US2814517A - Coated metal tubular seal - Google Patents

Coated metal tubular seal Download PDF

Info

Publication number
US2814517A
US2814517A US610454A US61045456A US2814517A US 2814517 A US2814517 A US 2814517A US 610454 A US610454 A US 610454A US 61045456 A US61045456 A US 61045456A US 2814517 A US2814517 A US 2814517A
Authority
US
United States
Prior art keywords
tube
container
pressure
metal tube
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US610454A
Inventor
Razdow Adolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE560889D priority Critical patent/BE560889A/xx
Application filed by Individual filed Critical Individual
Priority to US610454A priority patent/US2814517A/en
Priority to CH5059957A priority patent/CH367364A/en
Priority to FR1182878D priority patent/FR1182878A/en
Application granted granted Critical
Publication of US2814517A publication Critical patent/US2814517A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/16Flanged joints characterised by the sealing means
    • F16L23/18Flanged joints characterised by the sealing means the sealing means being rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/021Sealings between relatively-stationary surfaces with elastic packing
    • F16J15/022Sealings between relatively-stationary surfaces with elastic packing characterised by structure or material
    • F16J15/024Sealings between relatively-stationary surfaces with elastic packing characterised by structure or material the packing being locally weakened in order to increase elasticity
    • F16J15/025Sealings between relatively-stationary surfaces with elastic packing characterised by structure or material the packing being locally weakened in order to increase elasticity and with at least one flexible lip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/12Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering
    • F16J15/121Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/46Sealings with packing ring expanded or pressed into place by fluid pressure, e.g. inflatable packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels

