US2902270A - Method of and means in heating of subsurface fuel-containing deposits "in situ" - Google Patents

Method of and means in heating of subsurface fuel-containing deposits "in situ" Download PDF

Info

Publication number
US2902270A
US2902270A US377952A US37795253A US2902270A US 2902270 A US2902270 A US 2902270A US 377952 A US377952 A US 377952A US 37795253 A US37795253 A US 37795253A US 2902270 A US2902270 A US 2902270A
Authority
US
United States
Prior art keywords
tube
heating
flue gases
zone
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US377952A
Inventor
Salomonsson Gosta Joha Wilhelm
Persson Bengt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Svenska Skifferolje AB
Husky Oil Co
Original Assignee
Svenska Skifferolje AB
Husky Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Svenska Skifferolje AB, Husky Oil Co filed Critical Svenska Skifferolje AB
Application granted granted Critical
Publication of US2902270A publication Critical patent/US2902270A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/02Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using burners

Definitions

  • This invention relates to a method and means in the exploitation of geological deposits for the recovery of fluid or/ and gaseous products by heating of said deposits in situ, i.e. in place in the earth.
  • this invention relates to a method and means in the exploitation of sub-surface fuel-carrying deposits for the recovery of valuable fluid or/ and gaseous products by direct heating of said deposits in situ, i.e. in their natural location.
  • Deposits adapted to be exploited in this manner are, for example, shale formations, tar-sand and sulphur deposits.
  • the heating in situ is performed to a large extent, at least as far as it is applied to shale formations, by means of electric heating members driven down and introduced into the formation to be exploited.
  • One object of the present invention is to provide a method and means permitting directly to use said gas as fuel in the heating operation. In this way it is possible to avoid part of the losses and additional costs inherent to the circuitous way over a steam-operated power plant using the recovered gas as fuel for boilers.
  • a further object of the invention is to provide a method ensuring uniform distribution of temperature along the tubular heating member in spite of the presence of one flame only.
  • Still a further object of the invention is to provide various means adapted to influence the distribution of temperature along the tubular heating member and in particular in the vicinity of the single flame.
  • Fig. 1 is a longitudinal section through a heating member embodying the invention.
  • Fig. 2 is a section on line IIII of Fig. 1.
  • Fig. 3 is a longitudinal section through a modified heating member embodying the invention.
  • Fig. 4 is a longitudinal section through a further modi- "ice ' tubes denoted by 10, 12 and 14, respectively.
  • the innermost tube 10 is by means of a stufling box 11 connected to one end of the intermediate tube 12, said intermediate tube in turn by means of a stufling box 13 being connected to one end of the outermost tube 14.
  • Said external tube 14 is at its end remote from the stuffing box 13 provided with a bottom 15. Spaced apart from said bottom 15 is the free end of the intermediate tube 12 located inside the external tube 14.
  • the corresponding free end of the internal tube 10 is under operation located substantially further spaced from the bottom 15 than is the free end of the intermediate tube 12.
  • the internal tube 10 is, however of equal length as the other tubes, due to which fact the major part of said tube 10 normally projects outside the external and intermediate tubes 14 and 12, respectively, which implies that it is on the opposite side of the stuffing box 11 seen from the bottom 15.
  • This arrangement renders possible on certain occasions, for instance when igniting the member, to displace the internal tube 10 within the stufling box 11 so as to approach its mouth to the bottom 15.
  • the intermediate tube 12 is also displaceable within the stufling box 13 relative the external tube 14.
  • the external tube 10 is sealed by means of a lock 16 and adjacent thereto provided with a connecting tube 17.
  • Similar connecting tubes 18 and 19, respectively, are attached to the intermediate tube 12 and the exterior tube 14 adjacent the corresponding stutfing boxes 11 and 13, respectively.
  • the fuel to be burned is supplied through the connecting tube 17 into the internal tube 10, the required air of combustion being allowed to enter the interspace between the internal tube 10 and the intermediate tube 12.
  • Upon ignition a flame will develop at the free end of the internal tube 10.
  • the hot flue gases formed will flow in the intermediate tube 12 in the direction towards the bottom 15.
  • On their arrival there they are forced to turn and are then allowed in the opposite direction to enter the interspace between the external tube 14- and the intermediate tube 12 and to escape through the connecting tube 19.
  • the flue gases transmit part of their heat content to the surrounding tube walls.
  • the intermediate tube 12 is concerned the temperature transmitted is highest around the flame and decreases uniformly along the longitudinal extension of the tube towards the bottom 15.
  • the result will be that the total quantity of heat transmitted within a pre-determined unit of time y q h-ra qn and qnve iqn qm the me be 14 will be approximately the same for each length unit at he e e nal tube 14. be w n its b o n s PO tion located sti'aight opposite the flame.
  • Another possibility of exerting an equalizing effect on the distribution of temperature along the external tube consists in varying the velocity of flow of the flue gases and thereby also the delivery of heat from them by varying the area of passage open to said gases. Byincreasing the velocity of the flue gases the k-value will be improved, but due to the shortened time of stay the delivery of heat will nevertheless be reduced.
  • a means for providing variations of the area of passage is presented in Fig. 4 showing the intermediate tube 12 provided with an external bulbous tube piece 22, which may be displaceable on the tube 12.
  • the gaseous fuel may entirely or partly be replaced by liquid or finally divided solid fuel.
  • the combustion air may entirely or partly be replaced by oxygen or an oxygen-containing gaseous mixture.
  • a method of heating which comprises maintaining flame-developed combustion at a central combustion zone, conducting the hot flue gases in a flow passage leading away from said combustion zone, reversing the flow of said flue gases, and conducting said reversed flow of flue gases in a zone surrounding said flow passage and said combustion zone in counter current to the direction of flow of the flue gases from said combustion zone, the flow passage and the zone surrounding said flow passage being mechanically separate but in heat conducting relation with each other, and the zone surrounding said flow passage being sealed against exit of gases therefrom to material undergoing heating, thereby combining the effects of radiation and convection from both the flame and the flue gases to give an elongatedheating zone of substantially uniform temperature.
  • a method of heating sub-surface deposits in situ for recovery of valuable products in fluid condition by introducing into the deposit, tubular members disposed substantially concentrically one within another, of which members, the outermost is sealed at its lower end, one tubular member enclosed by and adjacent to said outer most tubular member having an outlet located above said sealed end in which a flame-developing combustion of a mixture containing fuel and a combustion-sustaining medium is effected, in a combustion zone, characterized in that the flue gases from the combustion zone formed within the innermost tubular member in spaced relationship to the upper end thereof are caused to flow in a downward direction and thereafter back in opposite direction inside the annular space between two outer tubular members and in heat conductive connection with the downwardly directed flow of flue gases from the innermost tubular member whereby the combined effect of convection and radiation from the flue gases and said flame produces a desired equal distribution of the heat and thereby substantially uniform temperature of the outermost tubular member in the longitudinal direction thereof.
  • a heatingdevice for heating sub-surface deposits characterized by three substantially concentric tubes of which the outermost is sealed at is base, the intermediate tube opening into the first-mentioned tube in spaced relationship above the sealed base of said first-mentioned tube, the innermost tube opening into the intermediate tube at a still higher level above said sealed base, said two inner tubes being connected with an inlet each for supply of fuel and combustion sustaining medium, respectively, and theannular space between said intermediate and said first-mentioned tube having an escape opening for the fuel gases produced in the combustion zone located within the intermediate tube below the opening of the innermosttube.
  • a device wherein are proi 1 1- Pr ect o ev ce aga ns ra iation, and, insulating 5 layers disposed around the flame and path of the flue 2,497,868 gases and around the combustion zone.
  • 2,506,853 2,732,195 References Cited in the file of this patent UNITED STATES PATENTS 5 1,170,266 Huff Feb. 1, 1916 155,732 1,449,420 Kreager et a1 Mar. 27, 1923 537,657 1,724,783 Smallwood et a1 Aug. 13, 1929 123,137

