US2708933A - Gas blanketed electro-surgical device - Google Patents

Gas blanketed electro-surgical device Download PDF

Info

Publication number
US2708933A
US2708933A US226807A US22680751A US2708933A US 2708933 A US2708933 A US 2708933A US 226807 A US226807 A US 226807A US 22680751 A US22680751 A US 22680751A US 2708933 A US2708933 A US 2708933A
Authority
US
United States
Prior art keywords
gas
pressure
instrument
housing
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US226807A
Inventor
August William
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US226807A priority Critical patent/US2708933A/en
Application granted granted Critical
Publication of US2708933A publication Critical patent/US2708933A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/042Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating using additional gas becoming plasma

Definitions

  • the present invention relates to electrosurgical devices and more particularly to devices of this character in which the cutting action of a surgical instrument is produced in large measure through energization of the instrument by a high frequency current of appropriate characteristics.
  • High frequency current of somewhat diiferent characteristics may also be employed for purposes of coagulation in connection with the incision.
  • an electrosurgical instrument which may be safely employed in the presence of ether fumes or other explosive vapors without danger of causing an explosion.
  • Another object of the invention is to provide an electrosurgical instrument in which freedom from explosion hazard is obtained without detriment to the usefulness or to the convenience of manipulation of the instrument.
  • a further object of the invention is to provide an electrosurgical instrument having an interlock arrangement which will prevent the device from being electrically energized unless the explosion prevention feature is prepared for operation.
  • Fig. 1 is a diagrammatic representation of an embodi ment of the invention.
  • Fig. 2 is an enlarged view in sectional elevation of a surgical instrument embodying the invention.
  • Fig. 3 is a sectional View of a pressure switch used in practicing the invention.
  • Fig. 4 is a schematic diagram of the electrical circuit of an embodiment of the invention.
  • FIG. 1 there is shown the fragmentary upper portion of a storage tank l1 of usual construction for the retention and storage of compressed gases and similar substances.
  • Tank 11 is shown provided with a pressure reducing valve 12 having an adjustment knob 13 and a pressure gauge 14.
  • the low pressure side of reducing valve 12 is shown connected by a ilexible hose or tubing 15 to a gas-tight housing 16.
  • a high frequency generator 17 Disposed within gas-tight housing 16 is a high frequency generator 17 which may be of any well-known type appropriate for producing the cutting current or coagulating current for use with electrosurgical instruments.
  • a generator 17 is shown provided with an output terminal 18 to which a flexible conductor 19 is connected for carrying the high frequency current to the surgical instrument.
  • the exible conductor 19 extends through a exible Cir hose or tubing 20 to a surgical instrument designated generally as 21.
  • the tubing 20 which interconnects the gastight housing 16 and the instrument 21 is constructed to carry gas under pressure and also to accommodate the ilexible conductor 19 without interfering with the how of gas.
  • the walls of the flexible tubing 2t) may also serve as electrical insulation for the conductor 19.
  • the surgical instrument 21 comprises a rigid handle portion 22 of electrically insulative material.
  • the exible tubing 2t) is shown suitably secured to the handle 22 at one end thereof.
  • Extending axially within handle 22 is a hollow electrically conductive member 23.
  • the flexible conductor 19 is connected to one end of the said hollow member 23, the other end of the said member 23 being shaped for engagement with a knife holding member 24.
  • a length of electrically conductive rigid hollow tubing 25 forms a part of the knife holding member 24.
  • the tubing 25 is xedly secured in and extends axially through the knife holding member 2d, its interior being shaped for engagement with the shank portion 2e of a removable cutting blade 27.
  • the knife holding member 24.- niay be threadedly secured to the handle member 22 thus bringing one end of hollow tubing into firm engagement with the adjacent end of hollow electrically conductive member 23.
  • the s ik portion 25 of the blade 27 is removably held in tube 25' by radialiy extending iin portions 2S on the tool shank which engage the inside surface of tube 2S.
  • the blade 27 is thus securely although removably heldr in proper working position and the fin portions 2S of its shank 26 provide longitudinal passage for the flow of gas lengthwise of blade 27. it is understood that any other suitable type of cutting blade may be employed in place of the blade 27.
  • a form of high frequency generator is shown illustrativeiy in Fig. 4, only the schematic circuit diagram be- Iing indicated. Other forms of high frequency generator may 'oe used, if desired, as long as they produce the required amount of power at the desired frequency and with the proper voltage and wave-shape characteristics. ln the embodiment illustrated in Fig. 4, a suitable source of power 39 is connected through contacts 3i-32 of an electromagnetic cut-or' switch 33 to the principal winding 3d of a step-up transformer designated generally as 35.
  • Primary winding 34 is shown provided with a plurality of voltage taps 36 which may be selectively contacted by a movable switch arm 37, this arrangement being provided to permit compensation for variations in line voltage supplied by source Disposed on top of gas-tight housinf7 Std is a pressure switch di) communicating directly with the interior of housing le through a short pipe 43..
  • the pressure switch 4i comprises a pressure chamber L52 which is at the ame pressure as the interior of housing 16 by reason of the short interconnecting pipe
  • the chamber is closed at its upper side 'oy a iiexible diaphragm 43 which is displaced in accordance with variations in the pressure of the gas in chamber .
  • a further chamber 4d closed by a removable screw-type cover d5.
  • Disposed in the chamber 44 are a pair of fixed contacts #t7 and 423 arranged for selective engagement with a movable contact member 49.
  • One end of the contact member 49 is fixedly pivoted at Sd, the opposite end being movable for engagement with either of the two fixed contacts i7 and A link member interconnects diaphragm 43 and movable contact member d?.
