Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS2906340 A
Tipo de publicaciónConcesión
Fecha de publicación29 Sep 1959
Fecha de presentación5 Abr 1956
Fecha de prioridad5 Abr 1956
Número de publicaciónUS 2906340 A, US 2906340A, US-A-2906340, US2906340 A, US2906340A
InventoresGerhard Herzog
Cesionario originalTexaco Inc
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Method of treating a petroleum producing formation
US 2906340 A
Imágenes(1)
Previous page
Next page
Descripción  (El texto procesado por OCR puede contener errores)

G. HERZOG Sept. 29, 1959 METHOD OF TREATING A PETROLEUM PRODUCING FORMATION vFiled April 5, 1956 Tlzll.

M//M/g United States Patent Oce Patented Sept. 29, 19,512

METHOD F TREATIN G A PETROLEUM PRODUCING FORMATION Gerhard Herzog, Houston, Tex., assigner to Texac'o Inc., a corporation of Delaware Application April 5, 1956, Serial No. '576,486

7 Claims. (Cl. 16639) This invention relates to the production of petroleum from underground petroleum producing form-ations. More particularly, this invention relates to the treatment of underground petroleum producingformations.

Various techniques have been proposed for the recovery of petroleum from underground formations and for the treatment of petroleum producing formations. For the recovery of petroleum from petroleum producing formations secondary recovery operations which involve water ooding o-r thermal recovery methods, in situ combustion, involving at least one injection well and at least one production well have been proposed. Further, it has also been proposed to increase the productivity of a given well by blasting, acidizing or hydraulically fracturing the petroleum producing formation traversed by the well bore. Various other methods have also been proposed to improve the oil permeability of underground petroleum producing formations. In general, however, all these proposed methods have not always yielded the sought for results.

Many petroleum producing formations are not satisfactorily treated by acidizin-g or by hydraulic fracturing. Blasting an underground producing formation to increase its porosity and/ or permeability in the vicinity of the well bore is a relatively dangerous operation. Secondary recovery methods employing water flooding or thermal recovery methods employing in situ combustion in combination with an injection well and a production well involve at least two or more wells as well as the expenditure of co-nsiderable capital, equipment, material and time before appreciable tangible results are observable.

In accordance with the practice o-f this invention that portion of a petroleum producing formation inv the vicinity of or surrounding a well bore is treated to effect in situ combustion of a combustible material therein. Subsequently petroleum is produced via the -Well bore through that portion of the petroleum producing formation wherein in situ combustion was effected.

Explanatory of in situ combustion as employed in the practice of this invention, a high temperature zone is established in the petroleum producing formation `in vthe vicinity of the well bore by suitable heating means. -Suitable heating means may comprise an electrical heating device or a `gas red bottom hole igniter or heater;r` A suitable device for initiating in situ combustion withina bore hole is described in U.S. 2,722,278. Upon introducing a combustion-supporting or an oxygen-containing gas such as air into the petroleum producing formation vi-a the well bore a high temperature combustion orireaction zone created by the reaction between ythe oxygen and combustible residues within the formation, such-as combustible residues resulting from the distillation and/ or thermal cracking of crude oil originally in place or introduced therein, will commence to move into the formation outwardly from the well bore.

Leaving this high temperature zone is a relatively high temperature gas stream which, as it moves outwardly into the formation, losses heat to the formation. By this method the high temperature reaction zone is moved for a considerable distance, for example a distance in the range 3'-25 feet, more or less, radially outwardly from the well bore without further direct application of heat to the area immediately surrounding the Accordingly, it is an object of this invention to prol vide an improved method for the treatment of underground petroleum producing formations to enhance or otherwise improve -the recovery of petroleum therefrom.

It is another object of this invention to provide a generally applicable method for the treatment ofv underground petroleum producing formations.

I t is still another object of this invention to provide a method for increasing the oil permeability of anundergroundproducing formation in that portion of the producing formation surrounding a well bore.

f Still another object of this invention is vto provide a method for dissipating or removing a lwater block and for otherwise improving the petroleuminormally gaseous and/or normally liquid hydrocarbons) permeability of that portion of thepetroleum producing formation surrounding a well bore through which petroleum is produced.- Y

How these and other objects of this invention are achieved will become apparent inthe light of the accompanying disclosure and drawings wherein Fig. 1 schematically illustrates a method in accordance with the practice of this invention as applied to an underground petroleum producing formation and Fig. 2 is anexplana-` well bore. Continued direct application of heat to the area immediately surrounding the well bore may be desirable however. The distance the high temperature reaction zone moves radially outwardly and as a result the volume of the petroleum producing formation swept by or comprised within the in situ combustion zone is determined by the relative magnitude of the rate of heat generation (combustion of combustible residues) and the rate of heat loss to the surrounding formations.

It has been postulated that the following mechanisms are important in the movement of the high temperature reaction zone radially outwardly from a well bore into the petroleum producing formation during in situ cornbustion. Although 4the exact mechanism of in situr'combustion is not definitely known, the following sequence of events in an underground in situ combustion operation are postulated and are presented hereinv for the purpose of enabling one skilled in the art'to better lunder'- stand this invention and are not to be construed as limiting this invention in any way.

