US2784208A - Monomethyl esters of aliphatic phosphonic acids - Google Patents

Monomethyl esters of aliphatic phosphonic acids Download PDF

Info

Publication number
US2784208A
US2784208A US488983A US48898355A US2784208A US 2784208 A US2784208 A US 2784208A US 488983 A US488983 A US 488983A US 48898355 A US48898355 A US 48898355A US 2784208 A US2784208 A US 2784208A
Authority
US
United States
Prior art keywords
monomethyl
esters
phosphonic acids
phosphonic
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US488983A
Inventor
Jr Herman E Ries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Co
Original Assignee
Standard Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co filed Critical Standard Oil Co
Priority to US488983A priority Critical patent/US2784208A/en
Application granted granted Critical
Publication of US2784208A publication Critical patent/US2784208A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/167Phosphorus-containing compounds
    • C23F11/1676Phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4006Esters of acyclic acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • C10L1/2608Organic compounds containing phosphorus containing a phosphorus-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M1/00Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
    • C10M1/08Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/135Steam engines or turbines

Definitions

  • This invention relates to new compositions of matter which are monomethyl esters of long chain hydrocarbon phosphonic acids.
  • the collapse pressure, measured in dynes per centimeter by the Langmuir-Adam-Harkins film balance, of a film of the monomethyl ester of octadecane phosphonic acid is 48 compared to 53 for the free acid.
  • the free acid would be expected to show superiority in rust protection.
  • the monomethyl ester when tested for anti-rust properties under the conditions of the tilm-tenacity procedure of the ASTM D665 rust test was found to give perfect protection at a concentration as low as 0.001 percent where the free acid showed some rusting.- Moreover, the monomethyl ester shows a markedly different order of solubility in hydrocarbon fractions compared to the nearly insoluble free acid, thus promoting its use as a fuel or lubricant additive.
  • the monomethyl esters are distinguished from higher monoalkyl esters in that alkyl groups larger than methyl appear to interfere with the close molecular packing associated with best film formation.
  • the monomethyl ester of octadecane phosphonic acid is an example of the compositions of the invention which comprise the monomethyl esters of phosphonic acids containing 21 long chain group comprising an essentially straight aliphatic chain of at least carbon atoms.
  • Experimental studies of film forming properties have shown that a chain of at least this length in association with a strong polar group is necessary for close packing of the molecules in the form of a tenacious film. As the chain becomes longer the packing property improves, as does oil solubility.
  • the chains may contain some branching and ring substitution without interfering with close packing. Alkyl benzene phosphonic acids however should be para-positioned to preserve the essentially straight chain character.
  • the methyl branching of olefin chain polymers, such as propylene tetramer, or in polybutene chains, also appears unobjectionable.
  • the longer chain compounds are most valuable, particularly octadecane phosphonic acid, although groups at least as long as 36 carbon atoms such as may be derived from hexatriacontanoic acid appear to be useful.
  • the C10 to C18 range including dodecane phosphonic and hexadecane phosphonic acids has special value.
  • the new compositions are useful as anti-rust agents in lubricating oils, turbine oils, gear oils and the like. They also have particular value for use in distillate fuels such as gasoline where they function not only as anti-rust agents but, as deposit modifiers, act to prolong spark plug life, to resist octane requirement increase of the engine with use and to eliminate pre-ignition.
  • the concentration of use is about 0.00001 to 0.l percent by Weight in gasoline and about 0.0001 to about 1.0 percent in lubricating oils.
  • the compounds also may be useful in other applications where strong film forming and/or surface active properties are important, e. g. detergents and insecticides.
  • the new compositions may be prepared in general by partial hydrolysis of the dimethyl esters of the corresponding long chain phosphonic acids or by reaction of mixed esters, such as the mixed methyl and t-butyl or benzyl esters, of the corresponding alkane phosphonic acid under conditions cracking or splitting off the t-butyl or benzyl group.
  • the monomethyl ester of octadecane phosphonic acid for example, also can be produced by direct partial esterification of the free acid with methanol. The monomethyl ester crystallizes from solution and dimethyl ester formed is separated as a liquid product.
  • Dimethyl esters of long chain phosphonic acids corresponding to the desired monomethyl ester can be pre pared in several ways.
  • Dimethyl phosphite can be reacted with a long chain alkyl halide, e. g. octadecyl bromide, in the presence of metallic sodium.
  • the resulting dimethyl ester then after recovery by distillation can be partially hydrolyzed with hydrochloric acid to obtain the monomethyl ester.
  • the long chain halide e. g. octadecyl bromide
  • the dimethyl ester of the long chain phosphonic acid is formed and the methyl halide may be distilled off permitting the reaction to go to completion.
  • the long chain olefin e. g. octadecene-l
  • dimethyl phosphite in the presence of a peroxide catalyst or other free radical initiator such as a hypochlorite, or under the influence of ultraviolet light, at about 200 to 300 C. to obtain the dimethyl ester.
  • Example I n-Octadecane phosphonic acid, 10.33 grams (0.03 mole), was added to phosphorus pentachloride, 6.46 grams (0.03 mole), and reaction was initiated by warming the flask.
  • a solution of methanol, 20 grams (0.62 mole), in pyridine, 23.7 (0.30 mole) was added dropwise.
  • the reaction flask was surrounded by water to control the temperature. A solid appeared and remained throughout the reaction. After all of the methanol-pyridine solution was added, stirring was continued for an additional 15 minutes. To the reaction mixture was added 50 ml. of water and the contents of the flask were stirred vigorously. This caused an emulsion to form.
  • n-Octanol was found to extract the organic material out of the emulsion.
  • the octanol layer was separated and washed with water.
  • Acetone was period of :f'contact, 110 .ml. of
  • the untreated gasoline control showed percent rusting of the test panel exposed to gasoline and percent-rustingof the panel exposed to water.
  • the composition of the invention reduced rust sformation in gasoline toslO specks (where a speck is de fined as less than "one-millimeterindiameter) and the rustingin.svatenwasreduced to 50 percent.
  • composition containing the commercial anti-rust showed 15 spots (where a spot is defined as an area of l to 3 mm.