Definitions

  • the present invention relates to a seal and in particular to such seal adapted for sealing surfaces.
  • a fluid preferably a gaseous fluid, as for instance nitrogen or helium or a mixture of both said gases or any other suitable gas which remains in its gaseous state within a temperature range of 150 F. to 1200 F.
  • the thin metal tube has intimate contact with the mating surface of the container to be sealed or of the cover thereof.
  • the degree of efficient contact will depend entirely on the smoothness of the surfaces which are engaged by the thin metal tube.
  • a high polished finish on the metal surfaces will appreciably contribute to a more etfective seal, yet a special working of the tube engaging surfaces to provide a highly polished finish thereon is comparatively expensive and time consuming.
  • even polished surfaces have still very fine irregularities which are not visible with the naked eye but appear quite clearly under a microscope. Depending upon the pressure conditions within the container long term leakages cannot be avoided, even if highly polished surfaces are provided.
  • an additional object of the present invention to provide a thin metal tube which has a coating on the outer surface of the thin metal tube, which coating is designed to enter the irregularities on the more or less polished surfaces engaging the thin metal tube and due to the inner pressure present in the thin metal tube to penetrate the crevices in the surfaces engaging the thin metal tube.
  • Such coating material may comprise silicon rubber, polytetrafluoroethylene, also known as Teflon, polymers of trifluorochloroethylene, also known as Kel-F, soft metals, sponge-like metals or any other suitable material having resilient characteristics.
  • Such coating provided on the thin metal tube eliminates the otherwise necessary finishing process of the mating surfaces and results in greater economy in the production of the sealing device. Synthetic materials are not suitable where temperatures above 450 F.
  • the choice of the coating material will depend entirely upon the temperature range to which such sealed container is subjected. Any conventional means may be used for the coating step, as for instance plating, spraying, vaporizing or any other suitable process. It has been found that a metal coating stands up very well even at a temperature of up to 1200 F. without damaging or reducing the efiect of the metal seal. While it is more practical to provide the coating on the outer face of the metal tube, it is possible to provide as an equivalent those zones of the metal tube engaging surfaces with such coating layer, which expedient brings about substantially the same result.
  • Figure 1 is a section through a container equipped with a metal seal in accordance with the present invention
  • Fig. 2 is a fragmentary section through a container with another embodiment of the metal seal
  • Fig. 3 is a cross section through a metal tube of circular configuration
  • Fig. 4 is a cross section through a metal tube of rectangular configuration
  • Fig. 5 is a cross section through a container for closing an opening in the thin metal tube after a fluid under pressure has been supplied thereto.
  • Fig. l discloses a container 1 having a cover 2 secured thereto by means of bolts 3 extending through the flanges 4 of the container and the flanges 5 of the cover, respectively.
  • a groove 6 is provided in the cover 2, though it is to be understood that such groove may also be provided in the container, which groove is disposed at the face '7 of the cover 2 engaging the face 8 of the container 1.
  • a thin metal tube 9 which may be of circular, rectangular or any other suitable cross section is disposed in the groove 6, which metal tube 9 contains a fluid 10 and preferably a gaseous fluid, as for instance helium, nitrogen or a mixture thereof which contains preferably to nitrogen and 20% to 10% helium or also any other inert gases.
  • the fluid 10 in the thin tube 9 is subjected to a pressure which ranges preferably from 600 p. s. i. to 1500 p. s. i.
  • the metal tube 9 may be made of cold rolled steel, stainless steel, copper, Monel or any other suitable metal and has preferably a thickness of-.001 to .006 inch.
  • the tube 9 or 9' will be slightly compressed and will be pressed against the base face of the groove 6 and the face 8 of the container 1 with the entire pressure of 600 p. s. i. to 1500 p. s. i. prevailing in the tube 9 or 9.
  • the tube 9 or 9 can easily be manufactured, for in stance by an extrusion process and assumes at first a longitudinal shape, the length of which can be cut to the length required in accordance with the length of the groove in a container or a cover therefor, which tube can be shaped in accordance with the shape of such groove and the ends or the joint of the open ends of the tube can be closed either by soldering, brazing, welding or any other suitable process which will be determined by the temperature range to which the seal is to be subjected.
  • a filling opening 11 In order to supply a fluid under pressure in the tube a filling opening 11 must be provided in the tube which upon filling a fluid under pressure into the tube 9 or 9 can be closed again by brazing or any other suitable means.
  • the tube 9 or 9 receives a comparatively thin coating 12 or 12 which is provided on the tube 9 or 9'.
  • the coating may be made of silicon rubber, Teflon, Kel-F, soft metals as copper, silver, gold or a combination of these metals or any other suitable material which may be applied either in form of an alloy or by using double layers of two different metals.
  • the thickness of the coating of rubber will be preferably Within a range of .001 to .025 inch While layers of a thickness range of .0005 to .005 inch will suffice.
  • the coating can be applied by any suitable process, such as plating, spraying, electrodepositing, metal vaporizing in vacuo or the like. It has been found of particular advantage to use a spongy type of coating 12 or 12 on the tube 9 or 9, because this type of coating is particularly capable to enter the crevices appearing on the surfaces engaging the tube and a completely perfect seal even under highest pressure in the container to be sealed has been encountered. The same result may be obtained by providing a coating 12 on the faces engaging the outer face of the metal tube, merely by covering a critical zone of the face 8 of the container, and/or on the opposite base face of the groove 6.
  • a fluid under the required pressure of 600 p. s. i. to 1500 p. s. i. in the tube can be obtained by feeding a small amount of liquid gas at a comparatively low temperature and sealing off the filling opening 11 or by feeding chemicals in their solid state which when heated at once will assume the gaseous state under the pressure required in the tube.
  • a container 13 is provided which is equipped with a feeding tube 14 and which has also a manometer 15 in operative connection with the container 13. Gas to be filled in the tube 9 is fed into the container 13 under the required pressure of 600 p. s. i. to 1500 p.
  • s. i. .and tube 9 is disposed in the container 13 which receives the gas present in the container 13 through the filling opening 11. While the gas pressure is maintained in the container 13 the filling opening 11 is then closed by brazing or any other suitable means by the use of an electric heating coil 16 and upon permitting the cooling of the brazed filling opening 11 which brought about a closing thereof, the pressure in the container is released and the tube 9 removed therefrom which can then be inserted into the groove provided in a container to be sealed.
  • endless tube 9 and 9' is described above as a metal tube and the seal as a metal seal, it is to be understood that any other suitable material may be used for the tube and theseal, respectively.
  • a gasket for sealing a container comprising a completely enclosed pressurized metal member having a wall thickness of no more than .006 inch and having a coating of soft material adapted to engage a surface of said container to be sealed.
  • gasket as set forth in claim 1, in which said coating comprises a material selected from the group consisting of silicon rubber, polytetrafluoroethylene, polymers of trifiuorochloroethylene and soft metals.