As the high temperature reaction zone approaches any.` given volume of the petroleum producing formation the temperature of this volume of formation rises. This results in first a reduction in the viscosity ofthe formation liquids due to their temperature increase. These liquids may then be moved more readily under the influence of the gas stream continuously emanating from the high temperature reaction zone. As the temperature continues to rise, distillations of the formation liquids begins. The

. products of these distillations condense in cooler regions of the formation removed from the high temperature reaction zone. The distillations continue as 'the 'tern-l perature continues to rise until the heavier componentsv remaining from the crude toil originally in place within the formation or introduced thereinto prior 'to effecting in situ'combustion begin to crack yielding hydrocarbon gases, hydrogen and :the like'and coke-'or similar solid'l carbonaceous residues. As the tempearture continues to rise and the oxygen content of the incoming gas vincreases due to depletion ofrvcombustibleresidues ,in preceding.

regions of the formation, a point will be reached at which the coke or other combustible residue will begin to react with oxygen with the resulting release of heat to the formation and the gas stream. This heat is carried away by the on-moving gas stream and also to some extent by conduction to adjoining regions of the formation. When the coke or combustible residue has been burned away there remains a volume of liquid-free formation which, unless otherwise treated, is gradually cooled by the relatively cool combustion supporting gas entering the formation via the well bore.

From the above considerations it is obvious that the rate of heat energy released within the formation should be some function of the quantity of the fuel present therein, which is dependent upon the type and quantity of crude originally in place and/ or combustible material or fuel caused to be deposited therein, and that the rate of release should also be dependent upon the rate at which oxygen is supplied to the combustion zone. The rate at which heat can be transferred ahead of the high temperature reaction or combustion zone should be dependent on the rate at which combustion gas leaves the reaction zone and should be to some extent dependent upon conduction through the formation itself. Accordingly, some control of the in situ combustion process can be exercised by controlling the composition, such as oxygen content, of the injected combustion supporting oxygencontaining gas.

The physical characteristics and properties of the formation swept by the high temperature reaction or combustion zone and other portions of the formation otherwise influenced by the high temperature gas stream emanating from the reaction zone will probably be favorably altered with respect to oil permeability. That portion of the petroleum producing formation swept by the high temperature combustion zone will exhibit improved porosity and/or permeability values with respect to the production of petroleum therethrough. It is believed that the high temperature developed within the reaction zone will cause clays subjected thereto to lose water and otherwise become dehydrated with resulting volume shrinkage. It is also believed that some thermal fracturing of the formation swept or otherwise influenced by the high temperature reaction zone will also be accomplished, e.g., by sheer expansion of the formation along formation discontinuities and the like, leading to fractures and fissures and increasing the porosity of the formation in the portion swept by in situ combustion. Further, it is believed that the high temperatures generated at the high temperature reaction zone in the range 70D-2500a F., usually in the range 800-1500 F., will eventually effect calcination or thermal decomposition of many of the minerals, such as limestone or dolomite, present within the formation exposed to these high temperatures, with the resultant production of gaseous or water-soluble decomposition products. Accordingly, when the formation is again produced through that portion swept by the high temperature reaction zone the resulting gaseous and/or water-soluble decomposition products, such as CO2 or CaO, are swept out, dissolved and otherwise removed by the return 'of liquid water accompanying the produced petroleum.

Referring now to the drawing which schematically illustrates one embodiment of the practice of this invention, there is illustrated a well bore 11 penetrating substantially impermeable formations 12 and 14 which, respectively, adjoin the upper and lower boundaries of petroleum producing formation 15. A casing 16 is positoned Within well bore 11 and is provided with perforations 17 adjacent the petroleum producing formation 15. A packer 13 is provided in the lower part of casing 16 such as at aboutA the lower portion of petroleum Vproducing formation 15.

As previously indicated, the practice of this invention is particularly applicable to the treatment of petroleum producing formations which evidence a substantially reduced oil permeability in the vicinity of the well bore through which the formation is produced. The reduced oil permeability of the formation in a zone surrounding the well bore may be caused by the deposition of detritus or solid hydrocarbonaceous material (paraffin) within the interstices of the formation surrounding the well bore. Particularly adaptable for treatment in accordance with the practice of this invention is a petroleum producing formation which evidences or has experienced a water block in the vicinity of the producing well bore. This water block or zone of reduced oil permeability may have been brought about, after the well has `been shut in, by the dumping of a water column back into the producing formation. In which event a producing formation in the zone immediately adjacent or surrounding the well bore will contain a substantial amount of water or will be substantially saturated therewith, and will evidence a low oil permeability.