Description

United States Patent F MONOMETHYL ESTERS OF ALIPHATIC PHOSPHONIC ACIDS Herman E. Ries, .Ir., Chicago, Ill., assignor to Standard Oil Company, Chicago, 111., a corporation of Indiana No Drawing. Application February 17, 1955, Serial No. 488,983
Claims. (Cl. 260-461) This invention relates to new compositions of matter which are monomethyl esters of long chain hydrocarbon phosphonic acids.
Although a number of organic phosphonic acids and certain of their dialkyl esters have been recommended for use as lubricating oil additives and detergents, the corresponding monoalkane phosphonic acid esters, so far as I know, have not been made. This may be because of problem in the selective preparation of the monoesters, or more likely because of the poor probability, based upon experience with the known derivatives, that the mono-esters would possess any distinctively useful property. I have discovered however that a monomethyl ester of a long chain hydrocarbon phosphonic acid such as octadecane phosphonic acid possesses unusual anti-rust properties. This is surprising because film balance studies have shown that the free acid is a stronger film former than the monomethyl ester. For example, the collapse pressure, measured in dynes per centimeter by the Langmuir-Adam-Harkins film balance, of a film of the monomethyl ester of octadecane phosphonic acid is 48 compared to 53 for the free acid. On this basis, the free acid would be expected to show superiority in rust protection. In terms of practical utility, however, the monomethyl ester when tested for anti-rust properties under the conditions of the tilm-tenacity procedure of the ASTM D665 rust test was found to give perfect protection at a concentration as low as 0.001 percent where the free acid showed some rusting.- Moreover, the monomethyl ester shows a markedly different order of solubility in hydrocarbon fractions compared to the nearly insoluble free acid, thus promoting its use as a fuel or lubricant additive. The monomethyl esters are distinguished from higher monoalkyl esters in that alkyl groups larger than methyl appear to interfere with the close molecular packing associated with best film formation.
The monomethyl ester of octadecane phosphonic acid is an example of the compositions of the invention which comprise the monomethyl esters of phosphonic acids containing 21 long chain group comprising an essentially straight aliphatic chain of at least carbon atoms. Experimental studies of film forming properties have shown that a chain of at least this length in association with a strong polar group is necessary for close packing of the molecules in the form of a tenacious film. As the chain becomes longer the packing property improves, as does oil solubility. The chains may contain some branching and ring substitution without interfering with close packing. Alkyl benzene phosphonic acids however should be para-positioned to preserve the essentially straight chain character. The methyl branching of olefin chain polymers, such as propylene tetramer, or in polybutene chains, also appears unobjectionable.
The significant structural property of the new compounds centers about the phosphonic group which con- 2,7342% Patented Mar. 5,
tains a free acid group in addition to the monomethyl ester grouping as shown in the following formula:
OH Of the useful compositions, the longer chain compounds are most valuable, particularly octadecane phosphonic acid, although groups at least as long as 36 carbon atoms such as may be derived from hexatriacontanoic acid appear to be useful. In terms of practical availability however the C10 to C18 range including dodecane phosphonic and hexadecane phosphonic acids has special value.
The new compositions are useful as anti-rust agents in lubricating oils, turbine oils, gear oils and the like. They also have particular value for use in distillate fuels such as gasoline where they function not only as anti-rust agents but, as deposit modifiers, act to prolong spark plug life, to resist octane requirement increase of the engine with use and to eliminate pre-ignition. The concentration of use is about 0.00001 to 0.l percent by Weight in gasoline and about 0.0001 to about 1.0 percent in lubricating oils. The compounds also may be useful in other applications where strong film forming and/or surface active properties are important, e. g. detergents and insecticides.
The new compositions may be prepared in general by partial hydrolysis of the dimethyl esters of the corresponding long chain phosphonic acids or by reaction of mixed esters, such as the mixed methyl and t-butyl or benzyl esters, of the corresponding alkane phosphonic acid under conditions cracking or splitting off the t-butyl or benzyl group. The monomethyl ester of octadecane phosphonic acid, for example, also can be produced by direct partial esterification of the free acid with methanol. The monomethyl ester crystallizes from solution and dimethyl ester formed is separated as a liquid product.