Description

. FIG. I. 2
I i H FIG. 4.
Nov. 26, 1957 NNNNNNNNNNNN.
ATTORNEY.
United States COATED METAL TUBULAR SEAL Adolph Razdow, Montclair, N. .1. Application September 18, 1956, Serial No. 610,454
3 Claims. (Cl. 288-) The present invention relates to a seal and in particular to such seal adapted for sealing surfaces.
Several different means have been proposed before for the sealing of surfaces, for instance for sealing of a container, and among the known expedients gaskets have been used in many instances which are placed between two mating parts of the container. Other known expedients are rubber O-rings which are placed in specially designed grooves provided in one of the mating surfaces. The use of rubber O-rings is limited, however, because of the restricted temperature range in view of the known rubber characteristics. Rubber becomes brittle at temperatures below -50 F. and is subjected to chemical changes above a temperature of 350 F. Furthermore, rubber O-rings cannot be used at a very high pressure in view of their limited mechanical strength. A further limitation in the use of rubber O-rings for sealing of containers is due to the fact that many chemicals which are stored in the containers attack the rubber O-rings.
It is, therefore, one object of the present invention to provide a seal which avoids all drawbacks experienced in connection with gaskets and with rubber O-rings.
It is another object of the present invention to provide a seal which comprises a comparatively thin metal tube which is filled with a fluid, preferably a gaseous fluid, as for instance nitrogen or helium or a mixture of both said gases or any other suitable gas which remains in its gaseous state within a temperature range of 150 F. to 1200 F., said gas being in the thin metal tube contained under pressure which may have a range from 600 p. s. i. to 1500 p. s. i., preferably however, 1000 p. s. i. pressure, in order to assure resilient characteristics of the thin metal tube.
In order to bring about a satisfactory and efficient seal, it is required that the thin metal tube has intimate contact with the mating surface of the container to be sealed or of the cover thereof. It is a known fact that the degree of efficient contact will depend entirely on the smoothness of the surfaces which are engaged by the thin metal tube. Thus, a high polished finish on the metal surfaces will appreciably contribute to a more etfective seal, yet a special working of the tube engaging surfaces to provide a highly polished finish thereon is comparatively expensive and time consuming. It is also a known fact that even polished surfaces have still very fine irregularities which are not visible with the naked eye but appear quite clearly under a microscope. Depending upon the pressure conditions within the container long term leakages cannot be avoided, even if highly polished surfaces are provided.
It is, therefore, an additional object of the present invention to provide a thin metal tube which has a coating on the outer surface of the thin metal tube, which coating is designed to enter the irregularities on the more or less polished surfaces engaging the thin metal tube and due to the inner pressure present in the thin metal tube to penetrate the crevices in the surfaces engaging the thin metal tube. Such coating material may comprise silicon rubber, polytetrafluoroethylene, also known as Teflon, polymers of trifluorochloroethylene, also known as Kel-F, soft metals, sponge-like metals or any other suitable material having resilient characteristics. Such coating provided on the thin metal tube eliminates the otherwise necessary finishing process of the mating surfaces and results in greater economy in the production of the sealing device. Synthetic materials are not suitable where temperatures above 450 F. are involved. For temperatures of a higher range soft or sponge-like metals will be more appropriate. Thus the choice of the coating material will depend entirely upon the temperature range to which such sealed container is subjected. Any conventional means may be used for the coating step, as for instance plating, spraying, vaporizing or any other suitable process. It has been found that a metal coating stands up very well even at a temperature of up to 1200 F. without damaging or reducing the efiect of the metal seal. While it is more practical to provide the coating on the outer face of the metal tube, it is possible to provide as an equivalent those zones of the metal tube engaging surfaces with such coating layer, which expedient brings about substantially the same result.