In accordance with one practice of this invention, especially if the amount of petroleum originally in place in the zone immediately surrounding the well bore within the petroleum producing formation, is insuicient to support in situ combustion therein, there is introduced into the formation via production casing 16 and perforations 17 an amount of a combustible fluid, preferably a liquid, such as a crude oil or fraction thereof, which when subjected to a relatively elevated temperature or upon thermal cracking tends to deposit a solid combustible carbonaceous residue, such as asphalt or coke and the like. The amount of liquid thus introduced into the petroleum producing formation usually is equivalent to at least about the pore volume of that portion of the petroleum producing formation undergoing treatment extending for a distance in the range l-Sfeet, more or less, radially outwardly from well bore 11. The limit of that zone of the petroleum producing formation surrounding the well bore and into which the combustible liquid is injected or otherwise occupied by a combustible liquid such as crude oil originally in place or injected thereinto is indicated by dashed line 18.

After a suitable amount of combustible liquid is present within zone 18 of petroleum producing formation 16 the liquid is ignited in situ in the region immediately adjacent the well bore 11 by suitable means, such as by radiant heating and/or by the injection of a high temperature oxygen-containing stream of air or by means of hot combustion gases introduced via casing 16 and perforations 17.

After in situ combustion in the area of the producing formation immediately adjacent Well bore 11 has been initiated there is introduced via casing 16 and the perforations 17 a combustion supporting stream such as an oxygen-containing stream, oxygen content in the range 1.5-20%, for example in the range 3-10% by vol., more or less, to effect continued in situ combustion of the injected combustible liquid and/or petroleum originally in place within the producing formation. The introduction of the oxygen-containing stream is continued until the in situ combustion Within the petroleum producing formation has been carried out to the desired extent. The forward limit of the in situ combustion zone or high temperature combustion zone is indicated by dashed line 19. Generally, effective results will be obtained by carrying out in situ combustion within the petroleum producing formation within that volume of the formation encompassed by about 5-50, more or less, radial feet from well bore 11.

After a sufficient volume of producing formation 15 has been swept by in situ combustion the supply of oxygencontaining gas is stopped and production from the thustreated producing formation can be resumed. At first, it is postulated, as the liquid-produced petroleum and accompanying Water invades the zone of in situ combustion the water and the more volatile constituents of the protending to thermally decompose the thus-produced petro' leum leading to the deposition of carbonaceous, preferentially oil-wettable materials or otherwise coat the interstices Yof the formation with preferentially oil-wettable carbonaceous material. This deposition of solid carbonaceous, preferentially oil-wettable material will tend to.

enhance or otherwise improve the oil permeability of the formation surrounding the well bore.

In accordance with one feature of this invention, in order to further enhance the permeability and/ or porosity of the producing formation in the vicinity ofthe well bore after termination of the in situ combustion, there is introduced linto the zone wherein in situ combustion was carried out a relatively cool liquid stream, such as a LPG fraction, a liquid naphtha fraction or a relatively refrac tory gas oil or high boilingV petroleum fractionor crude so as to subject the hot portions Yof the zone swept by in situ combustion to thermal shock, leading to thermal fracturing.

AIn accordance with still another feature of this invention, particularly in the case of a formation wherein prior to treatment by in situ combustion the area immediately surrounding the well 'bore is water blocked, the water block is dissipated from the immediate vicinity of the well bore by injection of a gas such as natural gas, ethane, methane, propane, butane, or a liquid hydrocarbon such as naphtha,v kerosene, gas oil or lube oil fraction, or a hydrocarbon fraction containing finely divided solid combustible material (carbon black) dispersed therein, preferably a hydrocarbon fraction containing dissolved or dispersed therein a surface active agent eifective to reduce the interfacial tension between water and oil, so as to substantially reduce the Water saturation, eg. to a value below about 50% of the pore volume in that portion of the formation immediately surrounding the .well bore. Then there is injected into the formation vvia the well bore the desired combustible material or combustible petroleum fraction to provide the desired fuel for effecting subsequent in situ combustion within that portion of the producing formation.

Any suitable combustible fluid may be employed in the practice of this invention such as a liquid petroleum fraction, e.g. a heavy asphaltic fuel oil or residium orcrude oil previously produced from the formation undergoing treatment. Desirably the injected combustible liquid is an .asphaltic hydrocarbon fraction or one which tends' to deposit a solid carbonaceous material or coke when subjected to thermal cracking or an elevated temperature of about 1000 F., more or less.

As already indicated, the rate and extent of in situ combustion can be altered or controlled by adjusting the oxygen content of the combustible gases being supplied to the in situ combustion zone. Although air is satisfactory, it may be desirable to employ a combustion supporting gas having an oxygen content substantially greater than or substantially less than 20% by Volume, for example, a combustion supporting gas having an oxygen content in the range l-%, such as in the range 1.5- 5% by volume. A suitable combustion supporting gas having the desired oxygen content may be obtained from the exhaust of an internal combustion engine or from hot combustion or ilue gases admixed with varying amounts of air or substantially pure oxygen to obtain the desired oxygen content in the resulting admixture.

In accordance with still another feature of this invention that portion of the formation swept by in situ combustion is suitably treated other than by the deposition of preferentially oil-wettable Ycarbonaceousl material therein to render the formation preferentially oilfwettable.