Dimethyl esters of long chain phosphonic acids corresponding to the desired monomethyl ester can be pre pared in several ways. Dimethyl phosphite can be reacted with a long chain alkyl halide, e. g. octadecyl bromide, in the presence of metallic sodium. The resulting dimethyl ester then after recovery by distillation can be partially hydrolyzed with hydrochloric acid to obtain the monomethyl ester. Alternatively, the long chain halide, e. g. octadecyl bromide, can be reacted with a trimethyl phosphite at about to C. The dimethyl ester of the long chain phosphonic acid is formed and the methyl halide may be distilled off permitting the reaction to go to completion. In another method, the long chain olefin, e. g. octadecene-l, may be reacted with dimethyl phosphite in the presence of a peroxide catalyst or other free radical initiator such as a hypochlorite, or under the influence of ultraviolet light, at about 200 to 300 C. to obtain the dimethyl ester.
Example I n-Octadecane phosphonic acid, 10.33 grams (0.03 mole), was added to phosphorus pentachloride, 6.46 grams (0.03 mole), and reaction was initiated by warming the flask. When a homogeneous solution was obtained, a solution of methanol, 20 grams (0.62 mole), in pyridine, 23.7 (0.30 mole), was added dropwise. The reaction flask was surrounded by water to control the temperature. A solid appeared and remained throughout the reaction. After all of the methanol-pyridine solution was added, stirring was continued for an additional 15 minutes. To the reaction mixture was added 50 ml. of water and the contents of the flask were stirred vigorously. This caused an emulsion to form. n-Octanol was found to extract the organic material out of the emulsion. The octanol layer was separated and washed with water. Ethyl-acetate,.300 .ml., was added-tovtheoctanol" solution and a white solid precipitated (I). Acetone was period of :f'contact, 110 .ml. of
added to the filtrate and this solution allowed to stand A second solid (II) pre- (II) was recrysin the cold room overnight. cipitated which weighed 2.10igrams.
tallized iwicerfrom acetoneato give lA'l. gramsaofi white.. solid, 655-665". C: r This materialwasfoundto monomethyl; esterofoctadecane phosphonic. acidstoa regular grade gasoline in a concentration .of 5 poundsaof additive per. 1,000'barrels'of product. The gasoline also..-
contained? pounds per 1,000 barrels of..a commercial. anti-oxidant of the phenylene; diamine type and 9 pounds.v per 1,000 barrels of acommercial metal rdeactivator of thesalicyl aldehyde-diaminecondensation product type.- The composition .of the invention was tested'in a l6 hour..
rustv test. in comparison with the untreated gasoline and.. alsoin comparison with a gasolineblend containing: 10'- pounds per 1,000 barrels of acommercialanti-rust. addi-H' tive of the fattyacid type. The. rust test was conducted as follows: SAE-1020 steel panels [2 x 6 x 43" were belt. sanded clean of discoloration and pits. After cleaning with .hot naphtha followed .by hot acetone they were placed in 100ml. of the test fuel in a tall form 4 oz bottle. and. .allowed to stand forVz-.-hour. After this tapdvater. 'wasgaddedi and the capped bottle was rolled for 1 minute. The bottle was then stored in' an upright position. The appearance" of the strips was examined and evaluated after 16 hours exposure to the fuel layer and the Water layer.
Under the test conditions, the untreated gasoline control showed percent rusting of the test panel exposed to gasoline and percent-rustingof the panel exposed to water. The composition of the invention reduced rust sformation in gasoline toslO specks (where a speck is de fined as less than "one-millimeterindiameter) and the rustingin.svatenwasreduced to 50 percent. composition containing the commercial anti-rust showed 15 spots (where a spot is defined as an area of l to 3 mm.
,, in diameterfi'in-gasoli-ne-and percent rusting in water.
I claim:
l. A monomethyl esterof a phosphonic acid containing a long chain hydrocarbon group which contains an aliphatic chain of at least 10 to about 36 carbon atoms a in length. 1.
Lilhemonomethyl ester. of dodecane phosphonic acid",
3. The monomethyl ester of hexadecane phosphonic} acid.
4. rraa .monomethyl estenof octadecane phosphonic.
5.;A monomethyl ester of an alkane phosphonic acid.
whichcontainsabout .10 to .18 carbon atoms in the alkane group.
Refei'ences'Citd in the file'of this patent UNITED STATES. PATENTS 2,254,124? Stevens et al. Aug. 26,'l194l 2,587,340 Lewis et a1. Feb. 26', 1952- 2,594',454 i Kosola'poft Apr. 29,-1952 The gasoline