  • Sd the pressure in chamber l2 and hence in housing i6
  • engagement between contacts 4e* occurs and correspondingly similar engagement between contacts 4'7-49 occurs when the pressure in chamber 4Z is at a high value.
  • the pressure values at which contact closure occurs may be made adjustable and may be brought within almost any desired range of pressures.
  • Winding 52 of cut-off switch 33 is connected vra a conductor 53 to both contacts 47 and 4S in multiple, movable contact 49 being connected via conductor 54 to one side of the power source 3b. Engagement of the movable contact 49 with either of the two stationary contacts 67 or 48 will energize operating winding 52 of switch 33 causing it to open its contacts 3ft- 3&3 and thus prevent energization of primary winding 34 of step-up transformer 35.
  • One side of power source 36 may be connected through a foot-operated switch 56 to one side of the primary winding 34 of transformer 35. Accordingly, primary winding 34 may be energized upon closure of foot switch 56 unless contacts 31-32 of cut-off switch 33 have been caused to open by either a high or low pressure condition at pressure switch 4t).
  • a plurality of spark gaps 6G are connected for energization by the high-voltage secondary winding 61 of transformer 35.
  • High frequency oscillatory currents are induced in a resonant circuit comprising a high-frequency tuning coil 62 and capacitors 63. These high frequency currents are shown by way of illustration as being taken off through coupling capacitors 64, one of these capacitors being connected to a ground terminal 65 and the other being connected to output terminal 18.
  • a suitable ground electrode 66 is shown connected to terminal 65 by a conductor 67. Ground electrode 66 is intended, as and when required, to complete the circuit to the body of the patient undergoing the operation.
  • inert gas at appropriate pressure is admitted into the housing 16 from storage cylinder 1.1 through reducing valve 12 and tubing 15, the pressure being indicated by gauge 14. lf the correct pressure prevails in housing 16, then the contacts 47-48-49 of pressure switch 4t) will all be open and consequently the contacts of cut-off switch 33 will be closed thereby permitting energization of transformer 35 from source 38 upon closure of foot switch 56 which is serially included in the transformer primary circuit. If the pressure in housing 16 is either too high or too low, the transformer 35 cannot be energized.
  • the gas in cylinder 11 is preferably an inert gas and may be of any suitable type such as carbon dioxide, neon, helium, etc.
  • the principal requirement is that the gas shall not be capable of forming an explosive mixture with air, nor with the fumes of any other gas or vapor which may be used for purposes of anaesthesia.
  • the gas must, of course, be sterile and of such concentration as to be non-toxic insofar as the patient and the operating room personnel are concerned.
  • the inert gas from housing 16 passes through tubing 2t? and through hollow member 23 entering tubing 25 and flowing around tin portions 28 of removable knife 27.
  • the shape of the cooperating portions of knife 27 and the other parts of instrument 21 which form passages for the inert gas is such that they constitute a nozzle causing a smoothly flowing envelope of inert gas to surround completely the knife 27.
  • housing 16 which encloses high frequency generator 17 will avoid any danger of an explosion being caused by any spark emanating from the high frequency generator 17. No explosive vapor can enter housing 16 since it is filled with inert gas under pressure. -Moreover, any explosive vapor which may have entered housing 16 during a period of idleness or accumulated in some other manner will immediately become'diluted by circulating inert gas passing from storage tank 11 to surgical instrument 21.
  • a gas-blanketed electrically energizable surgical cutting apparatus including a cutting instrument for use in an atmosphere which may be of an explosive nature, comprising means for energizing the cutting instrument being connected to said instrument, a source of gas under pressure, conduit means connected to the apparatus for conveying gas from said source to the cutting instrument; nozzle means surrounding said cutting instrument and connected to said gas conveying means for causing the gas to form an envelope surrounding those portions of the cutting instrument at which a spark is likely to occur, and pressure controlled switching means interposed between the source of gas and the energizing means for preventing energization of the cutting instrument upon deviation of the gas pressure outside predetermined limits.
  • a gas-blanketed electrically energized surgical apparatus including a cutting instrument, comprising: a handle portion having a passage therein for an inert gas under pressure, said cutting instrument being removably carried by the handle portion, and nozzle means comprising the engaging portions of the handle portion and the cutting instrument for causing the inert gas to surround those portions of the cutting instrument at which a spark may be likely to occur, means for energizing the cutting instrument connected to said instrument, and pressure actuated switching means in communication with said passage and connected to prevent energization of the cutting instrument upon deviation of the gas pressure in said passage outside predetermined limits.
  • a gas-blanketed electro-surgical device comprising: a handle portion having a passage therein for an inert gas under pressure, a cutting portion removably carried by the handle portion, nozzle means communicating with said passage and comprising the engaging portions of the handle portion and the cutting portion for causing the inert gas to form an envelope surrounding those portions of the cutting instrument at which a spark would be likely to occur, a gas tubing engaging one end of said handle portion and communicating with said passage, an electrical conductor disposed within said tubing and connected to said cutting portion for energizing said cutting portion, a housing, the other end of said tubing being in communicative engagement therewith, a source of high frequency current disposed within said housing, said electrical conductor being connected to said source, and pressure actuated switching means exposed to gas pressure in said housing responsive to said gas pressure for rendering said source inoperative upon deviation of the gas pressure within the housing outside of predetermined limits.