It is still another object of the present invention to provide a process for sealing a thin metal tube which contains a fluid under pressure by providing an opening in the thin metal tube and inserting said tube into a container, feeding gas under pressure to the pressure desired in the tube in the container and closing the opening in the thin metal tube by electrical heating means, thereby closing said opening while equal pressure prevails inside and outside of the thin metal tube, then releasing the pressure in the container and removing the thin metal tube therefrom.
With these and other objects in view which will become apparent in the following detailed description, the present invention will be clearly understood in connection with the accompanying drawing, in which:
Figure 1 is a section through a container equipped with a metal seal in accordance with the present invention;
Fig. 2 is a fragmentary section through a container with another embodiment of the metal seal;
Fig. 3 is a cross section through a metal tube of circular configuration;
Fig. 4 is a cross section through a metal tube of rectangular configuration; and
Fig. 5 is a cross section through a container for closing an opening in the thin metal tube after a fluid under pressure has been supplied thereto.
Referring now to the drawing, Fig. l discloses a container 1 having a cover 2 secured thereto by means of bolts 3 extending through the flanges 4 of the container and the flanges 5 of the cover, respectively. A groove 6 is provided in the cover 2, though it is to be understood that such groove may also be provided in the container, which groove is disposed at the face '7 of the cover 2 engaging the face 8 of the container 1. A thin metal tube 9 which may be of circular, rectangular or any other suitable cross section is disposed in the groove 6, which metal tube 9 contains a fluid 10 and preferably a gaseous fluid, as for instance helium, nitrogen or a mixture thereof which contains preferably to nitrogen and 20% to 10% helium or also any other inert gases. The fluid 10 in the thin tube 9 is subjected to a pressure which ranges preferably from 600 p. s. i. to 1500 p. s. i. The metal tube 9 may be made of cold rolled steel, stainless steel, copper, Monel or any other suitable metal and has preferably a thickness of-.001 to .006 inch. The diameter of the tube 9 of circular cross section, shown in Fig. 2, or the outer distance of the opposite sides of the tube 9 of rectangular cross section, shown in Fig. 3, is slightly less than the distance between the base of the groove 6 and the opposite face 8 of the container 1, so that upon tightening the screw bolts 3 through the flanges 4 and 5 of the container 1 and the cover 2, respectively, the tube 9 or 9' will be slightly compressed and will be pressed against the base face of the groove 6 and the face 8 of the container 1 with the entire pressure of 600 p. s. i. to 1500 p. s. i. prevailing in the tube 9 or 9.
The tube 9 or 9 can easily be manufactured, for in stance by an extrusion process and assumes at first a longitudinal shape, the length of which can be cut to the length required in accordance with the length of the groove in a container or a cover therefor, which tube can be shaped in accordance with the shape of such groove and the ends or the joint of the open ends of the tube can be closed either by soldering, brazing, welding or any other suitable process which will be determined by the temperature range to which the seal is to be subjected.
While a gaseous fluid provides better operative conditions in most instances, it is to be understood that a fluid in the liquid state may also be used under proper conditions.
In order to supply a fluid under pressure in the tube a filling opening 11 must be provided in the tube which upon filling a fluid under pressure into the tube 9 or 9 can be closed again by brazing or any other suitable means.