Description

Sept. 1 1959 Filed Sept. 1. 1953 G. J. w. SALOMONSSON ETAL METHOD OF AND MEANS. INHEATING OF SUB-SURFACE FUEL-CONTAINING DEPOSITS "IN SITU" 2 Sheets-Sheet 1 s. we 7 17 a s L iIK- Ma 4 AT'TORNYEY Sept. 1, 1959 G.-J. w. sALoMoNssoN ET AL 2,
METHOD OF AND MEANS IN HEATING 0F SUB-SURFACE FUELCONTAINING DEPOSITS "IN SITU" Filed Sept. 1. 1953 2 Sheets-Sheet 2 ..III. 1 1:11:11 fhrnnnllinllrllvlnii r/"is INVENTORS I cbs'rA; -J.W. SALOMONSSON BENGT PERSSON ATTORNEY United States Patent METHOD OF AND MEANS IN HEATING OF SUB- SURFACE FUEL-CONTAINING DEPOSITS 1N SITU Giista Johan Wilhelm Salomonsson, Hallabrottet, and Bengt Persson, Knmla, Sweden, assignors, by direct and mesne assignments, of one-half to Svenska Skifferolje Aktiebolaget, Orebro, Sweden, a Swedish jointstock company, and one-half to Husky Oil Company, Cody, Wyo., a corporation of Delaware Application September 1, 1953, Serial No. 377,952
Claims priority, application Sweden July 17, 1953 16 Claims. (Cl. 262-3) This invention relates to a method and means in the exploitation of geological deposits for the recovery of fluid or/ and gaseous products by heating of said deposits in situ, i.e. in place in the earth.
More particularly this invention relates to a method and means in the exploitation of sub-surface fuel-carrying deposits for the recovery of valuable fluid or/ and gaseous products by direct heating of said deposits in situ, i.e. in their natural location. Deposits adapted to be exploited in this manner are, for example, shale formations, tar-sand and sulphur deposits.
The heating in situ is performed to a large extent, at least as far as it is applied to shale formations, by means of electric heating members driven down and introduced into the formation to be exploited.
In the exploitation of fuel-carrying deposits by heating in situ considerable quantities of combustible gas are obtained. One object of the present invention is to provide a method and means permitting directly to use said gas as fuel in the heating operation. In this way it is possible to avoid part of the losses and additional costs inherent to the circuitous way over a steam-operated power plant using the recovered gas as fuel for boilers.
When using a convenient gas burner in a long tubular heating member which for various reasons has proved to be the most suitable equipment for the direct heating of sub-surface deposits, there will be caused a very ununiform distribution of temperature over the heating member with a distinct top of the heating curve around the flame proper. In order to avoid this drawback it has been proposed to dispose a plurality of flames on various levels within the long tubular heating member. The realization of this proposal is, however, greatly obstructed by difficulties in obtaining for each of the individual flames the most suitable proportion between the quantities of supplied fuel and oxygen.
A further object of the invention is to provide a method ensuring uniform distribution of temperature along the tubular heating member in spite of the presence of one flame only.
Still a further object of the invention is to provide various means adapted to influence the distribution of temperature along the tubular heating member and in particular in the vicinity of the single flame.
Further objects and advantages will be apparent from the following description considered in connection with the accompanying drawings which form part of this specification and of which:
Fig. 1 is a longitudinal section through a heating member embodying the invention.
Fig. 2 is a section on line IIII of Fig. 1.
Fig. 3 is a longitudinal section through a modified heating member embodying the invention.
Fig. 4 is a longitudinal section through a further modi- "ice ' tubes denoted by 10, 12 and 14, respectively. The innermost tube 10 is by means of a stufling box 11 connected to one end of the intermediate tube 12, said intermediate tube in turn by means of a stufling box 13 being connected to one end of the outermost tube 14. Said external tube 14 is at its end remote from the stuffing box 13 provided with a bottom 15. Spaced apart from said bottom 15 is the free end of the intermediate tube 12 located inside the external tube 14. The corresponding free end of the internal tube 10 is under operation located substantially further spaced from the bottom 15 than is the free end of the intermediate tube 12. The internal tube 10 is, however of equal length as the other tubes, due to which fact the major part of said tube 10 normally projects outside the external and intermediate tubes 14 and 12, respectively, which implies that it is on the opposite side of the stuffing box 11 seen from the bottom 15. This arrangement renders possible on certain occasions, for instance when igniting the member, to displace the internal tube 10 within the stufling box 11 so as to approach its mouth to the bottom 15. The intermediate tube 12 is also displaceable within the stufling box 13 relative the external tube 14. At its end remote from the bottom 15 the external tube 10 is sealed by means of a lock 16 and adjacent thereto provided with a connecting tube 17. Similar connecting tubes 18 and 19, respectively, are attached to the intermediate tube 12 and the exterior tube 14 adjacent the corresponding stutfing boxes 11 and 13, respectively. In order to obtain requisite guidance of the three concentric tubes 10, 12 and 14 relative to one another, short pieces 20 of rod iron are inserted in the interspaces between said tubes. As will be seen from Fig. 2, these pieces 20 of rod iron are displaced relative to one another by and secured by welding to the interior face of those two tubes which form the interspace.
The fuel to be burned is supplied through the connecting tube 17 into the internal tube 10, the required air of combustion being allowed to enter the interspace between the internal tube 10 and the intermediate tube 12. Upon ignition a flame will develop at the free end of the internal tube 10. The hot flue gases formed will flow in the intermediate tube 12 in the direction towards the bottom 15. On their arrival there they are forced to turn and are then allowed in the opposite direction to enter the interspace between the external tube 14- and the intermediate tube 12 and to escape through the connecting tube 19. During their path from the flame to the bottom 15 and back to the outer interspace the flue gases transmit part of their heat content to the surrounding tube walls. As far as the intermediate tube 12 is concerned the temperature transmitted is highest around the flame and decreases uniformly along the longitudinal extension of the tube towards the bottom 15. Upon the turn and further flow in the opposite direction of the flue gases their temperature continues to fall. The heat delivered thereunder from the flue gases to the wall of the external tube 14 will thus be greatest adjacent the bottom 15 and then decrease in the direction towards the connecting tube 19. This effect is totally or at least partly counteracted by the external tube 14 also receiving an additional supply of heat from the intermediate tube 12 by radiation from this latter. As the temperature of the intermediate tube 12 is the high est and consequently the heat radiation therefrom has its aximum round t fl m n de e e a d bottom 15, the result will be that the total quantity of heat transmitted within a pre-determined unit of time y q h-ra qn and qnve iqn qm the me be 14 will be approximately the same for each length unit at he e e nal tube 14. be w n its b o n s PO tion located sti'aight opposite the flame. As far as that part of the external tube is concerned, which is located bfilWeen the flame and the connecting tube 19, the heat supply to the tube wall is considerably lower, since any additional heat from the intermediate tube is not received. On the contrary, the entering combustion air has some cooling eflect on the escaping flue gases. In this way part of the heat inherent to the escaping flue gases will be utilized in pro-heating the combustion air.
With the construction described above a relatively uniform distribution of temperature is obtained for that part of the external tube 14, which is located between the free opening of the internal tube 10 and the bottom 15. A somewhat higher temperature is, however, prevailing nearest to the flame. Equalization of this difference in temperature may be brought about by providing the intermediate tube 12 to a suitable extent with an encasing protection 21 to radiation as is shown in Fig. 3. Another expedient is to cover either the intermediate or the external tube to a desired extent with an insulating layer 24.
Another possibility of exerting an equalizing effect on the distribution of temperature along the external tube consists in varying the velocity of flow of the flue gases and thereby also the delivery of heat from them by varying the area of passage open to said gases. Byincreasing the velocity of the flue gases the k-value will be improved, but due to the shortened time of stay the delivery of heat will nevertheless be reduced. A means for providing variations of the area of passage is presented in Fig. 4 showing the intermediate tube 12 provided with an external bulbous tube piece 22, which may be displaceable on the tube 12.
Big. finally shows a device for igniting the heating member constructed according to the invention. This ignition is performed by inserting an ignited rocket 23 into the internal tube 10, which then must be placed so as to have its mouth immediately above the bottom 15. In this way condensate is prevented from collecting in the external tube on said bottom. Such condensation would occur easily unless the parts adjacent the bottom are heated sufliciently quickly. i
The gaseous fuel may entirely or partly be replaced by liquid or finally divided solid fuel. The combustion air may entirely or partly be replaced by oxygen or an oxygen-containing gaseous mixture. V While several more or less specific embodiments of the invention have been shown, it is to be understood that this is for purpose of illustration only and that the invention is not to be limited thereby, but its scope to' be determined by the appended claims.
What we claim is:
1. A method of heating which comprises maintaining flame-developed combustion at a central combustion zone, conducting the hot flue gases in a flow passage leading away from said combustion zone, reversing the flow of said flue gases, and conducting said reversed flow of flue gases in a zone surrounding said flow passage and said combustion zone in counter current to the direction of flow of the flue gases from said combustion zone, the flow passage and the zone surrounding said flow passage being mechanically separate but in heat conducting relation with each other, and the zone surrounding said flow passage being sealed against exit of gases therefrom to material undergoing heating, thereby combining the effects of radiation and convection from both the flame and the flue gases to give an elongatedheating zone of substantially uniform temperature. V V
2. The method of claim 1 in which the cross-sectional area for the flow passage of the escaping flue gases is varied to modify the distribution of temperature in said elongated zone.
3. The method of claim 1 in which the effect of radiation is modified by restricting radiation from any more highly heated zone.
4. The method of claim 3 in which the modification of the effect of radiation is performed around the flame t the com us i Z 5. The method of claim 3 in which the modification of the effect of radiation is performed along at least part of the path of the flue gases.
6. The method of claim 3 in which the effect of heat transmission is modified by heat insulation.
7. The method of claim 6 in which the modification of the effect of radiation is performed around the flame at the combustion zone.
8. The method of claim 6 in which the modification of the effect of radiation is performed along at least part of the path of the flue gases.
9. The method of claim 1 in which the combustion is supported by fuel supplied to the combustion zone.
10. The method of claim 1 in which sub-surface fuelcontaining deposits are heated in situ for recovery of valuable products therefrom.
11. The method of claim 10 in which gas is supplied to the. composition zone from gas formed by heating the sub-surface deposit.
12. A method of heating sub-surface deposits in situ for recovery of valuable products in fluid condition by introducing into the deposit, tubular members disposed substantially concentrically one within another, of which members, the outermost is sealed at its lower end, one tubular member enclosed by and adjacent to said outer most tubular member having an outlet located above said sealed end in which a flame-developing combustion of a mixture containing fuel and a combustion-sustaining medium is effected, in a combustion zone, characterized in that the flue gases from the combustion zone formed within the innermost tubular member in spaced relationship to the upper end thereof are caused to flow in a downward direction and thereafter back in opposite direction inside the annular space between two outer tubular members and in heat conductive connection with the downwardly directed flow of flue gases from the innermost tubular member whereby the combined effect of convection and radiation from the flue gases and said flame produces a desired equal distribution of the heat and thereby substantially uniform temperature of the outermost tubular member in the longitudinal direction thereof.
13. A method according to claim 12, characterizedin that a portion of the gas involved by heating of the de: posit is returned to the combustion zone and used there as fuel.
14. A heatingdevice for heating sub-surface deposits, characterized by three substantially concentric tubes of which the outermost is sealed at is base, the intermediate tube opening into the first-mentioned tube in spaced relationship above the sealed base of said first-mentioned tube, the innermost tube opening into the intermediate tube at a still higher level above said sealed base, said two inner tubes being connected with an inlet each for supply of fuel and combustion sustaining medium, respectively, and theannular space between said intermediate and said first-mentioned tube having an escape opening for the fuel gases produced in the combustion zone located within the intermediate tube below the opening of the innermosttube.
15. A device according toclaim 14 wherein the several tubes are axially displaceable relatively to one another.
16. A device according to claim 14 wherein are proi 1 1- Pr ect o ev ce aga ns ra iation, and, insulating 5 layers disposed around the flame and path of the flue 2,497,868 gases and around the combustion zone. 2,506,853 2,732,195 References Cited in the file of this patent UNITED STATES PATENTS 5 1,170,266 Huff Feb. 1, 1916 155,732 1,449,420 Kreager et a1 Mar. 27, 1923 537,657 1,724,783 Smallwood et a1 Aug. 13, 1929 123,137
6 Dalin Feb. 21, 1950 Berge et a1. May 9, 1950 Ljlmgstrom Jan. 24, 1956 FOREIGN PATENTS Great Britain Dec. 30, 1920 Great Britain July 1, 1941 Sweden Nov. 9, 1948