Description

was.
May 24, 1955 w. AUGUST 2,708,933
GAS BLANKETED ELECTRO-SURGICAL DEVICE Filed May 17. 1951 FIG. L
INVENTOR. A WML/AM ,4am/5T www ATTORNEY Unite anni GAS HSURGECAL DEVlCE Wiliiam August, hat' Rockaway, N. Y.
Appiication May 17, 95E-r, Serial No. 226,i7
3 Claims. (Qi. E28-$03.14)
The present invention relates to electrosurgical devices and more particularly to devices of this character in which the cutting action of a surgical instrument is produced in large measure through energization of the instrument by a high frequency current of appropriate characteristics. High frequency current of somewhat diiferent characteristics may also be employed for purposes of coagulation in connection with the incision.
From the foregoing it will be apparent that during the use of an electrosurgical instrument of this character there will be a tendency to produce a spark as the cutting instrument is brought into proximity to the tissue to be cut. It is common practice, in the course of an operation, to administer an anaesthetic to the patient which anaesthetic may be of a highly explosive character, such as ether vapor, for example.
Accordingly, it is among the objects of the invention to provide an electrosurgical instrument which may be safely employed in the presence of ether fumes or other explosive vapors without danger of causing an explosion.
Another object of the invention is to provide an electrosurgical instrument in which freedom from explosion hazard is obtained without detriment to the usefulness or to the convenience of manipulation of the instrument.
A further object of the invention is to provide an electrosurgical instrument having an interlock arrangement which will prevent the device from being electrically energized unless the explosion prevention feature is prepared for operation.
Other and further objects will become apparent upon reading the following specification together with the accompanying drawing forming a part hereof.
Referring to the drawing:
Fig. 1 is a diagrammatic representation of an embodi ment of the invention.
Fig. 2 is an enlarged view in sectional elevation of a surgical instrument embodying the invention.
Fig. 3 is a sectional View of a pressure switch used in practicing the invention.
Fig. 4 is a schematic diagram of the electrical circuit of an embodiment of the invention.
Referring to Pig. 1, there is shown the fragmentary upper portion of a storage tank l1 of usual construction for the retention and storage of compressed gases and similar substances. Tank 11 is shown provided with a pressure reducing valve 12 having an adjustment knob 13 and a pressure gauge 14. The low pressure side of reducing valve 12 is shown connected by a ilexible hose or tubing 15 to a gas-tight housing 16.
Disposed within gas-tight housing 16 is a high frequency generator 17 which may be of any well-known type appropriate for producing the cutting current or coagulating current for use with electrosurgical instruments.
A generator 17 is shown provided with an output terminal 18 to which a flexible conductor 19 is connected for carrying the high frequency current to the surgical instrument.
The exible conductor 19 extends through a exible Cir hose or tubing 20 to a surgical instrument designated generally as 21. The tubing 20 which interconnects the gastight housing 16 and the instrument 21 is constructed to carry gas under pressure and also to accommodate the ilexible conductor 19 without interfering with the how of gas. The walls of the flexible tubing 2t) may also serve as electrical insulation for the conductor 19.
Referring to Fig. 2, it will be seen that the surgical instrument 21 comprises a rigid handle portion 22 of electrically insulative material. The exible tubing 2t) is shown suitably secured to the handle 22 at one end thereof. Extending axially within handle 22 is a hollow electrically conductive member 23. The flexible conductor 19 is connected to one end of the said hollow member 23, the other end of the said member 23 being shaped for engagement with a knife holding member 24. A length of electrically conductive rigid hollow tubing 25 forms a part of the knife holding member 24. The tubing 25 is xedly secured in and extends axially through the knife holding member 2d, its interior being shaped for engagement with the shank portion 2e of a removable cutting blade 27.
The knife holding member 24.- niay be threadedly secured to the handle member 22 thus bringing one end of hollow tubing into firm engagement with the adjacent end of hollow electrically conductive member 23. The s ik portion 25 of the blade 27 is removably held in tube 25' by radialiy extending iin portions 2S on the tool shank which engage the inside surface of tube 2S. The blade 27 is thus securely although removably heldr in proper working position and the fin portions 2S of its shank 26 provide longitudinal passage for the flow of gas lengthwise of blade 27. it is understood that any other suitable type of cutting blade may be employed in place of the blade 27.
A form of high frequency generator is shown illustrativeiy in Fig. 4, only the schematic circuit diagram be- Iing indicated. Other forms of high frequency generator may 'oe used, if desired, as long as they produce the required amount of power at the desired frequency and with the proper voltage and wave-shape characteristics. ln the embodiment illustrated in Fig. 4, a suitable source of power 39 is connected through contacts 3i-32 of an electromagnetic cut-or' switch 33 to the primar winding 3d of a step-up transformer designated generally as 35.
Primary winding 34 is shown provided with a plurality of voltage taps 36 which may be selectively contacted by a movable switch arm 37, this arrangement being provided to permit compensation for variations in line voltage supplied by source Disposed on top of gas-tight housinf7 Std is a pressure switch di) communicating directly with the interior of housing le through a short pipe 43.. The pressure switch 4i) comprises a pressure chamber L52 which is at the ame pressure as the interior of housing 16 by reason of the short interconnecting pipe The chamber is closed at its upper side 'oy a iiexible diaphragm 43 which is displaced in accordance with variations in the pressure of the gas in chamber .Directly above the pressure chamber d2 is a further chamber 4d closed by a removable screw-type cover d5. Disposed in the chamber 44 are a pair of fixed contacts #t7 and 423 arranged for selective engagement with a movable contact member 49. One end of the contact member 49 is fixedly pivoted at Sd, the opposite end being movable for engagement with either of the two fixed contacts i7 and A link member interconnects diaphragm 43 and movable contact member d?. When the pressure in chamber l2 and hence in housing i6 is low, engagement between contacts 4e* occurs and correspondingly similar engagement between contacts 4'7-49 occurs when the pressure in chamber 4Z is at a high value. By means well known in the art, the pressure values at which contact closure occurs may be made adjustable and may be brought within almost any desired range of pressures.