A vsuitable treatment to render that portion of the forma-v tion preferentially oil-wettable would be to introduce 'into the formation a halosilane such as an aryl, alkaryl or alkyl halosilane, e.g. monomethyl dichloro-monosilane, dimethyl dichloromonosilane, and the like, which readily hydro-A lyzes upon contact with water to form a hydrophobic lm Within the interstices of the formation. f f

The following is explanatory of the practice of this jinvention. Referring now to Fig. 2 of the drawing there is schematically illustrated thereinka brine-free Berea sand? stone core containing a relatively high saturation of a 20 A.P.I. crude. 13% long with a diameter of 1%6". j The core surface was sealed with several brushedcoats of a Plexiglas solution. Sections ofthe core 7zv' long were marked oiiz and, as indicated in Fig. 2, numbered consecutively start-- ing from the end where in situV `combustion was started.v

Sections I-1 yand O-Z were cut from the core for determination of original nitrogen permeability and porosity.

The results are set forth in Table I below.

A 20 A.P.I. crude was obtained from the Hogg Lease, West lColumbia Field, Texas and injected into the core. A gas permeability of 27 md. was established by applying avacuum to section O-1. Sections L2 and O-l were then removed from the core and initial loil saturations of these sections were determined, see Table l.

Thermocouples were wired to the surface ofthe core at the centers of the sections 1-10. A length of stainless steel tubing was placed over the core and the annular space between the tubing and the core was packed with magnesium oxide as an insulator. Air was drawn through the core by placing a vacuum on section 11.

Temperaturedistributions within the core approximating those expected during an in situ combustionY operation` an indication of liquid saturation present in the sectionsA after the simulated in situ combustion. Oil permeabilities were determined using a reiined white oil.` The v.o il.

permeabilities in all sections remained constant after 10 pore volumes of oil were passed through the section being tested and it is these steady-state values which are reported in Table I.

Table I Ng Relative Max. N1 Oil permeoil satn tempermeperme- Core Porosity, ability before perature ability ability section percent before comduring after after combustion, comcomcombnstion percent bustion bustion bustion (md.) F.) (md.)1 (md.)

I1 19. 3 610 I- 19.8 66 i 445 1- l, 000 670 2- 0 536 483 3- 930 568 450 4 880 570 490 780 508 430 690 492 432 520 428 430 350 332 400 9 250 264 340 10 170 165 420 11 49 380 0-1- 19. 9 75 2 466 Ow 19. 6 628 1 Demeasing values indicate increasing liquid saturation.y 2 Cores not subjected to combustion. l Crushed and lost.

The Berea sandstone core used was' If the white oil employed in the permeability test can dissolve out carbonaceous residues not soluble in the inplace crude there would be some question as to the validity of the determination of oil permeability. In order to demonstrate the validity of these tests and to further demonstrate the practicality of this invention as a remedial well treatment operation a rough determination of the coking characteristics of the West Columbia crude employed in the test indicated that 12% by weight of the crude remained as residue after heating in an open vessel at a temperature of 750 F. Core sections I-2 and O-Z whichv were not previously subjected to high temperatures were saturated with a 20 A.P.I. West Columbia crude. Core section I2 was held at 40G-450 F, for 35 minutes and core section O-Z was held at 695-740" F. for minutes. Permeability data obtained on the thus-treated core sections using both West Columbia crude and a refined white oil are listed in Table 1I.

Table II Permeability to Core section Treatment West Columbia crude (md.)

I-2 None.- 490 I-2 400-450 F. (35 min.) 510 O2 None-- 362 0-2 695-740 F. (10 min.) 470 As Table II indicates, there is no reason to believe that the use of a refined white oil rendered the results reported in Table I anomalous.

As will be apparent to those skilled in the art in the light of the foregoing disclosure, many changes, substitutions and alterations are possible without departing from the spirit and scope of this invention.

I claim:

l. A process for treating an underground petroleum producing formation penetrated by a well bore which comprises introducing via said well bore into a petroleum producing formation -a liquid petroleum oil which uponl 2. A method of treating a petroleum producing forma-l tion traversed by a well bore which comprises introducing via said Well bore into said petroleum producing formation a combustible liquid which when subjected to thermal cracking tends to deposit a solid carbonaceous material, subsequently introducing via said well bore a combustion supporting gas via said well bore into that portion of said petroleum producing formation containing said liquid, effecting combustion of said liquid within said petroleum producing formation, discontinuing the introduction of said combustion supporting gas into said formation so as to terminate the in situ combustion process therein and subsequently producing petroleum from said formation via said well bore.

3. A method in accordance with claim 2 wherein said combustible liquid comprises a liquid petroleum fraction recovered from said petroleum producing formation.