It has been found that if the sealing tube 9 or 9 is used with unfinished engaging surfaces, a slight long term leak could not be avoided, particularly if the inner pressure of a container to be sealed is appreciably high. In order to overcome also this difiiculty and to provide a seal which stands up even under the highest pressure, the tube 9 or 9' receives a comparatively thin coating 12 or 12 which is provided on the tube 9 or 9'. The coating may be made of silicon rubber, Teflon, Kel-F, soft metals as copper, silver, gold or a combination of these metals or any other suitable material which may be applied either in form of an alloy or by using double layers of two different metals. The thickness of the coating of rubber will be preferably Within a range of .001 to .025 inch While layers of a thickness range of .0005 to .005 inch will suffice. The coating can be applied by any suitable process, such as plating, spraying, electrodepositing, metal vaporizing in vacuo or the like. It has been found of particular advantage to use a spongy type of coating 12 or 12 on the tube 9 or 9, because this type of coating is particularly capable to enter the crevices appearing on the surfaces engaging the tube and a completely perfect seal even under highest pressure in the container to be sealed has been encountered. The same result may be obtained by providing a coating 12 on the faces engaging the outer face of the metal tube, merely by covering a critical zone of the face 8 of the container, and/or on the opposite base face of the groove 6.
Several means are available to inject a fluid under the required pressure of 600 p. s. i. to 1500 p. s. i. in the tube. While any conventional means may be used to achieve this end, the pressure in the tube can be obtained by feeding a small amount of liquid gas at a comparatively low temperature and sealing off the filling opening 11 or by feeding chemicals in their solid state which when heated at once will assume the gaseous state under the pressure required in the tube. Still another method is demonstrated in Fig. 5 of the drawing in which a container 13 is provided which is equipped witha feeding tube 14 and which has also a manometer 15 in operative connection with the container 13. Gas to be filled in the tube 9 is fed into the container 13 under the required pressure of 600 p. s. i. to 1500 p. s. i. .and tube 9 is disposed in the container 13 which receives the gas present in the container 13 through the filling opening 11. While the gas pressure is maintained in the container 13 the filling opening 11 is then closed by brazing or any other suitable means by the use of an electric heating coil 16 and upon permitting the cooling of the brazed filling opening 11 which brought about a closing thereof, the pressure in the container is released and the tube 9 removed therefrom which can then be inserted into the groove provided in a container to be sealed.
While the endless tube 9 and 9' is described above as a metal tube and the seal as a metal seal, it is to be understood that any other suitable material may be used for the tube and theseal, respectively.
While I have disclosed several embodiments of the present invention, it is to be understood that these embodiments are given by example only and not in a limiting sense, the scope of the present invention being determined by the objects and the claims.
I claim:
1. A gasket for sealing a container comprising a completely enclosed pressurized metal member having a wall thickness of no more than .006 inch and having a coating of soft material adapted to engage a surface of said container to be sealed.
2. The gasket, as set forth in claim 1, in which said coating comprises a material selected from the group consisting of silicon rubber, polytetrafluoroethylene, polymers of trifiuorochloroethylene and soft metals.
3. The gasket, as set forth in claim 1, wherein said pressurized member contains a fluid which comprises a material selected from the group consisting of helium, nitrogen and a mixture of nitrogen and helium.
References Cited in the file of this patent UNITED STATES PATENTS 528,820 Stern Nov. 6, 1894 1,965,126 Kojola July 3, 1934 2,6ll,505 Winborn et a1. Sept. 23, 1952 2,638,243 Davies May 12, 1953 2,641,381 Bertrand June 9, 1953 2,726,006 Brewer et al. Dec. 6, 1955 FOREIGN PATENTS 207,855 Great Britain Dec. 4, 1923 474,238 Great Britain Oct. 27, 1937 595,332 France July 13, 1925 696,684 Great Britain Sept. 9, 1953 OTHER REFERENCES Engineering Data Metallic O-rings, May 19, 1954, published by: United Aircraft Products, Inc., Box 1035, Dayton, Ohio. Copy in 288/24 in Division 29.
US610454A 1956-09-18 1956-09-18 Coated metal tubular seal Expired - Lifetime US2814517A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BE560889D BE560889A (en) 1956-09-18
US610454A US2814517A (en) 1956-09-18 1956-09-18 Coated metal tubular seal
CH5059957A CH367364A (en) 1956-09-18 1957-09-16 Sealing device
FR1182878D FR1182878A (en) 1956-09-18 1957-09-17 Sealing packing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US836850XA 1956-09-18 1956-09-18
US1182878XA 1956-09-18 1956-09-18
US610454A US2814517A (en) 1956-09-18 1956-09-18 Coated metal tubular seal

