US2941859A - Tanning with glutaraldehyde - Google Patents

Tanning with glutaraldehyde Download PDF

Info

Publication number
US2941859A
US2941859A US805103A US80510359A US2941859A US 2941859 A US2941859 A US 2941859A US 805103 A US805103 A US 805103A US 80510359 A US80510359 A US 80510359A US 2941859 A US2941859 A US 2941859A
Authority
US
United States
Prior art keywords
glutaraldehyde
tanning
leather
skin
tanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US805103A
Inventor
Martin L Fein
Edward M Filachione
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US805103A priority Critical patent/US2941859A/en
Application granted granted Critical
Publication of US2941859A publication Critical patent/US2941859A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C3/00Tanning; Compositions for tanning
    • C14C3/02Chemical tanning
    • C14C3/08Chemical tanning by organic agents
    • C14C3/16Chemical tanning by organic agents using aliphatic aldehydes
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C13/0013Chemical composition of synthetic sausage casings
    • A22C13/0016Chemical composition of synthetic sausage casings based on proteins, e.g. collagen

Definitions

  • This invention relates to the tanning of untanned animal skins and has among its objects the provision of improved tanning processes utilizing a new tanning agent.
  • the tanning of hides is an ancient art and a great array of agents and processes have been used or proposed for its accomplishment. Tannage stabilizes the hide against dimensioned changes, microbiological deterioration and other deleterious effects.
  • a characteristic effect shown by most tanning agents and commonly used to follow the course of tanning processes is the elevation of the shrink temperature. Green cattle hide shrinks irreversibly when heated above about 65 C. in the presence of water. During a tanning process the shrink temperature of the hide is raised to a point characteristic of the particular tanning agent and process and of the type hide used. In all conventional tannages this shrinkage is irreversible. For many applications, such as those involving exposure to steam or hot water, it is a great disadvantage to have the leather undergo irreversible shrinkage.
  • aldehydes have been tested as tanning agents. Acetaldehyde shows only feeble action while its higher homologs are inert. Glyoxal and pyruvaldehyde are fairly etfective but are either not readily available or yield leather deficient in many properties. It has been generally assumed that thehigher homologous dialdehydes are progressively less elfeotive than glyoxyl, just as' the higher homologous monoaldehydes are less effective than formaldehyde and, in general, this is true.
  • glutaraldehyde is an excellent tanning agent, has a very rapid tanning action over an extremely wide pH range, that is, either acidic, neutral or alkaline solutions may be employed, yields leather of excellent appearance, flexibility and stability, and most surprisingly, the leather so tanned not only has the unique property of reversible with a valuable plumping action.
  • shrinkage but is remarkably stable to action of perspiration.
  • reversible shrinkage we mean that the leather, after being heated above its shrinkage temperature in the presence of Water causing the leather to shrink, expands and essentially regains its original dimensions when 'cooled. This cycle of shrinkage and expansion may be repeated Without any apparent change in the leather.
  • the leather tanned with glutaraldehyde is unique with regard to the stability of the leather so tanned.
  • Stability of leather for example, resistance to deterioration by perspiration, can be measured by a method commonly used by those skilled in the art (Colin-Russ J.I.S.L.T.C., 3'1, 329 (1947)). In this method the leather is exposed to a synthetic perspirant made up of urea, sodium lactate, disodium phosphate, sodium chloride, and water buffered to pH of 7.0 to 7.1.
  • the shrinkage caused by this synthetic perspirant is a measure of the stability or resistance of the leather toward perspiration, that is the greater the shrinkage produced in this test, the less stable the leather.
  • glutaraldehyde tanned leadthers were stable to this test in contrast to other aldehydes for example succinaldehyde, glyoxal, and formaldehyde.
  • glutaraldehyde was superior to conventional tanning materials such as chrome or vegetable tannins, in imparting this desirable property to the letter.
  • the resistance to perspiration of the glutaraldehyde' tannage was not impaired even though the conditions of tanning varied over a Wide pH range, for example 4.5 to 10.
  • glutaraldehyde tannage can be combined with mineral tannages such as chrome, aluminum, and zirconium or with a vegetable tannage such as quebracho, sulfited quebracho, wattle and chestnut.
  • mineral tannages such as chrome, aluminum, and zirconium
  • a vegetable tannage such as quebracho, sulfited quebracho, wattle and chestnut.
  • the combination tannage can be applied directly in one operation or as separate operations.
  • untanned animal skins are impregnated with glutaraldehyde as the tanning agent, dissolved in an inert solvent, until the animal skin is tanned.
  • glutaraldehyde as the tanning agent
  • the tanning is carried out in aqueous solution and at a pH in the range of about 2 to 10, that is, in the acid range of from about 2 up to 7, under neutral conditions of pH 7, and in the alkaline range from 7 to about 10.
  • Glutaraldehyde tannage may be conducted in an inert solventwhich may be either organic or aqueous solution at neutral, alkaline or acid pH.
  • an inert solvent which may be either organic or aqueous solution at neutral, alkaline or acid pH.
  • a rapid tannage is obtained simultaneously
  • An aqueous alkaline solution tannage is somewhat more rapid and utilization of glut-araldehyde is more quantitative.
  • Rapid tannage is also obtained in a suitable inert organic solvent, such as a lower aliphatic ketone, for example, acetone, but sucha process involves higher costs in the handling and recovery of the solvent.
  • glutaraldehyde itself in our process, however, derivatives which can be hydrolyzed to glut-araldehyde such as glutaraldehyde acetals, may be used in acid solutions.
  • glutaraldehyde acetals, 1,4-pyran, and 2-alkoxy-3,4-dihydro-2H-pyrans such as 2-ethoxy-3,4-dihydro-2H-pyran all of which are hydrolyzable to glutaraldehyde, may be used in place of glutaraldehyde.
  • pickled skins may be treated with the 2-alkoxy dihydropyran whereby the acid from the pickled skins effects hydrolysis of the dihydropyran. After hydrolysis the pH may be adjusted to any desired value and tanning continued.