4. A method in accordance with claim 2 wherein said combustible liquid comprises an asphaltic petroleum oil.

5. A method of treating a petroleum producing formation traversed by a well bore which comprises introducing into said petroleum producing formation via said well bore a combustible liquid which, when subjected to thermal cracking, tends to deposit a solid carbonaceous maten'al such as coke, subsequently introducing via said well bore an oxygen-containing gas into that portion of said petroleum producing formation containing said liquid, effecting in situ combustion of said liquid within said lpetroleum producing formation, terminating the combustion of said liquid within said petroleum producing formation by discontinuing the introduction of said oxygen-containing gas into said petroleum producing formation, introducing a relatively cool hydrocarbon stream via said well bore into that portion of said petroleum producing formation wherein combustion of said liquid was effected and subsequently producing petroleum from said formation via said well bore.

6. A method in accordance with claim 5 wherein said combustible liquid comprises an asphaltic petroleum fraction.

7. A method in accordance with claim 5 wherein said relatively cool hydrocarbon stream comprises a hydrocarbon liquid which when subjected to thermal cracking tends to deposit a solid carbonaceous, preferentially oilwettable material within the interstices of the formation.

References Cited in the file of this patent UNITED STATES PATENTS 1,457,479 Wolcott June 5, 1923 2,642,943 Smith June 23, 1953 2,685,930 Albaugh Aug. 10, 1954 2,761,512 Bond Sept. 4, 1956 2,793,696 Morse May 28, 1957