Publications (1)

Publication Number Publication Date
US2814517A true US2814517A (en) 1957-11-26

Family

ID=29424350

Family Applications (1)

Application Number Title Priority Date Filing Date
US610454A Expired - Lifetime US2814517A (en) 1956-09-18 1956-09-18 Coated metal tubular seal

Country Status (3)

Country Link
US (1) US2814517A (en)
BE (1) BE560889A (en)
FR (1) FR1182878A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2919943A (en) * 1958-06-02 1960-01-05 United Aircraft Prod Magnetic sealing means
US3007600A (en) * 1958-01-27 1961-11-07 Thompson Ramo Wooldridge Inc Seal
US3384382A (en) * 1965-09-21 1968-05-21 Nordberg Manufacturing Co Flexible and circumferential seal for rotating shafts and the like
US3492011A (en) * 1966-08-30 1970-01-27 Armstrong Cork Co Laminated gasket construction
US3495463A (en) * 1967-09-25 1970-02-17 United States Steel Corp Fluid filtering system and fluid filter therefor
US3877675A (en) * 1974-02-13 1975-04-15 James T Shapland Seal construction and method of forming seal between two abutting surfaces
US4732553A (en) * 1987-07-06 1988-03-22 Libbey-Owens-Ford Co. Seal construction for a mold structure for encapsulating glass with a gasket
WO1989012770A1 (en) * 1988-06-16 1989-12-28 Tri-Tech Systems International Inc. O-ring seals, article of manufacture incorporating the same and methods of making and using the same
US5332239A (en) * 1993-01-22 1994-07-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High-temperature, bellows hybrid seal
US6045325A (en) * 1997-12-18 2000-04-04 United Technologies Corporation Apparatus for minimizing inlet airflow turbulence in a gas turbine engine
US6446717B1 (en) 2000-06-01 2002-09-10 Weatherford/Lamb, Inc. Core-containing sealing assembly
US20030132008A1 (en) * 2001-12-12 2003-07-17 Hirth David E. Bi-directionally boosting and internal pressure trapping packing element system
US6612372B1 (en) 2000-10-31 2003-09-02 Weatherford/Lamb, Inc. Two-stage downhole packer
US20040069502A1 (en) * 2002-10-09 2004-04-15 Luke Mike A. High expansion packer
US20040118572A1 (en) * 2002-12-23 2004-06-24 Ken Whanger Expandable sealing apparatus
US6769491B2 (en) 2002-06-07 2004-08-03 Weatherford/Lamb, Inc. Anchoring and sealing system for a downhole tool
US6834725B2 (en) 2002-12-12 2004-12-28 Weatherford/Lamb, Inc. Reinforced swelling elastomer seal element on expandable tubular
US6840325B2 (en) 2002-09-26 2005-01-11 Weatherford/Lamb, Inc. Expandable connection for use with a swelling elastomer
US20050016740A1 (en) * 2003-02-12 2005-01-27 Walter Aldaz Seal
US6988557B2 (en) 2003-05-22 2006-01-24 Weatherford/Lamb, Inc. Self sealing expandable inflatable packers
US20150013232A1 (en) * 2012-02-03 2015-01-15 Claudia Rager-Frey Barrier-free floor sill, in particular old building or renovation sill