Winding 52 of cut-off switch 33 is connected vra a conductor 53 to both contacts 47 and 4S in multiple, movable contact 49 being connected via conductor 54 to one side of the power source 3b. Engagement of the movable contact 49 with either of the two stationary contacts 67 or 48 will energize operating winding 52 of switch 33 causing it to open its contacts 3ft- 3&3 and thus prevent energization of primary winding 34 of step-up transformer 35. One side of power source 36 may be connected through a foot-operated switch 56 to one side of the primary winding 34 of transformer 35. Accordingly, primary winding 34 may be energized upon closure of foot switch 56 unless contacts 31-32 of cut-off switch 33 have been caused to open by either a high or low pressure condition at pressure switch 4t).
A plurality of spark gaps 6G are connected for energization by the high-voltage secondary winding 61 of transformer 35. High frequency oscillatory currents are induced in a resonant circuit comprising a high-frequency tuning coil 62 and capacitors 63. These high frequency currents are shown by way of illustration as being taken off through coupling capacitors 64, one of these capacitors being connected to a ground terminal 65 and the other being connected to output terminal 18. A suitable ground electrode 66 is shown connected to terminal 65 by a conductor 67. Ground electrode 66 is intended, as and when required, to complete the circuit to the body of the patient undergoing the operation.
In use, inert gas at appropriate pressure is admitted into the housing 16 from storage cylinder 1.1 through reducing valve 12 and tubing 15, the pressure being indicated by gauge 14. lf the correct pressure prevails in housing 16, then the contacts 47-48-49 of pressure switch 4t) will all be open and consequently the contacts of cut-off switch 33 will be closed thereby permitting energization of transformer 35 from source 38 upon closure of foot switch 56 which is serially included in the transformer primary circuit. If the pressure in housing 16 is either too high or too low, the transformer 35 cannot be energized.
The gas in cylinder 11 is preferably an inert gas and may be of any suitable type such as carbon dioxide, neon, helium, etc. The principal requirement is that the gas shall not be capable of forming an explosive mixture with air, nor with the fumes of any other gas or vapor which may be used for purposes of anaesthesia. The gas must, of course, be sterile and of such concentration as to be non-toxic insofar as the patient and the operating room personnel are concerned.
The inert gas from housing 16 passes through tubing 2t? and through hollow member 23 entering tubing 25 and flowing around tin portions 28 of removable knife 27. The shape of the cooperating portions of knife 27 and the other parts of instrument 21 which form passages for the inert gas is such that they constitute a nozzle causing a smoothly flowing envelope of inert gas to surround completely the knife 27. By maintenance of the gas pressure in housing 16 within suitable limits, turbulence of the envelope may be avoided and the gas flow will always be of sufficient volume to insure adequate thickness of the explosion preventing gaseous envelope. The actual dimensioning of the gas passages in any particular case will depend upon the gas pressure together with the size and shape of the cutting implement. Any spark which may occur within the envelope of inert gas cannot ignite an explosive mixture outside the envelope.
It will also be noted that the presence of gas under pressure in housing 16 which encloses high frequency generator 17 will avoid any danger of an explosion being caused by any spark emanating from the high frequency generator 17. No explosive vapor can enter housing 16 since it is filled with inert gas under pressure. -Moreover, any explosive vapor which may have entered housing 16 during a period of idleness or accumulated in some other manner will immediately become'diluted by circulating inert gas passing from storage tank 11 to surgical instrument 21.
In accordance with the U. S. patent statutes, I have shown what l believe to be the best embodiment of my invention. I do not wish, however, to be confined to the embodiment shown, but by the invention as defined in the appended claims.
I claim:
l. A gas-blanketed electrically energizable surgical cutting apparatus including a cutting instrument for use in an atmosphere which may be of an explosive nature, comprising means for energizing the cutting instrument being connected to said instrument, a source of gas under pressure, conduit means connected to the apparatus for conveying gas from said source to the cutting instrument; nozzle means surrounding said cutting instrument and connected to said gas conveying means for causing the gas to form an envelope surrounding those portions of the cutting instrument at which a spark is likely to occur, and pressure controlled switching means interposed between the source of gas and the energizing means for preventing energization of the cutting instrument upon deviation of the gas pressure outside predetermined limits.
2. A gas-blanketed electrically energized surgical apparatus including a cutting instrument, comprising: a handle portion having a passage therein for an inert gas under pressure, said cutting instrument being removably carried by the handle portion, and nozzle means comprising the engaging portions of the handle portion and the cutting instrument for causing the inert gas to surround those portions of the cutting instrument at which a spark may be likely to occur, means for energizing the cutting instrument connected to said instrument, and pressure actuated switching means in communication with said passage and connected to prevent energization of the cutting instrument upon deviation of the gas pressure in said passage outside predetermined limits.
3. A gas-blanketed electro-surgical device, comprising: a handle portion having a passage therein for an inert gas under pressure, a cutting portion removably carried by the handle portion, nozzle means communicating with said passage and comprising the engaging portions of the handle portion and the cutting portion for causing the inert gas to form an envelope surrounding those portions of the cutting instrument at which a spark would be likely to occur, a gas tubing engaging one end of said handle portion and communicating with said passage, an electrical conductor disposed within said tubing and connected to said cutting portion for energizing said cutting portion, a housing, the other end of said tubing being in communicative engagement therewith, a source of high frequency current disposed within said housing, said electrical conductor being connected to said source, and pressure actuated switching means exposed to gas pressure in said housing responsive to said gas pressure for rendering said source inoperative upon deviation of the gas pressure within the housing outside of predetermined limits.
References Cited in the file of this patent UNITED STATES YPATENTS 1,813,902 Bouie July 14, 1931 2,376,265 Meredith May 15, 1945 2,517,739 Tyrner et al Aug. 8, 1950 2,555,017 Tuthill May 17, 1951 2,618,267 Hanriot Nov. 18, 1952 FOREIGN PATENTS 934,257 France lan. 10, 1948 986,527 France Mar. 28, 1951
US226807A 1951-05-17 1951-05-17 Gas blanketed electro-surgical device Expired - Lifetime US2708933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US226807A US2708933A (en) 1951-05-17 1951-05-17 Gas blanketed electro-surgical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US226807A US2708933A (en) 1951-05-17 1951-05-17 Gas blanketed electro-surgical device