Claims (1)

1. A METHOD OF HEATING WHICH COMPRISES MAINTAINING FLAME-DEVELOPED COMBUSTION AT A CENTRAL COMBUSTION ZONE, CONDUCTING THE HOT FLUE GASES IN A FLOW PASSAGE LEADING AWAY FORM SAID COMBUSTION ZONE, REVERSING THE FLOW OF SAID FLUE GASES, AND CONDUCTING SAID REVERSED FLOW OF FLUE GASES IN A ZONE SURROUNDING SAID FLOW PASSAGE AND SAID COMBUSTION ZONE SURROUNDING CURRENT OT THE DIRECTION OF FLOW OF THE FLUE GASES FROM SAID COMBUSTION ZONE, THE FLOW PASSAGE AND THE ZONE SURROUNDING SAID FLOW PASSAGE BEING MECHANICALLY SEPARATE BUT IN HEAT CONDUCTING RELATION WITH EACH OTHER, AND THE ZONE SURROUNDING SAID FLOW PASSAGE BEING SEALED AGAINST EXIT OF GASES THEREFROM TO MATERIAL UNDERGOING HEATING, THEREBY COMBINING THE IFFECTS OF RADIATION AND CONVECTION FROM BOTH THE FLAME AND THE FLUE GASES TO GIVE AN ELONGATED HEATING ZONE OF SUBSTANTIALLY UNIFORM TEMPERATURE.
US377952A 1953-07-17 1953-09-01 Method of and means in heating of subsurface fuel-containing deposits "in situ" Expired - Lifetime US2902270A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE2902270X 1953-07-17

Publications (1)

Publication Number Publication Date
US2902270A true US2902270A (en) 1959-09-01

Family

ID=20427740

Family Applications (1)

Application Number Title Priority Date Filing Date
US377952A Expired - Lifetime US2902270A (en) 1953-07-17 1953-09-01 Method of and means in heating of subsurface fuel-containing deposits "in situ"

Country Status (1)

Country Link
US (1) US2902270A (en)