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US528820A (en) * 1894-11-06 Emile stern
GB207855A (en) * 1922-09-04 1923-12-04 James Darroch Improvements in and connected with joints for high pressure in metals and other rigid materials
FR595332A (en) * 1924-06-10 1925-09-30 Sealing washer
US1965126A (en) * 1932-12-28 1934-07-03 Presto O Lite Company Inc Process and apparatus for filling gas containers
GB474238A (en) * 1936-04-27 1937-10-27 Percy Wills Improvements in or relating to joint-washers or gaskets
US2611505A (en) * 1948-03-26 1952-09-23 Manitowoc Shipbuilding Company Pressure tank cover construction
US2638243A (en) * 1949-04-15 1953-05-12 Parker Appliance Co Sealing means for cooperatively assembled parts of valve or comparable assemblies
US2641381A (en) * 1948-11-18 1953-06-09 Hydropress Inc Sealing means for pressure vessels
GB696684A (en) * 1950-09-08 1953-09-09 Wills Pressure Filled Joint Ri Improvements in or relating to gaskets and like joint rings
US2726006A (en) * 1949-05-26 1955-12-06 Goodyear Aireraft Corp Closure for high pressure vessels

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US528820A (en) * 1894-11-06 Emile stern
GB207855A (en) * 1922-09-04 1923-12-04 James Darroch Improvements in and connected with joints for high pressure in metals and other rigid materials
FR595332A (en) * 1924-06-10 1925-09-30 Sealing washer
US1965126A (en) * 1932-12-28 1934-07-03 Presto O Lite Company Inc Process and apparatus for filling gas containers
GB474238A (en) * 1936-04-27 1937-10-27 Percy Wills Improvements in or relating to joint-washers or gaskets
US2611505A (en) * 1948-03-26 1952-09-23 Manitowoc Shipbuilding Company Pressure tank cover construction
US2641381A (en) * 1948-11-18 1953-06-09 Hydropress Inc Sealing means for pressure vessels
US2638243A (en) * 1949-04-15 1953-05-12 Parker Appliance Co Sealing means for cooperatively assembled parts of valve or comparable assemblies
US2726006A (en) * 1949-05-26 1955-12-06 Goodyear Aireraft Corp Closure for high pressure vessels
GB696684A (en) * 1950-09-08 1953-09-09 Wills Pressure Filled Joint Ri Improvements in or relating to gaskets and like joint rings