Claims (1)

1. A MONOMETHYL ESTER OF A PHOSPHONIC ACID CONTAINING A LONG CHAIN HYDROCARBON GROUP WHICH CONTAINS AN ALIPHATIC CHAIN OF AT LEAST 10 TO ABOUT 36 CARBON ATOMS IN LENGTH.
US488983A 1955-02-17 1955-02-17 Monomethyl esters of aliphatic phosphonic acids Expired - Lifetime US2784208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US488983A US2784208A (en) 1955-02-17 1955-02-17 Monomethyl esters of aliphatic phosphonic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US488983A US2784208A (en) 1955-02-17 1955-02-17 Monomethyl esters of aliphatic phosphonic acids

Publications (1)

Publication Number Publication Date
US2784208A true US2784208A (en) 1957-03-05

Family

ID=23941915

Family Applications (1)

Application Number Title Priority Date Filing Date
US488983A Expired - Lifetime US2784208A (en) 1955-02-17 1955-02-17 Monomethyl esters of aliphatic phosphonic acids

Country Status (1)

Country Link
US (1) US2784208A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996367A (en) * 1958-11-12 1961-08-15 Texaco Inc Gasoline containing alkyl dihydrogen phosphate as a corrosion inhibitor
US3055748A (en) * 1960-05-12 1962-09-25 Gulf Research Development Co Fuel for spark ignition engines
US3064031A (en) * 1962-02-05 1962-11-13 Procter & Gamble Process for preparing dialkyl alkyl phosphonates
US3095285A (en) * 1956-03-06 1963-06-25 Gulf Oil Corp Phosphorus-containing gasoline motor fuels
US3098728A (en) * 1959-02-24 1963-07-23 Sinclair Research Inc Leaded gasoline containing phosphorate
DE1181215B (en) * 1960-09-30 1964-11-12 Texaco Development Corp Process for the preparation of monohydroxyalkyl thiophosphonates
US3197308A (en) * 1961-10-13 1965-07-27 Azoplate Corp Presensitized printing plate and process for using same
DE1228365B (en) * 1961-03-17 1966-11-10 Procter & Gamble Detergent composition containing tertiary phosphine oxides
US3296132A (en) * 1962-10-18 1967-01-03 Texaco Inc Alkyl alkenethiophosphonate and their lubricant composition
US3301923A (en) * 1963-03-25 1967-01-31 Texaco Inc 2, 2-dihydroxymethylalkyl hydrocarbonthiophosphonates and method of preparation
US4041111A (en) * 1975-03-04 1977-08-09 Purdue Research Foundation Phosphonate monoesters and method of preparation
US5910469A (en) * 1995-06-12 1999-06-08 Betzdearborn Inc. Crude oil composition comprising an alkylphosphonate antifouling additive
EP1477491A1 (en) * 2003-05-16 2004-11-17 Ethyl Corporation Process for manufacturing alkylphosphonate monoesters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2254124A (en) * 1939-06-05 1941-08-26 Du Pont Organic compound of quinquevalent phosphorus
US2587340A (en) * 1948-02-04 1952-02-26 California Research Corp Esters of alkanephosphonic acids
US2594454A (en) * 1946-05-31 1952-04-29 Monsanto Chemicals Organic phosphorus acids and esters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2254124A (en) * 1939-06-05 1941-08-26 Du Pont Organic compound of quinquevalent phosphorus
US2594454A (en) * 1946-05-31 1952-04-29 Monsanto Chemicals Organic phosphorus acids and esters
US2587340A (en) * 1948-02-04 1952-02-26 California Research Corp Esters of alkanephosphonic acids