  • Examples 1-28 are illustrations of the invention.
  • two strips (1" x 3" approximately) of acetone dehydrated 7 These may be first hydrolyzed or the hydrolysis can be accomplished in situ.
  • hide brought to the isoelectric point before dehydration
  • succinaldehyde and glyoxal for comparative purposes, was started the strips were soaked in cold water until completely wet.
  • two wet strips were placed in a 4-ouncwide mouth bottle (fitted with a screw cap) containing the appropriate chemical mixture as outlined.
  • the pH of the chemical mixture was recorded when a sample was cut from the strips at given time intervals, usually 1 hour, 3 hours, 6 hours, 1 day, 2 days, 3 days, and 4 days.
  • the samples /2" x 2%" were cut from the original 1" x 3" strips for the purpose of determining shrinkage temperature (Ts) in water.
  • the shrinkage temperatures were determined by a procedure giving results essentially equivalent to those attained by the standard procedure of the American Leather Chemists Association.
  • Each cut sample x 2%) was soaked in cold running water from 1 to 4 days, to assure complete washing, before the shrink temperatures (Ts) were determined. In no case did Ts change significantly after the third day of chemical treatment. However, in the case of the glutaraldehyde treatment, maximum Ts was attained in 3 to 6 hours for cowhide and less than 1 hour for calfskin.
  • glutaraldehyde was still more effective than glyoxal (Examples 10 and 13).
  • glutaraldehyde was more efiective than either of the controls over the entire range of pH.
  • analyses of spent tanning liquors showed that, especially under alkaline tanning conditions, glutaraldehyde is utilized more quantitatively than the other dialdehydes. That is, during tanning the skins will take up 95% or more of the glutaraldehyde in a tanning solution.
  • Glutaraldehyde was also found to be significantly superior to its higher homolog, 3-methyl glutaraldehyde, again emphasizing the unobviousness of glutaraldehyde as a tanning agent.
  • cowhide and calfskin in Examples 1-20 described above because of their commercial imhyde (see Examples 11-12 and 14-15), but, surprising- 75 portance, the process of the invention is not limited thereto.
  • any animal skin that is commonly used in the preparation of leather may be tanned with similar good results by use of our process; for example, pigskin, sheepskin, goatskin and horsehide.
  • animal skins we mean to include all such hides and skins.
  • Example 24 A pickled and degreased Sudan sheepskin was cut along the backbone into two matched halves. One half weighted 600 grams and was placed in a solution comprising 1200 grams (200% based on drained pickled weight of skin) of water, 66 g. (11%) sodium chloride, and 24 grams (4%) of anhydrous sodium acetate. The skin was drummed in this solution for 2 hours, the pH at the end of this .time was 4.6 and Ts of the untanned sheepskin was 52 C. Next 72 grams of a 25% aqueous solution of glutaraldehyde was added in two feeds of 36 grams each 2.5 hours apart.
  • the leather was soft and pliable even though it contained no fat liquor.
  • the shrinkage temperature of the leather was 82 C.
  • the stability of the glutaraldehyde tannage was meas ured by determining the resistance of this leather to a synthetic perspirant according to the method of Colin- Russ. A specimen of this leather when submitted to the perspiration test showed no shrinkage in area. Furthermore, the leather remained flexible after this test.
  • Example 25 The matching half of the Sudan sheepskin mentioned in Example 24 was tanned with succinaldehyde by a procedure identical to the tanning of its mate with glutaraldehyde.
  • the skin weighing 560 grams, was placed in a solution comprising 1120 g. (200% based on the drained pickled weight of the skin) of water, 62 g. (11%) of sodium chloride, and 22.4 g. (4%) of anhydrous sodium acetate.
  • the skin was drummed in' this solution for 2 hours, the pH at the end of this time was 4.6 and the Ts of the untanned skin was 520 C. Next 52.6 g.
  • Example 26 Three pickled cabretta skins were tanned as follows: The drained pickled sheepskins, weighing 2,115 grams, were added to a solution comprising 2,115 grams (100% of the drained pickled weight of the skin) of water, 127 grams (6%) of sodium chloride, and 254 grams (12%) of commercial glutaraldehyde solution containing 25% by weight of glutaraldehyde. The skins were drummed in this solution for V2 hour, the pH being 2.3 at the end of this time. Then 85 grams (4%) of anhydrous sodium formate was added and the drumming continued for 2 hours. The pH at the end of this time was 4.0 and Ts of the skin was 70 C.
  • Example 27 A pickled degreased Syrian sheepskin of commerce weighing 968 g. was added to a solution made of 968 g. (100%) of water, 97 g. (10%) of anhydrous sodium sulfate and 116 g. 12%) of aqueous glutaraldehyde containing 25% by weight of glutaraldehyde. After drumming for /2 hour the pH of the tanning solution was 2.1. Then to the drum was added simultaneously 48 g. (5%) of sodium bicarbonate and 29 g. (3%) of magnesium oxide. The addition of these two alkaline agents brought the pH of the tanning solution to above 9 and drumming was continued for 24 hours. At the end of this time the pH was 9.2 and Ts of the leather was 83 C. Analysis of the tanning liquor showed that over of the glutaraldehyde was consumed during tanning.
  • the glutaraldehyde tanned skin was acidified to a pH of about 5 with acetic acid and processed into finished garment leather.
  • This leather showed substantially the same properties, i.e., softness and perspiration resistance, as that tanned in Example 26.
  • Example 28 A gram portion of pickled degreased Turkish sheepskin was added to a solution prepared from 100 g. (100% based on the drained pickled weight) of water, 6 g. (6%) of sodium chloride, and 4 g. (4%) of 2- ethoxy-3,4-dihydro-2H-pyran. This quantity of the sub stituted dihydropyran corresponds to about 3 g. of pure glutaraldehyde. The pickled skin in this solution was tumbled for 3 /2 hours, and the pH of the solution at the end of this time was 2.0. Then 5 g. (5 of anhydrous sodium acetate was added and tumbling continued for 24 hours. At the end of tanning the pH was 4.1 and Ts was 81 C. The leather was washed and allowed to air dry and was fully equivalent to that obtained when glutaraldehyde itself was used for tanning.
  • tanning agent dissolved in an inert solvent selected from the group consisting of water and a lower aliphatic ketone, at a pH in the range of about from 2 to 10, until 'the animal skin is tanned.
  • an inert solvent selected from the group consisting of water and a lower aliphatic ketone