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US1457479 *12 Ene 19205 Jun 1923Wolcott Edson RMethod of increasing the yield of oil wells
US2642943 *20 May 194923 Jun 1953Sinclair Oil & Gas CoOil recovery process
US2685930 *12 Ago 194810 Ago 1954Union Oil CoOil well production process
US2761512 *8 Nov 19544 Sep 1956Pure Oil CoCombustion and halosilane reaction treatment of a formation to increase production
US2793696 *22 Jul 195428 May 1957Pan American Petroleum CorpOil recovery by underground combustion
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3003555 *18 Sep 195610 Oct 1961Jersey Prod Res CoOil production from unconsolidated formations
US3024840 *16 Jun 195813 Mar 1962Texaco IncIn situ combustion
US3026937 *17 May 195727 Mar 1962California Research CorpMethod of controlling an underground combustion zone
US3032103 *11 Ago 19581 May 1962Phillips Petroleum CoIncreasing fluid flow thru an injection borehole
US3057403 *17 Oct 19589 Oct 1962Gulf Research Development CoIn-situ combustion process for the recovery of oil
US3080919 *16 Sep 196012 Mar 1963Texaco IncMethod for closing down an injection well during thermal recovery operations
US3104705 *8 Feb 196024 Sep 1963Jersey Prod Res CoStabilizing a formation
US3113619 *30 Mar 195910 Dic 1963Phillips Petroleum CoLine drive counterflow in situ combustion process
US3155161 *1 Nov 19603 Nov 1964Shell Oil CoMethod of fracturing a formation traversed by a well
US3163218 *14 Mar 196029 Dic 1964Jersey Prod Res CoMethod of consolidating a formation using a heater within a liner which is thereafter destroyed
US3163745 *29 Feb 196029 Dic 1964Socony Mobil Oil Co IncHeating of an earth formation penetrated by a well borehole
US3171482 *31 Jul 19612 Mar 1965California Research CorpMethod of increasing the production of petroleum from subterranean formations
US3208527 *10 Jul 196128 Sep 1965Exxon Production Research CoMethod and apparatus for controlling flow of well fluids
US3233671 *18 Dic 19628 Feb 1966Sinclair Research IncRecovery of heavy crude oils by in situ combustion
US3250329 *13 May 196310 May 1966Shell Oil CoConsolidation using free radicals
US3332482 *2 Nov 196425 Jul 1967Phillips Petroleum CoHuff and puff fire flood process
US3349847 *28 Jul 196431 Oct 1967Gulf Research Development CoProcess for recovering oil by in situ combustion
US3379254 *25 Ago 196623 Abr 1968Mobil Oil CorpMethod for initiating in situ combustion within a subterranean formation
US3457995 *3 Ene 196729 Jul 1969Phillips Petroleum CoIgniting an underground formation
US4397352 *4 May 19819 Ago 1983Mobil Oil CorporationNoncondensable hydrocarbon gas and hydrogen sulfide; recovering
US658168424 Abr 200124 Jun 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US658850324 Abr 20018 Jul 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US658850424 Abr 20018 Jul 2003Shell Oil CompanyConversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground coal formations; pyrolysis
US659190624 Abr 200115 Jul 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US659190724 Abr 200115 Jul 2003Shell Oil CompanyPyrolysis
US660703324 Abr 200119 Ago 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US660957024 Abr 200126 Ago 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US668838724 Abr 200110 Feb 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US669851524 Abr 20012 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US670201624 Abr 20019 Mar 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US670875824 Abr 200123 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US671213524 Abr 200130 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US671213624 Abr 200130 Mar 2004Shell Oil CompanyProviding heat to the formation; controlling the heat from the heat source such that an average temperature within at least a majority of the selected section of the formation is less than about 375 degrees c.
US671213724 Abr 200130 Mar 2004Shell Oil CompanyHeat exchanging to superimpose heat
US671554624 Abr 20016 Abr 2004Shell Oil CompanyChemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed
US671554724 Abr 20016 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US671554824 Abr 20016 Abr 2004Shell Oil CompanyElectrical heaters may be used to heat the subterranean formation by radiation and/or conduction
US671554924 Abr 20016 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US671904724 Abr 200113 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US672242924 Abr 200120 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US672243024 Abr 200120 Abr 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US672243124 Abr 200120 Abr 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US672592024 Abr 200127 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US672592124 Abr 200127 Abr 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US672592824 Abr 200127 Abr 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US672939524 Abr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US672939624 Abr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US672939724 Abr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US672940124 Abr 20014 May 2004Shell Oil CompanySynthesis gas may be produced from the formation. synthesis gas may be used as a feed stream in an ammonia synthesis process. ammonia may be used as a feed stream in a urea synthesis process.
US673279424 Abr 200111 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US673279524 Abr 200111 May 2004Shell Oil CompanyProviding heat from one or more heat sources to at least one portion of formation; allowing heat to transfer from the one or more heat sources to a selected section of the formation; controlling the heat; producing a mixture from the formation
US673279624 Abr 200111 May 2004Shell Oil CompanyHeating section of formation with heat sources to temperature allowing generation of synthesis gas, providing synthesis gas generating fluid to section, removing synthesis gas generated, repeating for second section, blending for desired ratio
US673621524 Abr 200118 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US673939324 Abr 200125 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US673939424 Abr 200125 May 2004Shell Oil CompanyProviding heat and a synthesis gas generating fluid to the section to generate synthesis gas
US674258724 Abr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US674258824 Abr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US674258924 Abr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US674259324 Abr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US674583124 Abr 20018 Jun 2004Shell Oil CompanyMixture of hydrocarbons, h2, and/or other formation fluids may be produced from the formation. heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature.
US674583224 Abr 20018 Jun 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US674583724 Abr 20018 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US674902124 Abr 200115 Jun 2004Shell Oil CompanyPyrolysis
US675221024 Abr 200122 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US675826824 Abr 20016 Jul 2004Shell Oil CompanyHeat exchanging, pyrolysis; monitoring temperature
US676121624 Abr 200113 Jul 2004Shell Oil CompanyPyrolysis temperature
US676388624 Abr 200120 Jul 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US676948324 Abr 20013 Ago 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US676948524 Abr 20013 Ago 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US678962524 Abr 200114 Sep 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US680519524 Abr 200119 Oct 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US682068824 Abr 200123 Nov 2004Shell Oil CompanyHeat exchanging after pyrolyzation to support synthesis gas generation
US686609724 Abr 200115 Mar 2005Shell Oil CompanySuperpositioning of heaters for pyrolysis to form mixture of hydrocarbons and hydrogen; controlling pressure; heat exchanging
US687170724 Abr 200129 Mar 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US687755424 Abr 200112 Abr 2005Shell Oil CompanyPyrolysis
US687755524 Abr 200212 Abr 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US688063324 Abr 200219 Abr 2005Shell Oil CompanyIncludes shutting-in an in situ treatment process in an oil shale formation may include terminating heating from heat sources providing heat to a portion of the formation; hydrocarbon vapor may be produced
US688063524 Abr 200119 Abr 2005Shell Oil CompanyMethods and systems for production of hydrocarbons, hydrogen, and/or other products from underground coal formations