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985240A (en) * 1959-05-21 1961-05-23 Sinclair Oil & Gas Company Bottom hole burner
US3080800A (en) * 1960-05-17 1963-03-12 Gus E Malzahn Heated asphalt rollers
US3091225A (en) * 1958-12-29 1963-05-28 Phillips Petroleum Co Initiating and controlling underground combustion
US3095031A (en) * 1959-12-09 1963-06-25 Eurenius Malte Oscar Burners for use in bore holes in the ground
US3127936A (en) * 1957-07-26 1964-04-07 Svenska Skifferolje Ab Method of in situ heating of subsurface preferably fuel containing deposits
US3162781A (en) * 1961-03-22 1964-12-22 Beckwith Sterling Magnetohydrodynamic generator
US3223081A (en) * 1963-05-24 1965-12-14 Pan American Petroleum Corp Bottom-hole catalytic heater using heat transfer liquid
US3243612A (en) * 1962-06-12 1966-03-29 Thermo Electron Eng Corp Fuel fired thermionic engines
US3254721A (en) * 1963-12-20 1966-06-07 Gulf Research Development Co Down-hole fluid fuel burner
US3272262A (en) * 1964-01-23 1966-09-13 Pan American Petroleum Corp Ignition of thick pay formations
US3746088A (en) * 1971-09-07 1973-07-17 Chevron Res Apparatus for use in wells
US4298333A (en) * 1977-09-19 1981-11-03 J. Aichelin Industrial heating installation and method of operation
US4301866A (en) * 1980-02-08 1981-11-24 Occidental Oil Shale, Inc. Method and apparatus for igniting an in situ oil shale retort
FR2507204A1 (en) * 1981-06-05 1982-12-10 Air Liquide PROCESS AND INSTALLATION FOR UNDERGROUND CARBON GASIFICATION
US4401159A (en) * 1981-05-18 1983-08-30 Flying K Equipment System, Inc. Jet engine pump and downhole heater
US4401099A (en) * 1980-07-11 1983-08-30 W.B. Combustion, Inc. Single-ended recuperative radiant tube assembly and method
US4502535A (en) * 1981-05-18 1985-03-05 Kofahl William M Jet engine pump and downhole heater
US4640352A (en) * 1983-03-21 1987-02-03 Shell Oil Company In-situ steam drive oil recovery process
US4725223A (en) * 1986-09-22 1988-02-16 Maxon Corporation Incinerator burner assembly
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US5082055A (en) * 1990-01-24 1992-01-21 Indugas, Inc. Gas fired radiant tube heater
US5224542A (en) * 1990-01-24 1993-07-06 Indugas, Inc. Gas fired radiant tube heater
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5297626A (en) * 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5392854A (en) * 1992-06-12 1995-02-28 Shell Oil Company Oil recovery process
US5404952A (en) * 1993-12-20 1995-04-11 Shell Oil Company Heat injection process and apparatus
US5411089A (en) * 1993-12-20 1995-05-02 Shell Oil Company Heat injection process
US5433271A (en) * 1993-12-20 1995-07-18 Shell Oil Company Heat injection process
US5997214A (en) * 1997-06-05 1999-12-07 Shell Oil Company Remediation method
US6056057A (en) * 1996-10-15 2000-05-02 Shell Oil Company Heater well method and apparatus
US6102622A (en) * 1997-05-07 2000-08-15 Board Of Regents Of The University Of Texas System Remediation method
US20020003988A1 (en) * 1997-05-20 2002-01-10 Thomas Mikus Remediation method
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20040126190A1 (en) * 2001-10-24 2004-07-01 Stegemeier George L Thermally enhanced soil decontamination method
US20040228690A1 (en) * 2003-05-15 2004-11-18 Stegemeier George L. Soil remediation using heated vapors
US20040228689A1 (en) * 2003-05-15 2004-11-18 Stegemeier George L. Soil remediation with heated soil
US20050051327A1 (en) * 2003-04-24 2005-03-10 Vinegar Harold J. Thermal processes for subsurface formations
US20050269093A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Variable frequency temperature limited heaters
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US20060210936A1 (en) * 2005-03-10 2006-09-21 Peter Veenstra Multi-tube heat transfer system for the combustion of a fuel and heating of a process fluid and the use thereof
US20060210468A1 (en) * 2005-03-10 2006-09-21 Peter Veenstra Heat transfer system for the combustion of a fuel and heating of a process fluid and a process that uses same
US20060222578A1 (en) * 2005-03-10 2006-10-05 Peter Veenstra Method of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20070045267A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Subsurface connection methods for subsurface heaters
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US20080038144A1 (en) * 2006-04-21 2008-02-14 Maziasz Phillip J High strength alloys
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US20090053660A1 (en) * 2007-07-20 2009-02-26 Thomas Mikus Flameless combustion heater
US20090056696A1 (en) * 2007-07-20 2009-03-05 Abdul Wahid Munshi Flameless combustion heater
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US20090260824A1 (en) * 2008-04-18 2009-10-22 David Booth Burns Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090277969A1 (en) * 2006-09-18 2009-11-12 Briselden Thomas D Radiant Heat Transfer System
US20100089584A1 (en) * 2008-10-13 2010-04-15 David Booth Burns Double insulated heaters for treating subsurface formations
US20100258309A1 (en) * 2009-04-10 2010-10-14 Oluropo Rufus Ayodele Heater assisted fluid treatment of a subsurface formation
US20130020080A1 (en) * 2011-07-20 2013-01-24 Stewart Albert E Method for in situ extraction of hydrocarbon materials
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8967260B2 (en) 2009-07-02 2015-03-03 Exxonmobil Upstream Research Company System and method for enhancing the production of hydrocarbons
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US10201042B1 (en) 2018-01-19 2019-02-05 Trs Group, Inc. Flexible helical heater
US10675664B2 (en) 2018-01-19 2020-06-09 Trs Group, Inc. PFAS remediation method and system
US11642709B1 (en) 2021-03-04 2023-05-09 Trs Group, Inc. Optimized flux ERH electrode

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1170266A (en) * 1915-12-27 1916-02-01 Louise Guidry Moss Apparatus for operating sulfur-wells.
GB155732A (en) * 1920-03-20 1920-12-30 Daniel Diver Improved heating means for use in the destructive distillation of oil-bearing materia l in situ
US1449420A (en) * 1921-05-13 1923-03-27 William A J Kreager Apparatus for clearing oil wells of clogging material
US1724783A (en) * 1925-04-29 1929-08-13 Smallwood Alfred Furnace
GB537657A (en) * 1939-12-27 1941-07-01 Gibbons Brothers Ltd Improvements relating to heating elements or radiants for furnaces
US2497868A (en) * 1946-10-10 1950-02-21 Dalin David Underground exploitation of fuel deposits
US2506853A (en) * 1945-05-30 1950-05-09 Union Oil Co Oil well furnace
US2732195A (en) * 1956-01-24 Ljungstrom

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732195A (en) * 1956-01-24 Ljungstrom
US1170266A (en) * 1915-12-27 1916-02-01 Louise Guidry Moss Apparatus for operating sulfur-wells.
GB155732A (en) * 1920-03-20 1920-12-30 Daniel Diver Improved heating means for use in the destructive distillation of oil-bearing materia l in situ
US1449420A (en) * 1921-05-13 1923-03-27 William A J Kreager Apparatus for clearing oil wells of clogging material
US1724783A (en) * 1925-04-29 1929-08-13 Smallwood Alfred Furnace
GB537657A (en) * 1939-12-27 1941-07-01 Gibbons Brothers Ltd Improvements relating to heating elements or radiants for furnaces
US2506853A (en) * 1945-05-30 1950-05-09 Union Oil Co Oil well furnace
US2497868A (en) * 1946-10-10 1950-02-21 Dalin David Underground exploitation of fuel deposits