Publications (1)

Publication Number Publication Date
US2708933A true US2708933A (en) 1955-05-24

Family

ID=22850496

Family Applications (1)

Application Number Title Priority Date Filing Date
US226807A Expired - Lifetime US2708933A (en) 1951-05-17 1951-05-17 Gas blanketed electro-surgical device

Country Status (1)

Country Link
US (1) US2708933A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2828748A (en) * 1953-03-16 1958-04-01 Birtcher Corp Gas blanketed electro-surgical device
DE1159574B (en) * 1961-11-29 1963-12-19 Siemens Reiniger Werke Ag Safety device for high-frequency surgical apparatus
US3434476A (en) * 1966-04-07 1969-03-25 Robert F Shaw Plasma arc scalpel
US3494363A (en) * 1969-04-01 1970-02-10 Technical Resources Inc Control for devices used in surgery
EP0118268A1 (en) * 1983-02-28 1984-09-12 CODMAN & SHURTLEFF INC. High dielectric output circuit for electrosurgical power source
US4706667A (en) * 1984-06-25 1987-11-17 Berchtold Medizin-Elektronik Gmbh & Co. Electro surgical high frequency cutting instrument
US5041110A (en) * 1989-07-10 1991-08-20 Beacon Laboratories, Inc. Cart for mobilizing and interfacing use of an electrosurgical generator and inert gas supply
US5098430A (en) * 1990-03-16 1992-03-24 Beacon Laboratories, Inc. Dual mode electrosurgical pencil
WO1992005743A1 (en) * 1990-10-04 1992-04-16 Birtcher Medical Systems, Inc. Electrosurgical handpiece incorporating blade and gas functionality
US5306238A (en) * 1990-03-16 1994-04-26 Beacon Laboratories, Inc. Laparoscopic electrosurgical pencil
US5484435A (en) * 1992-01-15 1996-01-16 Conmed Corporation Bipolar electrosurgical instrument for use in minimally invasive internal surgical procedures
US5626560A (en) * 1993-04-13 1997-05-06 Soring Medizintechnik Gmbh Diathermic hand-held instrument with an endoscopic probe
US5669934A (en) * 1991-02-13 1997-09-23 Fusion Medical Technologies, Inc. Methods for joining tissue by applying radiofrequency energy to performed collagen films and sheets
US5749895A (en) * 1991-02-13 1998-05-12 Fusion Medical Technologies, Inc. Method for bonding or fusion of biological tissue and material
US5824015A (en) * 1991-02-13 1998-10-20 Fusion Medical Technologies, Inc. Method for welding biological tissue
US6213999B1 (en) 1995-03-07 2001-04-10 Sherwood Services Ag Surgical gas plasma ignition apparatus and method
US20030065324A1 (en) * 1998-09-29 2003-04-03 Platt Robert C. Swirling system for ionizable gas coagulator
US20030093073A1 (en) * 1999-10-05 2003-05-15 Platt Robert C. Articulating ionizable gas coagulator
US20030105458A1 (en) * 1999-10-05 2003-06-05 Platt Robert C. Multi-port side-fire coagulator
US20050171528A1 (en) * 2004-02-03 2005-08-04 Sartor Joe D. Self contained, gas-enhanced surgical instrument
US7004939B2 (en) 2002-09-03 2006-02-28 Dale Victor Mackay Electrosurgical apparatus
US20060052772A1 (en) * 2004-02-03 2006-03-09 Sartor Joe D Gas-enhanced surgical instrument
US20060200122A1 (en) * 2004-02-03 2006-09-07 Sherwood Services Ag Portable argon system
US20070208337A1 (en) * 2006-03-03 2007-09-06 Sherwood Services Ag Manifold for gas enhanced surgical instruments
US20070213709A1 (en) * 2006-03-08 2007-09-13 Sherwood Services Ag Tissue coagulation method and device using inert gas
US20090054893A1 (en) * 2004-02-03 2009-02-26 Sartor Joe D Gas-enhanced surgical instrument with pressure safety feature
US20090076505A1 (en) * 2007-09-13 2009-03-19 Arts Gene H Electrosurgical instrument
US20100042088A1 (en) * 2008-08-14 2010-02-18 Arts Gene H Surgical Gas Plasma Ignition Apparatus and Method
US20100042094A1 (en) * 2008-08-14 2010-02-18 Arts Gene H Surgical Gas Plasma Ignition Apparatus and Method
US7833222B2 (en) 2004-02-03 2010-11-16 Covidien Ag Gas-enhanced surgical instrument with pressure safety feature
US8123744B2 (en) 2006-08-29 2012-02-28 Covidien Ag Wound mediating device
US8226643B2 (en) 2004-02-03 2012-07-24 Covidien Ag Gas-enhanced surgical instrument with pressure safety feature
WO2016054195A1 (en) * 2014-10-03 2016-04-07 Instrument Manufacturing Company Resonant transformer
US10245096B2 (en) 2016-05-25 2019-04-02 Covidien Lp Pressure relief system for use with gas-assisted minimally invasive surgical devices
US10278759B2 (en) 2014-11-06 2019-05-07 Covidien Lp Cautery apparatus
US10792086B2 (en) 2014-11-06 2020-10-06 Covidien Lp Cautery apparatus
US11937869B1 (en) 2023-01-20 2024-03-26 Panacea Spine, LLC Electrocautery rhizotomy using wanding of energized electrocautery probe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1813902A (en) * 1928-01-18 1931-07-14 Liebel Flarsheim Co Electrosurgical apparatus
US2376265A (en) * 1943-02-25 1945-05-15 Northrop Aircraft Inc Inert gas blanketed arc welding torch
FR934257A (en) * 1946-09-17 1948-05-18 Rectoscope for intra-rectal operations in a non-combustible gas atmosphere
US2517739A (en) * 1948-03-02 1950-08-08 Air Reduction Electric arc welding system
US2555017A (en) * 1949-08-18 1951-05-29 Gen Electric Electrode holder for gas blanketed electric arc weldings
FR986527A (en) * 1949-03-11 1951-08-01 Apparatus for using electric scalpels
US2618267A (en) * 1949-03-11 1952-11-18 Hanriot Raymond Control means for electrosurgical cutting instruments

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1813902A (en) * 1928-01-18 1931-07-14 Liebel Flarsheim Co Electrosurgical apparatus
US2376265A (en) * 1943-02-25 1945-05-15 Northrop Aircraft Inc Inert gas blanketed arc welding torch
FR934257A (en) * 1946-09-17 1948-05-18 Rectoscope for intra-rectal operations in a non-combustible gas atmosphere
US2517739A (en) * 1948-03-02 1950-08-08 Air Reduction Electric arc welding system
FR986527A (en) * 1949-03-11 1951-08-01 Apparatus for using electric scalpels
US2618267A (en) * 1949-03-11 1952-11-18 Hanriot Raymond Control means for electrosurgical cutting instruments
US2555017A (en) * 1949-08-18 1951-05-29 Gen Electric Electrode holder for gas blanketed electric arc weldings