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3095285A (en) * 1956-03-06 1963-06-25 Gulf Oil Corp Phosphorus-containing gasoline motor fuels
US2996367A (en) * 1958-11-12 1961-08-15 Texaco Inc Gasoline containing alkyl dihydrogen phosphate as a corrosion inhibitor
US3098728A (en) * 1959-02-24 1963-07-23 Sinclair Research Inc Leaded gasoline containing phosphorate
US3055748A (en) * 1960-05-12 1962-09-25 Gulf Research Development Co Fuel for spark ignition engines
DE1181215B (en) * 1960-09-30 1964-11-12 Texaco Development Corp Process for the preparation of monohydroxyalkyl thiophosphonates
DE1228365B (en) * 1961-03-17 1966-11-10 Procter & Gamble Detergent composition containing tertiary phosphine oxides
US3197308A (en) * 1961-10-13 1965-07-27 Azoplate Corp Presensitized printing plate and process for using same
US3064031A (en) * 1962-02-05 1962-11-13 Procter & Gamble Process for preparing dialkyl alkyl phosphonates
US3296132A (en) * 1962-10-18 1967-01-03 Texaco Inc Alkyl alkenethiophosphonate and their lubricant composition
US3301923A (en) * 1963-03-25 1967-01-31 Texaco Inc 2, 2-dihydroxymethylalkyl hydrocarbonthiophosphonates and method of preparation
US4041111A (en) * 1975-03-04 1977-08-09 Purdue Research Foundation Phosphonate monoesters and method of preparation
US5910469A (en) * 1995-06-12 1999-06-08 Betzdearborn Inc. Crude oil composition comprising an alkylphosphonate antifouling additive
EP1477491A1 (en) * 2003-05-16 2004-11-17 Ethyl Corporation Process for manufacturing alkylphosphonate monoesters
SG121875A1 (en) * 2003-05-16 2006-05-26 Afton Chemical Intangibles Llc Process for manufacturing alkylphosphonate monoesters
US7208452B2 (en) 2003-05-16 2007-04-24 Afton Chemical Intangibles, Llc Process for manufacturing alkylphosphonate monoesters

Similar Documents

Publication Publication Date Title
US2784208A (en) Monomethyl esters of aliphatic phosphonic acids
US3429817A (en) Diester lubricity additives and oleophilic liquids containing the same
US2993773A (en) Ester additives
AU714140B2 (en) Fuel additives
DK169472B1 (en) Dibasic alkali metal salt of a succinic acid derivative, concentrate containing it for addition to gasoline and its use in gasoline
US2863904A (en) Amine salts of di oxo-octyl orthophosphates
US4609376A (en) Anti-wear additives in alkanol fuels
US2548347A (en) Fuel oil composition
US3288577A (en) Fuel oil composition of improved pumpability
US2908711A (en) Itaconic acid-amine reaction product
US2680094A (en) Rust preventive oil composition
US3668237A (en) Amine salts of phosphinic acid esters
US3219582A (en) Lubricants and fuels containing saccharide polydicarboxylate half-esters
US3158647A (en) Quaternary ammonium fatty, phenate and naphthenate salts
US2563609A (en) Lubricating oil additives
US2911431A (en) Dimethyl-(methylphenyl)-phosphates
US4014663A (en) Synergistic low temperature flow improver in distillate fuel
US2528732A (en) Reaction products of diesters of dithiophosphoric acid and mineral oil compositions containing the same
US3007784A (en) Fuel oil composition
US2842433A (en) Motor fuel composition
US2963437A (en) Lubricant compositions
US3485858A (en) Metal alkyl,or alkoxy metal alkyl,ester tetrapropenylsuccinates
US2530339A (en) Compounded petroleum hydrocarbon products
US2718500A (en) Rust inhibited composition
US2623887A (en) Rust inhibiting composition