Cited By (473)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127936A (en) * 1957-07-26 1964-04-07 Svenska Skifferolje Ab Method of in situ heating of subsurface preferably fuel containing deposits
US3091225A (en) * 1958-12-29 1963-05-28 Phillips Petroleum Co Initiating and controlling underground combustion
US2985240A (en) * 1959-05-21 1961-05-23 Sinclair Oil & Gas Company Bottom hole burner
US3095031A (en) * 1959-12-09 1963-06-25 Eurenius Malte Oscar Burners for use in bore holes in the ground
US3080800A (en) * 1960-05-17 1963-03-12 Gus E Malzahn Heated asphalt rollers
US3162781A (en) * 1961-03-22 1964-12-22 Beckwith Sterling Magnetohydrodynamic generator
US3243612A (en) * 1962-06-12 1966-03-29 Thermo Electron Eng Corp Fuel fired thermionic engines
US3223081A (en) * 1963-05-24 1965-12-14 Pan American Petroleum Corp Bottom-hole catalytic heater using heat transfer liquid
US3254721A (en) * 1963-12-20 1966-06-07 Gulf Research Development Co Down-hole fluid fuel burner
US3272262A (en) * 1964-01-23 1966-09-13 Pan American Petroleum Corp Ignition of thick pay formations
US3746088A (en) * 1971-09-07 1973-07-17 Chevron Res Apparatus for use in wells
US4298333A (en) * 1977-09-19 1981-11-03 J. Aichelin Industrial heating installation and method of operation
US4301866A (en) * 1980-02-08 1981-11-24 Occidental Oil Shale, Inc. Method and apparatus for igniting an in situ oil shale retort
US4401099A (en) * 1980-07-11 1983-08-30 W.B. Combustion, Inc. Single-ended recuperative radiant tube assembly and method
US4401159A (en) * 1981-05-18 1983-08-30 Flying K Equipment System, Inc. Jet engine pump and downhole heater
US4502535A (en) * 1981-05-18 1985-03-05 Kofahl William M Jet engine pump and downhole heater
EP0067079A1 (en) * 1981-06-05 1982-12-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the underground gasification of coal
FR2507204A1 (en) * 1981-06-05 1982-12-10 Air Liquide PROCESS AND INSTALLATION FOR UNDERGROUND CARBON GASIFICATION
US4479540A (en) * 1981-06-05 1984-10-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gasification of coal
US4640352A (en) * 1983-03-21 1987-02-03 Shell Oil Company In-situ steam drive oil recovery process
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4725223A (en) * 1986-09-22 1988-02-16 Maxon Corporation Incinerator burner assembly
US5082055A (en) * 1990-01-24 1992-01-21 Indugas, Inc. Gas fired radiant tube heater
US5224542A (en) * 1990-01-24 1993-07-06 Indugas, Inc. Gas fired radiant tube heater
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5297626A (en) * 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5392854A (en) * 1992-06-12 1995-02-28 Shell Oil Company Oil recovery process
USRE35696E (en) * 1992-06-12 1997-12-23 Shell Oil Company Heat injection process
US5404952A (en) * 1993-12-20 1995-04-11 Shell Oil Company Heat injection process and apparatus
US5411089A (en) * 1993-12-20 1995-05-02 Shell Oil Company Heat injection process
US5433271A (en) * 1993-12-20 1995-07-18 Shell Oil Company Heat injection process
US6056057A (en) * 1996-10-15 2000-05-02 Shell Oil Company Heater well method and apparatus
US6102622A (en) * 1997-05-07 2000-08-15 Board Of Regents Of The University Of Texas System Remediation method
US20020003988A1 (en) * 1997-05-20 2002-01-10 Thomas Mikus Remediation method
US5997214A (en) * 1997-06-05 1999-12-07 Shell Oil Company Remediation method
US6966372B2 (en) 2000-04-24 2005-11-22 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20090101346A1 (en) * 2000-04-24 2009-04-23 Shell Oil Company, Inc. In situ recovery from a hydrocarbon containing formation
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7096941B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US7086468B2 (en) 2000-04-24 2006-08-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7036583B2 (en) 2000-04-24 2006-05-02 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7017661B2 (en) 2000-04-24 2006-03-28 Shell Oil Company Production of synthesis gas from a coal formation
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6997255B2 (en) 2000-04-24 2006-02-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591907B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a coal formation with a selected vitrinite reflectance
US6591906B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6994161B2 (en) 2000-04-24 2006-02-07 Kevin Albert Maher In situ thermal processing of a coal formation with a selected moisture content
US6994168B2 (en) 2000-04-24 2006-02-07 Scott Lee Wellington In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994160B2 (en) 2000-04-24 2006-02-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6991031B2 (en) 2000-04-24 2006-01-31 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6973967B2 (en) 2000-04-24 2005-12-13 Shell Oil Company Situ thermal processing of a coal formation using pressure and/or temperature control
US20110088904A1 (en) * 2000-04-24 2011-04-21 De Rouffignac Eric Pierre In situ recovery from a hydrocarbon containing formation
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6820688B2 (en) 2000-04-24 2004-11-23 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6959761B2 (en) 2000-04-24 2005-11-01 Shell Oil Company In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6607033B2 (en) 2000-04-24 2003-08-19 Shell Oil Company In Situ thermal processing of a coal formation to produce a condensate
US6953087B2 (en) 2000-04-24 2005-10-11 Shell Oil Company Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6609570B2 (en) 2000-04-24 2003-08-26 Shell Oil Company In situ thermal processing of a coal formation and ammonia production
US6948563B2 (en) 2000-04-24 2005-09-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6923258B2 (en) 2000-04-24 2005-08-02 Shell Oil Company In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6913078B2 (en) 2000-04-24 2005-07-05 Shell Oil Company In Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6910536B2 (en) 2000-04-24 2005-06-28 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6902003B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US6902004B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6896053B2 (en) 2000-04-24 2005-05-24 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6889769B2 (en) 2000-04-24 2005-05-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6688387B1 (en) 2000-04-24 2004-02-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6880635B2 (en) 2000-04-24 2005-04-19 Shell Oil Company In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US6702016B2 (en) 2000-04-24 2004-03-09 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758B2 (en) 2000-04-24 2004-03-23 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
US6712137B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6712136B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715547B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047B2 (en) 2000-04-24 2004-04-13 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of hydrocarbons within a relatively permeable formation
US6725921B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
US6725920B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725928B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
US6729395B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732795B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6732794B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6736215B2 (en) 2000-04-24 2004-05-18 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393B2 (en) 2000-04-24 2004-05-25 Shell Oil Company In situ thermal processing of a coal formation and tuning production
US6739394B2 (en) 2000-04-24 2004-05-25 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
US6742588B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742593B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6742587B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742589B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6745831B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832B2 (en) 2000-04-24 2004-06-08 Shell Oil Company Situ thermal processing of a hydrocarbon containing formation to control product composition
US6745837B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021B2 (en) 2000-04-24 2004-06-15 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
US6752210B2 (en) 2000-04-24 2004-06-22 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6877554B2 (en) 2000-04-24 2005-04-12 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US6758268B2 (en) 2000-04-24 2004-07-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216B2 (en) 2000-04-24 2004-07-13 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886B2 (en) 2000-04-24 2004-07-20 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
US6769485B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
US6769483B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6789625B2 (en) 2000-04-24 2004-09-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195B2 (en) 2000-04-24 2004-10-19 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6871707B2 (en) 2000-04-24 2005-03-29 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6866097B2 (en) 2000-04-24 2005-03-15 Shell Oil Company In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US20030141066A1 (en) * 2001-04-24 2003-07-31 Karanikas John Michael In situ thermal processing of an oil shale formation while inhibiting coking
US6991033B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing while controlling pressure in an oil shale formation
US7225866B2 (en) 2001-04-24 2007-06-05 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20040211557A1 (en) * 2001-04-24 2004-10-28 Cole Anthony Thomas Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20040211554A1 (en) * 2001-04-24 2004-10-28 Vinegar Harold J. Heat sources with conductive material for in situ thermal processing of an oil shale formation
US6877555B2 (en) 2001-04-24 2005-04-12 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US6880633B2 (en) 2001-04-24 2005-04-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030098605A1 (en) * 2001-04-24 2003-05-29 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation
US20030102126A1 (en) * 2001-04-24 2003-06-05 Sumnu-Dindoruk Meliha Deniz In situ thermal recovery from a relatively permeable formation with controlled production rate
US7096942B1 (en) 2001-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
US20030102130A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation with quality control
US20030173078A1 (en) * 2001-04-24 2003-09-18 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a condensate
US7066254B2 (en) 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
US6915850B2 (en) 2001-04-24 2005-07-12 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
US6918443B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US7055600B2 (en) 2001-04-24 2006-06-06 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
US6923257B2 (en) 2001-04-24 2005-08-02 Shell Oil Company In situ thermal processing of an oil shale formation to produce a condensate
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
US7051807B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal recovery from a relatively permeable formation with quality control
US6948562B2 (en) 2001-04-24 2005-09-27 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
US20030164239A1 (en) * 2001-04-24 2003-09-04 Wellington Scott Lee In situ thermal processing of an oil shale formation in a reducing environment
US6951247B2 (en) 2001-04-24 2005-10-04 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
US7051811B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030146002A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. Removable heat sources for in situ thermal processing of an oil shale formation
US6964300B2 (en) 2001-04-24 2005-11-15 Shell Oil Company In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US20030148894A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. In situ thermal processing of an oil shale formation using a natural distributed combustor
US6966374B2 (en) 2001-04-24 2005-11-22 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US7040398B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively permeable formation in a reducing environment
US20030141068A1 (en) * 2001-04-24 2003-07-31 Pierre De Rouffignac Eric In situ thermal processing through an open wellbore in an oil shale formation