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2828748A (en) * 1953-03-16 1958-04-01 Birtcher Corp Gas blanketed electro-surgical device
DE1159574B (en) * 1961-11-29 1963-12-19 Siemens Reiniger Werke Ag Safety device for high-frequency surgical apparatus
US3434476A (en) * 1966-04-07 1969-03-25 Robert F Shaw Plasma arc scalpel
US3494363A (en) * 1969-04-01 1970-02-10 Technical Resources Inc Control for devices used in surgery
EP0118268A1 (en) * 1983-02-28 1984-09-12 CODMAN & SHURTLEFF INC. High dielectric output circuit for electrosurgical power source
US4520818A (en) * 1983-02-28 1985-06-04 Codman & Shurtleff, Inc. High dielectric output circuit for electrosurgical power source
US4706667A (en) * 1984-06-25 1987-11-17 Berchtold Medizin-Elektronik Gmbh & Co. Electro surgical high frequency cutting instrument
US5041110A (en) * 1989-07-10 1991-08-20 Beacon Laboratories, Inc. Cart for mobilizing and interfacing use of an electrosurgical generator and inert gas supply
US5330469A (en) * 1989-07-10 1994-07-19 Beacon Laboratories, Inc. Apparatus for supporting an electrosurgical generator and interfacing such with an electrosurgical pencil and an inert gas supply
US5306238A (en) * 1990-03-16 1994-04-26 Beacon Laboratories, Inc. Laparoscopic electrosurgical pencil
US5098430A (en) * 1990-03-16 1992-03-24 Beacon Laboratories, Inc. Dual mode electrosurgical pencil
US5256138A (en) * 1990-10-04 1993-10-26 The Birtcher Corporation Electrosurgical handpiece incorporating blade and conductive gas functionality
WO1992005743A1 (en) * 1990-10-04 1992-04-16 Birtcher Medical Systems, Inc. Electrosurgical handpiece incorporating blade and gas functionality
US5669934A (en) * 1991-02-13 1997-09-23 Fusion Medical Technologies, Inc. Methods for joining tissue by applying radiofrequency energy to performed collagen films and sheets
US5749895A (en) * 1991-02-13 1998-05-12 Fusion Medical Technologies, Inc. Method for bonding or fusion of biological tissue and material
US5824015A (en) * 1991-02-13 1998-10-20 Fusion Medical Technologies, Inc. Method for welding biological tissue
US5484435A (en) * 1992-01-15 1996-01-16 Conmed Corporation Bipolar electrosurgical instrument for use in minimally invasive internal surgical procedures
US5626560A (en) * 1993-04-13 1997-05-06 Soring Medizintechnik Gmbh Diathermic hand-held instrument with an endoscopic probe
US6213999B1 (en) 1995-03-07 2001-04-10 Sherwood Services Ag Surgical gas plasma ignition apparatus and method
US6666865B2 (en) 1998-09-29 2003-12-23 Sherwood Services Ag Swirling system for ionizable gas coagulator
US20030065324A1 (en) * 1998-09-29 2003-04-03 Platt Robert C. Swirling system for ionizable gas coagulator
US7955330B2 (en) 1999-10-05 2011-06-07 Covidien Ag Multi-port side-fire coagulator
US7578818B2 (en) 1999-10-05 2009-08-25 Covidien Ag Articulating ionizable gas coagulator
US20050015086A1 (en) * 1999-10-05 2005-01-20 Platt Robert C. Multi-port side-fire coagulator
US6852112B2 (en) 1999-10-05 2005-02-08 Sherwood Services Ag Multi-port side-fire coagulator
US6911029B2 (en) 1999-10-05 2005-06-28 Sherwood Services Ag Articulating ionizable gas coagulator
US8251995B2 (en) 1999-10-05 2012-08-28 Covidien Ag Articulating ionizable gas coagulator
US20050197658A1 (en) * 1999-10-05 2005-09-08 Platt Robert C. Articulating ionizable gas coagulator
US20030093073A1 (en) * 1999-10-05 2003-05-15 Platt Robert C. Articulating ionizable gas coagulator
US7927330B2 (en) 1999-10-05 2011-04-19 Covidien Ag Multi-port side-fire coagulator
US20100063501A9 (en) * 1999-10-05 2010-03-11 Platt Robert C Multi-port side-fire coagulator
