046B2 (en) 2009-09-29 2016-10-18 Openhydro Ip Limited Electrical power conversion system and method
US9765647B2 (en) 2010-11-09 2017-09-19 Openhydro Ip Limited Hydroelectric turbine recovery system and a method therefor
US9234492B2 (en) 2010-12-23 2016-01-12 Openhydro Ip Limited Hydroelectric turbine testing method
US9097257B2 (en) * 2011-06-17 2015-08-04 Jets Invest As Screw type liquid ring pump with integrated macerator
US20140119975A1 (en) * 2011-06-17 2014-05-01 Jets Invest As Screw type liquid ring pump with integrated macerator
US10316846B2 (en) * 2015-06-11 2019-06-11 Eco-Flo Products, Inc. Hybrid radial axial cutter
US11512701B2 (en) * 2020-11-10 2022-11-29 Chengli Li Cutting system for a grinding pump and related grinding pump

Similar Documents

Publication Publication Date Title
US2658453A (en) Nonclogging pumping device
US2265758A (en) Pump
US3130678A (en) Centrifugal pump
US2958293A (en) Solids pump
US2322058A (en) Waste disposal unit
US2202790A (en) Waste paper stock pump
CH627236A5 (en)
US3502220A (en) Pump inlet strainer
US3384026A (en) Pump apparatus
US4269564A (en) Flow control device
US2368529A (en) Pump
EP1840379B1 (en) Rotary pump with free flow wheel
US1869797A (en) Separation of materials
US2784914A (en) Waste disposal apparatus
US1696354A (en) Pulp-screening machine
RU2526068C1 (en) Downhole separator of mechanical impurities
US5503521A (en) Centrifugal pump
US4283005A (en) Pump and centrifugal separator apparatus
DE112019003298B4 (en) turbine and turbocharger
US2557332A (en) Line purifier
US2547830A (en) Treating and refining machine for pulp materials
US2220657A (en) Apparatus for treating liquids
USRE24803E (en) Apparatus for pumping solids
US2241587A (en) Channel construction for comminutors
US2680409A (en) Centrifugal pump