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
US7040399B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of an oil shale formation using a controlled heating rate
US20030142964A1 (en) * 2001-04-24 2003-07-31 Wellington Scott Lee In situ thermal processing of an oil shale formation using a controlled heating rate
US20030102125A1 (en) * 2001-04-24 2003-06-05 Wellington Scott Lee In situ thermal processing of a relatively permeable formation in a reducing environment
US7032660B2 (en) * 2001-04-24 2006-04-25 Shell Oil Company In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030102124A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal processing of a blending agent from a relatively permeable formation
US7013972B2 (en) 2001-04-24 2006-03-21 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
US20030111223A1 (en) * 2001-04-24 2003-06-19 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation using horizontal heat sources
US20030141067A1 (en) * 2001-04-24 2003-07-31 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation to increase permeability of the formation
US20030136559A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing while controlling pressure in an oil shale formation
US6981548B2 (en) 2001-04-24 2006-01-03 Shell Oil Company In situ thermal recovery from a relatively permeable formation
US20100270015A1 (en) * 2001-04-24 2010-10-28 Shell Oil Company In situ thermal processing of an oil shale formation
US6991032B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US7004251B2 (en) 2001-04-24 2006-02-28 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
US6991036B2 (en) 2001-04-24 2006-01-31 Shell Oil Company Thermal processing of a relatively permeable formation
US20030136558A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a desired product
US7004247B2 (en) 2001-04-24 2006-02-28 Shell Oil Company Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20030131993A1 (en) * 2001-04-24 2003-07-17 Etuan Zhang In situ thermal processing of an oil shale formation with a selected property
US20030131996A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing of an oil shale formation having permeable and impermeable sections
US20030131995A1 (en) * 2001-04-24 2003-07-17 De Rouffignac Eric Pierre In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US6994169B2 (en) 2001-04-24 2006-02-07 Shell Oil Company In situ thermal processing of an oil shale formation with a selected property
US20030116315A1 (en) * 2001-04-24 2003-06-26 Wellington Scott Lee In situ thermal processing of a relatively permeable formation
US6997518B2 (en) 2001-04-24 2006-02-14 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US20070209799A1 (en) * 2001-10-24 2007-09-13 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7461691B2 (en) 2001-10-24 2008-12-09 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20040126190A1 (en) * 2001-10-24 2004-07-01 Stegemeier George L Thermally enhanced soil decontamination method
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7156176B2 (en) 2001-10-24 2007-01-02 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
US7128153B2 (en) 2001-10-24 2006-10-31 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
US7114566B2 (en) 2001-10-24 2006-10-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US6951436B2 (en) 2001-10-24 2005-10-04 Board Of Regents, The University Of Texas System Thermally enhanced soil decontamination method
US6932155B2 (en) 2001-10-24 2005-08-23 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US7051808B1 (en) 2001-10-24 2006-05-30 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US7063145B2 (en) 2001-10-24 2006-06-20 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066257B2 (en) 2001-10-24 2006-06-27 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
US20030196801A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US20040040715A1 (en) * 2001-10-24 2004-03-04 Wellington Scott Lee In situ production of a blending agent from a hydrocarbon containing formation
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US7077198B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
US7086465B2 (en) 2001-10-24 2006-08-08 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
US20050092483A1 (en) * 2001-10-24 2005-05-05 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6991045B2 (en) 2001-10-24 2006-01-31 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20030201098A1 (en) * 2001-10-24 2003-10-30 Karanikas John Michael In situ recovery from a hydrocarbon containing formation using one or more simulations
US20030205378A1 (en) * 2001-10-24 2003-11-06 Wellington Scott Lee In situ recovery from lean and rich zones in a hydrocarbon containing formation
US7100994B2 (en) 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US7219734B2 (en) 2002-10-24 2007-05-22 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7121341B2 (en) 2002-10-24 2006-10-17 Shell Oil Company Conductor-in-conduit temperature limited heaters
US7640980B2 (en) 2003-04-24 2010-01-05 Shell Oil Company Thermal processes for subsurface formations
US7121342B2 (en) * 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7360588B2 (en) 2003-04-24 2008-04-22 Shell Oil Company Thermal processes for subsurface formations
US20050051327A1 (en) * 2003-04-24 2005-03-10 Vinegar Harold J. Thermal processes for subsurface formations
US7534926B2 (en) 2003-05-15 2009-05-19 Board Of Regents, The University Of Texas System Soil remediation using heated vapors
US20040228689A1 (en) * 2003-05-15 2004-11-18 Stegemeier George L. Soil remediation with heated soil
US7004678B2 (en) 2003-05-15 2006-02-28 Board Of Regents, The University Of Texas System Soil remediation with heated soil
US20040228690A1 (en) * 2003-05-15 2004-11-18 Stegemeier George L. Soil remediation using heated vapors
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US20050269092A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Vacuum pumping of conductor-in-conduit heaters
US20050269090A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20050269088A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Inhibiting effects of sloughing in wellbores
US20060005968A1 (en) * 2004-04-23 2006-01-12 Vinegar Harold J Temperature limited heaters with relatively constant current
US20050269077A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Start-up of temperature limited heaters using direct current (DC)
US20050269313A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with high power factors
US20050269095A1 (en) * 2004-04-23 2005-12-08 Fairbanks Michael D Inhibiting reflux in a heated well of an in situ conversion system
US20050269094A1 (en) * 2004-04-23 2005-12-08 Harris Christopher K Triaxial temperature limited heater
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US20050269089A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Temperature limited heaters using modulated DC power
US20050269091A1 (en) * 2004-04-23 2005-12-08 Guillermo Pastor-Sanz Reducing viscosity of oil for production from a hydrocarbon containing formation
US20050269093A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Variable frequency temperature limited heaters
US20060289536A1 (en) * 2004-04-23 2006-12-28 Vinegar Harold J Subsurface electrical heaters using nitride insulation
US7510000B2 (en) 2004-04-23 2009-03-31 Shell Oil Company Reducing viscosity of oil for production from a hydrocarbon containing formation
US7490665B2 (en) 2004-04-23 2009-02-17 Shell Oil Company Variable frequency temperature limited heaters
US7481274B2 (en) 2004-04-23 2009-01-27 Shell Oil Company Temperature limited heaters with relatively constant current
US7431076B2 (en) 2004-04-23 2008-10-07 Shell Oil Company Temperature limited heaters using modulated DC power
US7424915B2 (en) 2004-04-23 2008-09-16 Shell Oil Company Vacuum pumping of conductor-in-conduit heaters
US7383877B2 (en) 2004-04-23 2008-06-10 Shell Oil Company Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7353872B2 (en) 2004-04-23 2008-04-08 Shell Oil Company Start-up of temperature limited heaters using direct current (DC)
US7357180B2 (en) 2004-04-23 2008-04-15 Shell Oil Company Inhibiting effects of sloughing in wellbores
US7370704B2 (en) 2004-04-23 2008-05-13 Shell Oil Company Triaxial temperature limited heater
US8016589B2 (en) 2005-03-10 2011-09-13 Shell Oil Company Method of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid
US20060222578A1 (en) * 2005-03-10 2006-10-05 Peter Veenstra Method of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid
US7651331B2 (en) * 2005-03-10 2010-01-26 Shell Oil Company Multi-tube heat transfer system for the combustion of a fuel and heating of a process fluid and the use thereof
US7704070B2 (en) 2005-03-10 2010-04-27 Shell Oil Company Heat transfer system for the combustion of a fuel heating of a process fluid and a process that uses same
US20060210468A1 (en) * 2005-03-10 2006-09-21 Peter Veenstra Heat transfer system for the combustion of a fuel and heating of a process fluid and a process that uses same
US20060210936A1 (en) * 2005-03-10 2006-09-21 Peter Veenstra Multi-tube heat transfer system for the combustion of a fuel and heating of a process fluid and the use thereof
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US7527094B2 (en) 2005-04-22 2009-05-05 Shell Oil Company Double barrier system for an in situ conversion process
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes
US20070133960A1 (en) * 2005-04-22 2007-06-14 Vinegar Harold J In situ conversion process systems utilizing wellbores in at least two regions of a formation
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US20070133961A1 (en) * 2005-04-22 2007-06-14 Fairbanks Michael D Methods and systems for producing fluid from an in situ conversion process
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US20080217321A1 (en) * 2005-04-22 2008-09-11 Vinegar Harold J Temperature limited heater utilizing non-ferromagnetic conductor
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US7831133B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7575053B2 (en) 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US20070144732A1 (en) * 2005-04-22 2007-06-28 Kim Dong S Low temperature barriers for use with in situ processes
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US20070045268A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Varying properties along lengths of temperature limited heaters
US20070045267A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Subsurface connection methods for subsurface heaters
US20070119098A1 (en) * 2005-04-22 2007-05-31 Zaida Diaz Treatment of gas from an in situ conversion process
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US7500528B2 (en) 2005-04-22 2009-03-10 Shell Oil Company Low temperature barrier wellbores formed using water flushing
US7575052B2 (en) 2005-04-22 2009-08-18 Shell Oil Company In situ conversion process utilizing a closed loop heating system
US20070108200A1 (en) * 2005-04-22 2007-05-17 Mckinzie Billy J Ii Low temperature barrier wellbores formed using water flushing
US20070137856A1 (en) * 2005-04-22 2007-06-21 Mckinzie Billy J Double barrier system for an in situ conversion process
US7591310B2 (en) 2005-10-24 2009-09-22 Shell Oil Company Methods of hydrotreating a liquid stream to remove clogging compounds
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US20070221377A1 (en) * 2005-10-24 2007-09-27 Vinegar Harold J Solution mining systems and methods for treating hydrocarbon containing formations
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US7581589B2 (en) 2005-10-24 2009-09-01 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20110168394A1 (en) * 2005-10-24 2011-07-14 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20080107577A1 (en) * 2005-10-24 2008-05-08 Vinegar Harold J Varying heating in dawsonite zones in hydrocarbon containing formations
US20070125533A1 (en) * 2005-10-24 2007-06-07 Minderhoud Johannes K Methods of hydrotreating a liquid stream to remove clogging compounds
US20070131420A1 (en) * 2005-10-24 2007-06-14 Weijian Mo Methods of cracking a crude product to produce additional crude products