US20100016856A1 (en) * 1999-10-05 2010-01-21 Platt Jr Robert C Articulating Ionizable Gas Coagulator
US20030105458A1 (en) * 1999-10-05 2003-06-05 Platt Robert C. Multi-port side-fire coagulator
US7004939B2 (en) 2002-09-03 2006-02-28 Dale Victor Mackay Electrosurgical apparatus
US20090054893A1 (en) * 2004-02-03 2009-02-26 Sartor Joe D Gas-enhanced surgical instrument with pressure safety feature
US8414578B2 (en) 2004-02-03 2013-04-09 Covidien Ag Self contained, gas-enhanced surgical instrument
US7572255B2 (en) 2004-02-03 2009-08-11 Covidien Ag Gas-enhanced surgical instrument
US7628787B2 (en) 2004-02-03 2009-12-08 Covidien Ag Self contained, gas-enhanced surgical instrument
US20050171528A1 (en) * 2004-02-03 2005-08-04 Sartor Joe D. Self contained, gas-enhanced surgical instrument
US8226644B2 (en) 2004-02-03 2012-07-24 Covidien Ag Gas-enhanced surgical instrument
US8226643B2 (en) 2004-02-03 2012-07-24 Covidien Ag Gas-enhanced surgical instrument with pressure safety feature
US8157795B2 (en) 2004-02-03 2012-04-17 Covidien Ag Portable argon system
US20060052772A1 (en) * 2004-02-03 2006-03-09 Sartor Joe D Gas-enhanced surgical instrument
US20100069902A1 (en) * 2004-02-03 2010-03-18 Covidien Ag Self Contained, Gas-Enhanced Surgical Instrument
US20060200122A1 (en) * 2004-02-03 2006-09-07 Sherwood Services Ag Portable argon system
US7833222B2 (en) 2004-02-03 2010-11-16 Covidien Ag Gas-enhanced surgical instrument with pressure safety feature
US7691102B2 (en) 2006-03-03 2010-04-06 Covidien Ag Manifold for gas enhanced surgical instruments
US20070208337A1 (en) * 2006-03-03 2007-09-06 Sherwood Services Ag Manifold for gas enhanced surgical instruments
US20100154904A1 (en) * 2006-03-03 2010-06-24 Covidien Ag Manifold For Gas Enhanced Surgical Instruments
US7648503B2 (en) 2006-03-08 2010-01-19 Covidien Ag Tissue coagulation method and device using inert gas
US20100114096A1 (en) * 2006-03-08 2010-05-06 Covidien Ag Tissue Coagulation Method and Device Using Inert Gas
US8460290B2 (en) 2006-03-08 2013-06-11 Covidien Ag Tissue coagulation method and device using inert gas
US20070213709A1 (en) * 2006-03-08 2007-09-13 Sherwood Services Ag Tissue coagulation method and device using inert gas
US8123744B2 (en) 2006-08-29 2012-02-28 Covidien Ag Wound mediating device
US20090076505A1 (en) * 2007-09-13 2009-03-19 Arts Gene H Electrosurgical instrument
US20100042094A1 (en) * 2008-08-14 2010-02-18 Arts Gene H Surgical Gas Plasma Ignition Apparatus and Method
US20100042088A1 (en) * 2008-08-14 2010-02-18 Arts Gene H Surgical Gas Plasma Ignition Apparatus and Method
US8226642B2 (en) 2008-08-14 2012-07-24 Tyco Healthcare Group Lp Surgical gas plasma ignition apparatus and method
WO2016054195A1 (en) * 2014-10-03 2016-04-07 Instrument Manufacturing Company Resonant transformer
US9711276B2 (en) 2014-10-03 2017-07-18 Instrument Manufacturing Company Resonant transformer
US10290416B2 (en) 2014-10-03 2019-05-14 Instrument Manufacturing Company Resonant Transformer
US10278759B2 (en) 2014-11-06 2019-05-07 Covidien Lp Cautery apparatus
US10792086B2 (en) 2014-11-06 2020-10-06 Covidien Lp Cautery apparatus
US10245096B2 (en) 2016-05-25 2019-04-02 Covidien Lp Pressure relief system for use with gas-assisted minimally invasive surgical devices
US11291492B2 (en) 2016-05-25 2022-04-05 Covidien Lp Pressure relief system for use with gas-assisted minimally invasive surgical devices
US11937869B1 (en) 2023-01-20 2024-03-26 Panacea Spine, LLC Electrocautery rhizotomy using wanding of energized electrocautery probe