US688976924 Abr 200110 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US689605324 Abr 200124 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US690200324 Abr 20017 Jun 2005Shell Oil CompanyAllowing heat to transfer from heaters to a formation selected for heating using a total organic matter weight percentage of > 5% and recirculating hydrogen
US690200424 Abr 20017 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US691053624 Abr 200128 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US691307824 Abr 20015 Jul 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US691585024 Abr 200212 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US691844224 Abr 200219 Jul 2005Shell Oil CompanyIn situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground oil shale formations
US691844324 Abr 200219 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US692325724 Abr 20022 Ago 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US692325812 Jun 20032 Ago 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US692906724 Abr 200216 Ago 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US693215524 Oct 200223 Ago 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US694856224 Abr 200227 Sep 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US694856324 Abr 200127 Sep 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US695124724 Abr 20024 Oct 2005Shell Oil CompanyControl the heat exchanging, pyrolyzing hydrocarbons, enhancing oil recovery
US695308724 Abr 200111 Oct 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US695976124 Abr 20011 Nov 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US696430024 Abr 200215 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US696637224 Abr 200122 Nov 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US696637424 Abr 200222 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US696912324 Oct 200229 Nov 2005Shell Oil CompanyUpgrading and mining of coal
US697396724 Abr 200113 Dic 2005Shell Oil Companyhydrocarbons within a coal formation are converted in situ within the formation to yield a mixture of relatively high quality hydrocarbon products, hydrogen, and other products; the coal is heated to to temperatures that allow pyrolysis
US698154824 Abr 20023 Ene 2006Shell Oil Companyheating and pyrolysis of heavy hydrocarbon sections in subterranean wells to produce light hydrocarbons; reduced viscosity improves movement; fluid removal in liquid and/or vapor phase
US699103124 Abr 200131 Ene 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US699103224 Abr 200231 Ene 2006Shell Oil CompanyHeat sources positioned within the formation in a selected pattern raise a temperature of a portion of the formation to a pyrolysis temperature.
US699103324 Abr 200231 Ene 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US699103624 Abr 200231 Ene 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US699104524 Oct 200231 Ene 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US699416024 Abr 20017 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US699416124 Abr 20017 Feb 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US699416824 Abr 20017 Feb 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US699416924 Abr 20027 Feb 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US699725524 Abr 200114 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US699751824 Abr 200214 Feb 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US700424724 Abr 200228 Feb 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US700425124 Abr 200228 Feb 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US701115424 Oct 200214 Mar 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US701397224 Abr 200221 Mar 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US701766124 Abr 200128 Mar 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US703266024 Abr 200225 Abr 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7036583 *24 Sep 20012 May 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US704039824 Abr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US704039924 Abr 20029 May 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US704040024 Abr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US705180724 Abr 200230 May 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US705180824 Oct 200230 May 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US705181124 Abr 200230 May 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US705560024 Abr 20026 Jun 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US706314524 Oct 200220 Jun 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US706625424 Oct 200227 Jun 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US706625724 Oct 200227 Jun 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US707357824 Oct 200311 Jul 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US707719824 Oct 200218 Jul 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US707719924 Oct 200218 Jul 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US708646524 Oct 20028 Ago 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US708646824 Abr 20018 Ago 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US709001324 Oct 200215 Ago 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US709694124 Abr 200129 Ago 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US709694224 Abr 200229 Ago 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US709695324 Abr 200129 Ago 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US710099424 Oct 20025 Sep 2006Shell Oil Companyinjecting a heated fluid into the well bore, producing a second fluid from the formation, conducting an in situ conversion process in the selected section.
US710431924 Oct 200212 Sep 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US711456624 Oct 20023 Oct 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US712134124 Oct 200317 Oct 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US712134223 Abr 200417 Oct 2006Shell Oil CompanyThermal processes for subsurface formations
US712815324 Oct 200231 Oct 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US715617624 Oct 20022 Ene 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US716561524 Oct 200223 Ene 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US721973424 Oct 200322 May 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US722586631 Ene 20065 Jun 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US732036422 Abr 200522 Ene 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US735387222 Abr 20058 Abr 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US735718022 Abr 200515 Abr 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US736058817 Oct 200622 Abr 2008Shell Oil CompanyThermal processes for subsurface formations
US737070422 Abr 200513 May 2008Shell Oil CompanyTriaxial temperature limited heater
US738387722 Abr 200510 Jun 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US742491522 Abr 200516 Sep 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US743107622 Abr 20057 Oct 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US743503721 Abr 200614 Oct 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US746169123 Ene 20079 Dic 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US748127422 Abr 200527 Ene 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US749066522 Abr 200517 Feb 2009Shell Oil CompanyVariable frequency temperature limited heaters
US750052821 Abr 200610 Mar 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US751000022 Abr 200531 Mar 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US752709421 Abr 20065 May 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US753371920 Abr 200719 May 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US754032419 Oct 20072 Jun 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US754687321 Abr 200616 Jun 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US754947020 Oct 200623 Jun 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US755609520 Oct 20067 Jul 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US755609620 Oct 20067 Jul 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US755936720 Oct 200614 Jul 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US755936820 Oct 200614 Jul 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US756270620 Oct 200621 Jul 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US756270719 Oct 200721 Jul 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US757505221 Abr 200618 Ago 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US757505321 Abr 200618 Ago 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US758158920 Oct 20061 Sep 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US758478920 Oct 20068 Sep 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US759131020 Oct 200622 Sep 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US759714720 Abr 20076 Oct 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US760405220 Abr 200720 Oct 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US761096220 Abr 20073 Nov 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US763168920 Abr 200715 Dic 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US763169019 Oct 200715 Dic 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US763502320 Abr 200722 Dic 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US763502419 Oct 200722 Dic 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US763502520 Oct 200622 Dic 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US76409807 Abr 20085 Ene 2010Shell Oil CompanyThermal processes for subsurface formations