US20070131419A1 (en) * 2005-10-24 2007-06-14 Maria Roes Augustinus W Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789B2 (en) 2005-10-24 2009-09-08 Shell Oil Company Methods of cracking a crude product to produce additional crude products
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US20070131427A1 (en) * 2005-10-24 2007-06-14 Ruijian Li Systems and methods for producing hydrocarbons from tar sands formations
US20070127897A1 (en) * 2005-10-24 2007-06-07 John Randy C Subsurface heaters with low sulfidation rates
US20090301724A1 (en) * 2005-10-24 2009-12-10 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7549470B2 (en) 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7556096B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Varying heating in dawsonite zones in hydrocarbon containing formations
US7559367B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Temperature limited heater with a conduit substantially electrically isolated from the formation
US7559368B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
US7635025B2 (en) 2005-10-24 2009-12-22 Shell Oil Company Cogeneration systems and processes for treating hydrocarbon containing formations
US7562706B2 (en) 2005-10-24 2009-07-21 Shell Oil Company Systems and methods for producing hydrocarbons from tar sands formations
US20100272595A1 (en) * 2006-04-21 2010-10-28 Shell Oil Company High strength alloys
US20080035705A1 (en) * 2006-04-21 2008-02-14 Menotti James L Welding shield for coupling heaters
US20080035346A1 (en) * 2006-04-21 2008-02-14 Vijay Nair Methods of producing transportation fuel
US7597147B2 (en) 2006-04-21 2009-10-06 Shell Oil Company Temperature limited heaters using phase transformation of ferromagnetic material
US7635023B2 (en) 2006-04-21 2009-12-22 Shell Oil Company Time sequenced heating of multiple layers in a hydrocarbon containing formation
US7631689B2 (en) 2006-04-21 2009-12-15 Shell Oil Company Sulfur barrier for use with in situ processes for treating formations
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US20080038144A1 (en) * 2006-04-21 2008-02-14 Maziasz Phillip J High strength alloys
US20080035348A1 (en) * 2006-04-21 2008-02-14 Vitek John M Temperature limited heaters using phase transformation of ferromagnetic material
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7604052B2 (en) 2006-04-21 2009-10-20 Shell Oil Company Compositions produced using an in situ heat treatment process
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7610962B2 (en) 2006-04-21 2009-11-03 Shell Oil Company Sour gas injection for use with in situ heat treatment
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US20080173450A1 (en) * 2006-04-21 2008-07-24 Bernard Goldberg Time sequenced heating of multiple layers in a hydrocarbon containing formation
US20080173444A1 (en) * 2006-04-21 2008-07-24 Francis Marion Stone Alternate energy source usage for in situ heat treatment processes
US20080174115A1 (en) * 2006-04-21 2008-07-24 Gene Richard Lambirth Power systems utilizing the heat of produced formation fluid
US20080173449A1 (en) * 2006-04-21 2008-07-24 Thomas David Fowler Sour gas injection for use with in situ heat treatment
US20080173442A1 (en) * 2006-04-21 2008-07-24 Vinegar Harold J Sulfur barrier for use with in situ processes for treating formations
US20090277969A1 (en) * 2006-09-18 2009-11-12 Briselden Thomas D Radiant Heat Transfer System
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US20080185147A1 (en) * 2006-10-20 2008-08-07 Vinegar Harold J Wax barrier for use with in situ processes for treating formations
US7635024B2 (en) 2006-10-20 2009-12-22 Shell Oil Company Heating tar sands formations to visbreaking temperatures
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US20080135254A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J In situ heat treatment process utilizing a closed loop heating system
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US20080135253A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J Treating tar sands formations with karsted zones
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US20080135244A1 (en) * 2006-10-20 2008-06-12 David Scott Miller Heating hydrocarbon containing formations in a line drive staged process
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US20080142216A1 (en) * 2006-10-20 2008-06-19 Vinegar Harold J Treating tar sands formations with dolomite
US20080142217A1 (en) * 2006-10-20 2008-06-19 Roelof Pieterson Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US20090014181A1 (en) * 2006-10-20 2009-01-15 Vinegar Harold J Creating and maintaining a gas cap in tar sands formations
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US20080217015A1 (en) * 2006-10-20 2008-09-11 Vinegar Harold J Heating hydrocarbon containing formations in a spiral startup staged sequence
US7562707B2 (en) 2006-10-20 2009-07-21 Shell Oil Company Heating hydrocarbon containing formations in a line drive staged process
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US20080217004A1 (en) * 2006-10-20 2008-09-11 De Rouffignac Eric Pierre Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US20080217003A1 (en) * 2006-10-20 2008-09-11 Myron Ira Kuhlman Gas injection to inhibit migration during an in situ heat treatment process
US20080277113A1 (en) * 2006-10-20 2008-11-13 George Leo Stegemeier Heating tar sands formations while controlling pressure
US20100276141A1 (en) * 2006-10-20 2010-11-04 Shell Oil Company Creating fluid injectivity in tar sands formations
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US20090014180A1 (en) * 2006-10-20 2009-01-15 George Leo Stegemeier Moving hydrocarbons through portions of tar sands formations with a fluid
US7631690B2 (en) 2006-10-20 2009-12-15 Shell Oil Company Heating hydrocarbon containing formations in a spiral startup staged sequence
US20090090509A1 (en) * 2007-04-20 2009-04-09 Vinegar Harold J In situ recovery from residually heated sections in a hydrocarbon containing formation
US20090095480A1 (en) * 2007-04-20 2009-04-16 Vinegar Harold J In situ heat treatment of a tar sands formation after drive process treatment
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US20090321075A1 (en) * 2007-04-20 2009-12-31 Christopher Kelvin Harris Parallel heater system for subsurface formations
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US20090084547A1 (en) * 2007-04-20 2009-04-02 Walter Farman Farmayan Downhole burner systems and methods for heating subsurface formations
US20090095479A1 (en) * 2007-04-20 2009-04-16 John Michael Karanikas Production from multiple zones of a tar sands formation
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US20090095477A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Heating systems for heating subsurface formations
US20090095476A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Molten salt as a heat transfer fluid for heating a subsurface formation
US20090095478A1 (en) * 2007-04-20 2009-04-16 John Michael Karanikas Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US20090078461A1 (en) * 2007-04-20 2009-03-26 Arthur James Mansure Drilling subsurface wellbores with cutting structures
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US20090120646A1 (en) * 2007-04-20 2009-05-14 Dong Sub Kim Electrically isolating insulated conductor heater
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US20090126929A1 (en) * 2007-04-20 2009-05-21 Vinegar Harold J Treating nahcolite containing formations and saline zones
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
JP2010534312A (en) * 2007-07-20 2010-11-04 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Flameless combustion heater
US20090053660A1 (en) * 2007-07-20 2009-02-26 Thomas Mikus Flameless combustion heater
US20090056696A1 (en) * 2007-07-20 2009-03-05 Abdul Wahid Munshi Flameless combustion heater
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US20090194333A1 (en) * 2007-10-19 2009-08-06 Macdonald Duncan Ranging methods for developing wellbores in subsurface formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US20090200031A1 (en) * 2007-10-19 2009-08-13 David Scott Miller Irregular spacing of heat sources for treating hydrocarbon containing formations
US20090194282A1 (en) * 2007-10-19 2009-08-06 Gary Lee Beer In situ oxidation of subsurface formations
US20090194269A1 (en) * 2007-10-19 2009-08-06 Vinegar Harold J Three-phase heaters with common overburden sections for heating subsurface formations
US20090194329A1 (en) * 2007-10-19 2009-08-06 Rosalvina Ramona Guimerans Methods for forming wellbores in heated formations
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US20090194524A1 (en) * 2007-10-19 2009-08-06 Dong Sub Kim Methods for forming long subsurface heaters
US20090200854A1 (en) * 2007-10-19 2009-08-13 Vinegar Harold J Solution mining and in situ treatment of nahcolite beds
US20090200025A1 (en) * 2007-10-19 2009-08-13 Jose Luis Bravo High temperature methods for forming oxidizer fuel
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US20090260824A1 (en) * 2008-04-18 2009-10-22 David Booth Burns Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090260823A1 (en) * 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090272533A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US20090272578A1 (en) * 2008-04-18 2009-11-05 Macdonald Duncan Charles Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20090272535A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Using tunnels for treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20100089586A1 (en) * 2008-10-13 2010-04-15 John Andrew Stanecki Movable heaters for treating subsurface hydrocarbon containing formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US20100089584A1 (en) * 2008-10-13 2010-04-15 David Booth Burns Double insulated heaters for treating subsurface formations
US20100096137A1 (en) * 2008-10-13 2010-04-22 Scott Vinh Nguyen Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US20100101783A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Using self-regulating nuclear reactors in treating a subsurface formation
US20100101784A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100108379A1 (en) * 2008-10-13 2010-05-06 David Alston Edbury Systems and methods of forming subsurface wellbores
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100108310A1 (en) * 2008-10-13 2010-05-06 Thomas David Fowler Offset barrier wells in subsurface formations
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US20100147522A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Systems and methods for treating a subsurface formation with electrical conductors
US20100206570A1 (en) * 2008-10-13 2010-08-19 Ernesto Rafael Fonseca Ocampos Circulated heated transfer fluid systems used to treat a subsurface formation
US20100224368A1 (en) * 2008-10-13 2010-09-09 Stanley Leroy Mason Deployment of insulated conductors for treating subsurface formations
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US20100258265A1 (en) * 2009-04-10 2010-10-14 John Michael Karanikas Recovering energy from a subsurface formation
US20100258290A1 (en) * 2009-04-10 2010-10-14 Ronald Marshall Bass Non-conducting heater casings
US20100258291A1 (en) * 2009-04-10 2010-10-14 Everett De St Remey Edward Heated liners for treating subsurface hydrocarbon containing formations
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US20100258309A1 (en) * 2009-04-10 2010-10-14 Oluropo Rufus Ayodele Heater assisted fluid treatment of a subsurface formation
US20110042084A1 (en) * 2009-04-10 2011-02-24 Robert Bos Irregular pattern treatment of a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8967260B2 (en) 2009-07-02 2015-03-03 Exxonmobil Upstream Research Company System and method for enhancing the production of hydrocarbons
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8875788B2 (en) 2010-04-09 2014-11-04 Shell Oil Company Low temperature inductive heating of subsurface formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US20130020080A1 (en) * 2011-07-20 2013-01-24 Stewart Albert E Method for in situ extraction of hydrocarbon materials
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US10201042B1 (en) 2018-01-19 2019-02-05 Trs Group, Inc. Flexible helical heater
US10675664B2 (en) 2018-01-19 2020-06-09 Trs Group, Inc. PFAS remediation method and system
US11642709B1 (en) 2021-03-04 2023-05-09 Trs Group, Inc. Optimized flux ERH electrode