Similar Documents

Publication Publication Date Title
US2708933A (en) Gas blanketed electro-surgical device
US2275167A (en) Electrosurgical instrument
US1787709A (en) High-frequency surgical cutting device
US6013075A (en) Medical coagulation apparatus
US10064675B2 (en) Multi-mode electrosurgical apparatus
US3929137A (en) Sonic warning for electrosurgical device
US2828747A (en) Gas-blanketed electro-surgical device
US3870047A (en) Electrosurgical device
EP0613387B1 (en) Suction surgical instrument
US1813902A (en) Electrosurgical apparatus
US3434476A (en) Plasma arc scalpel
US5669907A (en) Plasma enhanced bipolar electrosurgical system
US2545865A (en) Electrosurgical instrument
DK1194093T3 (en) Tip for surgical handle
US4311144A (en) Electrical surgical knife device
GB436257A (en) Improvements in means for treating human skin
US2126257A (en) Electromedical instrument
CN103418085A (en) Cold plasma discharger
US2012938A (en) Electrical caponizing knife
US1741461A (en) Surgical instrument
US2382109A (en) Diagnostic and electrosurgical appliance
US2618267A (en) Control means for electrosurgical cutting instruments
US3595238A (en) Electrosurgical apparatus to coagulate biological tissues
US1792781A (en) Method of generating oscillations
US1805904A (en) Electrotherapeutical device