US764476519 Oct 200712 Ene 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US767368119 Oct 20079 Mar 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US767378620 Abr 20079 Mar 2010Shell Oil CompanyWelding shield for coupling heaters
US767731019 Oct 200716 Mar 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US767731419 Oct 200716 Mar 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US768164719 Oct 200723 Mar 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US768329620 Abr 200723 Mar 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US770351319 Oct 200727 Abr 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US771717119 Oct 200718 May 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US773094519 Oct 20078 Jun 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US773094619 Oct 20078 Jun 2010Shell Oil CompanyTreating tar sands formations with dolomite
US773094719 Oct 20078 Jun 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US77359351 Jun 200715 Jun 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US778542720 Abr 200731 Ago 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US779372220 Abr 200714 Sep 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US779822018 Abr 200821 Sep 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US779822131 May 200721 Sep 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US783113321 Abr 20069 Nov 2010Shell Oil CompanyInsulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US783113421 Abr 20069 Nov 2010Shell Oil CompanyGrouped exposed metal heaters
US783248418 Abr 200816 Nov 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US784140119 Oct 200730 Nov 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US784140818 Abr 200830 Nov 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US784142518 Abr 200830 Nov 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US784541119 Oct 20077 Dic 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US784992218 Abr 200814 Dic 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US786037721 Abr 200628 Dic 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US786638520 Abr 200711 Ene 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US786638613 Oct 200811 Ene 2011Shell Oil Companyproduction of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations through use of oxidizing fluids and heat
US786638813 Oct 200811 Ene 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US791235820 Abr 200722 Mar 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US793108618 Abr 200826 Abr 2011Shell Oil CompanyHeating systems for heating subsurface formations
US794219721 Abr 200617 May 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US79422034 Ene 201017 May 2011Shell Oil CompanyThermal processes for subsurface formations
US795045318 Abr 200831 May 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US798686921 Abr 200626 Jul 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US801145113 Oct 20086 Sep 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US802757121 Abr 200627 Sep 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US804261018 Abr 200825 Oct 2011Shell Oil CompanyParallel heater system for subsurface formations
US807084021 Abr 20066 Dic 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US808381320 Abr 200727 Dic 2011Shell Oil CompanyMethods of producing transportation fuel
US811327213 Oct 200814 Feb 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US814666113 Oct 20083 Abr 2012Shell Oil CompanyCryogenic treatment of gas
US814666913 Oct 20083 Abr 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US81518809 Dic 201010 Abr 2012Shell Oil CompanyMethods of making transportation fuel
US815190710 Abr 200910 Abr 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US816205913 Oct 200824 Abr 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US816240510 Abr 200924 Abr 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US817233510 Abr 20098 May 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US817730510 Abr 200915 May 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US819163028 Abr 20105 Jun 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US819268226 Abr 20105 Jun 2012Shell Oil CompanyHigh strength alloys
US819665813 Oct 200812 Jun 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US82205399 Oct 200917 Jul 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US822416324 Oct 200317 Jul 2012Shell Oil CompanyVariable frequency temperature limited heaters
US822416424 Oct 200317 Jul 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US822416521 Abr 200617 Jul 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US822586621 Jul 201024 Jul 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US823092716 May 201131 Jul 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US823378229 Sep 201031 Jul 2012Shell Oil CompanyGrouped exposed metal heaters
US823873024 Oct 20037 Ago 2012Shell Oil CompanyHigh voltage temperature limited heaters
US824077413 Oct 200814 Ago 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US82565129 Oct 20094 Sep 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US82618329 Oct 200911 Sep 2012Shell Oil CompanyHeating subsurface formations with fluids
US82671709 Oct 200918 Sep 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US82671859 Oct 200918 Sep 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US827245513 Oct 200825 Sep 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US827666113 Oct 20082 Oct 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US82818619 Oct 20099 Oct 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US832768118 Abr 200811 Dic 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US83279329 Abr 201011 Dic 2012Shell Oil CompanyRecovering energy from a subsurface formation
US83533479 Oct 200915 Ene 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US835562322 Abr 200515 Ene 2013Shell Oil CompanyTemperature limited heaters with high power factors
US838181518 Abr 200826 Feb 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US84345559 Abr 20107 May 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US84487079 Abr 201028 May 2013Shell Oil CompanyNon-conducting heater casings
US845935918 Abr 200811 Jun 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US848525211 Jul 201216 Jul 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US853649713 Oct 200817 Sep 2013Shell Oil CompanyMethods for forming long subsurface heaters
US855597131 May 201215 Oct 2013Shell Oil CompanyTreating tar sands formations with dolomite
US856207825 Nov 200922 Oct 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US857903117 May 201112 Nov 2013Shell Oil CompanyThermal processes for subsurface formations
US860609120 Oct 200610 Dic 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US86278878 Dic 200814 Ene 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US86318668 Abr 201121 Ene 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US863632325 Nov 200928 Ene 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US866217518 Abr 20084 Mar 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US87017688 Abr 201122 Abr 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US87017698 Abr 201122 Abr 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US87398748 Abr 20113 Jun 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US875290410 Abr 200917 Jun 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US878958612 Jul 201329 Jul 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US879139618 Abr 200829 Jul 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US88204068 Abr 20112 Sep 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US88334538 Abr 201116 Sep 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
WO2001081239A2 *24 Abr 20011 Nov 2001Shell Oil CoIn situ recovery from a hydrocarbon containing formation
Clasificaciones
Clasificación de EE.UU.166/260
Clasificación internacionalE21B43/16, E21B43/243
Clasificación cooperativaE21B43/243
Clasificación europeaE21B43/243