Similar Documents

Publication Publication Date Title
US2902270A (en) Method of and means in heating of subsurface fuel-containing deposits "in situ"
US2890754A (en) Apparatus for recovering combustible substances from subterraneous deposits in situ
US2890755A (en) Apparatus for recovering combustible substances from subterraneous deposits in situ
US4463803A (en) Downhole vapor generator and method of operation
US3095031A (en) Burners for use in bore holes in the ground
US4442898A (en) Downhole vapor generator
CA1135182A (en) Downhole steam apparatus
US2823652A (en) Helical coil heater
US2270863A (en) Heating of fluids
US2554092A (en) Apparatus for heating a fluid by means of solid fuel
US2368265A (en) Furnace wall
US3272262A (en) Ignition of thick pay formations
US2598840A (en) Heater for hydrocarbon fluid
US3338286A (en) Heat shield for bottom hole igniter
CN104566320B (en) A kind of novel low concentration coal-bed gas or gas steam boiler
US1884741A (en) Radiant heat boiler
US2162410A (en) Floor furnace
US1892662A (en) Powdered fuel furnace
US1737173A (en) Furnace
US964902A (en) Furnace-burner.
US1488701A (en) Heating system and plant therefor
SU837998A1 (en) Device for thermal consolidation of soil
US2986139A (en) Heater for gaseous working mediums of thermal power plants
US1694376A (en) Furnace for reduction of iron
USRE21745E (en) murray