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3007600A (en) * 1958-01-27 1961-11-07 Thompson Ramo Wooldridge Inc Seal
US2919943A (en) * 1958-06-02 1960-01-05 United Aircraft Prod Magnetic sealing means
US3384382A (en) * 1965-09-21 1968-05-21 Nordberg Manufacturing Co Flexible and circumferential seal for rotating shafts and the like
US3492011A (en) * 1966-08-30 1970-01-27 Armstrong Cork Co Laminated gasket construction
US3495463A (en) * 1967-09-25 1970-02-17 United States Steel Corp Fluid filtering system and fluid filter therefor
US3877675A (en) * 1974-02-13 1975-04-15 James T Shapland Seal construction and method of forming seal between two abutting surfaces
US4732553A (en) * 1987-07-06 1988-03-22 Libbey-Owens-Ford Co. Seal construction for a mold structure for encapsulating glass with a gasket
WO1989012770A1 (en) * 1988-06-16 1989-12-28 Tri-Tech Systems International Inc. O-ring seals, article of manufacture incorporating the same and methods of making and using the same
US5332239A (en) * 1993-01-22 1994-07-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High-temperature, bellows hybrid seal
US6045325A (en) * 1997-12-18 2000-04-04 United Technologies Corporation Apparatus for minimizing inlet airflow turbulence in a gas turbine engine
US6446717B1 (en) 2000-06-01 2002-09-10 Weatherford/Lamb, Inc. Core-containing sealing assembly
US6612372B1 (en) 2000-10-31 2003-09-02 Weatherford/Lamb, Inc. Two-stage downhole packer
US20030132008A1 (en) * 2001-12-12 2003-07-17 Hirth David E. Bi-directionally boosting and internal pressure trapping packing element system
US20050155775A1 (en) * 2001-12-12 2005-07-21 Weatherford/Lamb, Inc. Bi-directionally boosting and internal pressure trapping packing element system
US7172029B2 (en) 2001-12-12 2007-02-06 Weatherford/Lamb, Inc. Bi-directionally boosting and internal pressure trapping packing element system
US6902008B2 (en) 2001-12-12 2005-06-07 Weatherford/Lamb, Inc. Bi-directionally boosting and internal pressure trapping packing element system
US6769491B2 (en) 2002-06-07 2004-08-03 Weatherford/Lamb, Inc. Anchoring and sealing system for a downhole tool
US6840325B2 (en) 2002-09-26 2005-01-11 Weatherford/Lamb, Inc. Expandable connection for use with a swelling elastomer
US20040069502A1 (en) * 2002-10-09 2004-04-15 Luke Mike A. High expansion packer
US6827150B2 (en) 2002-10-09 2004-12-07 Weatherford/Lamb, Inc. High expansion packer
US6834725B2 (en) 2002-12-12 2004-12-28 Weatherford/Lamb, Inc. Reinforced swelling elastomer seal element on expandable tubular
US20040118572A1 (en) * 2002-12-23 2004-06-24 Ken Whanger Expandable sealing apparatus
US6907937B2 (en) 2002-12-23 2005-06-21 Weatherford/Lamb, Inc. Expandable sealing apparatus
US20050269108A1 (en) * 2002-12-23 2005-12-08 Weatherford/Lamb, Inc. Expandable sealing apparatus
US7070001B2 (en) 2002-12-23 2006-07-04 Weatherford/Lamb, Inc. Expandable sealing apparatus
US20050016740A1 (en) * 2003-02-12 2005-01-27 Walter Aldaz Seal
US7357189B2 (en) 2003-02-12 2008-04-15 Weatherford/Lamb, Inc. Seal
US6988557B2 (en) 2003-05-22 2006-01-24 Weatherford/Lamb, Inc. Self sealing expandable inflatable packers
US20150013232A1 (en) * 2012-02-03 2015-01-15 Claudia Rager-Frey Barrier-free floor sill, in particular old building or renovation sill

Also Published As

Publication number Publication date
BE560889A (en)
FR1182878A (en) 1959-06-30

Similar Documents

Publication Publication Date Title
US2814517A (en) Coated metal tubular seal
US4361335A (en) Annular gasket for static sealing for very high temperatures and small pressure drops, and method of making
US5226683A (en) Reusable metallic seal using memory metal
US3820799A (en) Resilient metal gasket
US3207644A (en) Method of making a fluorocarbon resin jacketed gasket
US2641381A (en) Sealing means for pressure vessels
US2850798A (en) Method of bonding zirconium
US5405176A (en) High pressure mechanical seal
US3077638A (en) Method for producing a sealing gasket
US3186743A (en) Glass-to-metal tube coupling having indium seal means
US4395049A (en) Metallic sealing device for a high-vacuum closure
US3369568A (en) Side seam seal for metal containers
US3630533A (en) Dynamic seal for cryogenic fluids
US2308183A (en) Packless valve
US699592A (en) Process of rendering joints of sheet-metal vessels hermetically tight.
US1478108A (en) Packing gasket
US4407441A (en) Method of welding an aluminium object to a stainless steel object
US4869422A (en) Subassembly for use in manufacturing a clad steel plate
US1917175A (en) Metal joint washer or gasket
US3080648A (en) Silver soldering apparatus and method
GB2079204A (en) Methods of Securing a Tube in the Bore of a Wall
US3087232A (en) Method of manufacturing valve seat
Brymner et al. Demountable vacuum seal for operation at temperatures from-188 C to 800 C
US4599278A (en) Pairing of materials for highly stressed machine parts
GB2299149A (en) Stem seal