Description

United States Patent TANNING WITH GLUTARALDEHYDE Martin L. Fein and Edward M. Filachione, Philadelphia,
Pa, assignors to the United States of America as represented by the Secretary of Agriculture No Drawing.
A non-exclusive, irrevocable, royalty-free license in the invention herein described, throughout the world for all purposes of the United States Government, with power to great sublicenses for such purposes, is hereby granted to the Government of the United States of America.
This application is a continuation-in-part of application Serial No. 527,577, filed August 4, 1955, now abandoned.
This invention relates to the tanning of untanned animal skins and has among its objects the provision of improved tanning processes utilizing a new tanning agent.
The tanning of hides is an ancient art and a great array of agents and processes have been used or proposed for its accomplishment. Tannage stabilizes the hide against dimensioned changes, microbiological deterioration and other deleterious effects. A characteristic effect shown by most tanning agents and commonly used to follow the course of tanning processes is the elevation of the shrink temperature. Green cattle hide shrinks irreversibly when heated above about 65 C. in the presence of water. During a tanning process the shrink temperature of the hide is raised to a point characteristic of the particular tanning agent and process and of the type hide used. In all conventional tannages this shrinkage is irreversible. For many applications, such as those involving exposure to steam or hot water, it is a great disadvantage to have the leather undergo irreversible shrinkage.
Another great disadvantage inherent in most conventional vegetable tannin-g processes is the inordinately long time required. The great bulk of commercial heavy leather is tanned with vegetable tannins by a process requiring several weeks. Also, vegetable tannins are becoming more and more scarce and expensive. In addition, our supply is uncertain in times of emergency, since most of it is imported.
Various synthetic materials have been used as tanning agents, formaldehyde being among them. Objections to use of formaldehyde include toxicity, irritating odor, and deficiences in various properties of the leather produced.
Several other aldehydes have been tested as tanning agents. Acetaldehyde shows only feeble action while its higher homologs are inert. Glyoxal and pyruvaldehyde are fairly etfective but are either not readily available or yield leather deficient in many properties. It has been generally assumed that thehigher homologous dialdehydes are progressively less elfeotive than glyoxyl, just as' the higher homologous monoaldehydes are less effective than formaldehyde and, in general, this is true.
We have now discovered that, contrary to all expectations, glutaraldehyde is an excellent tanning agent, has a very rapid tanning action over an extremely wide pH range, that is, either acidic, neutral or alkaline solutions may be employed, yields leather of excellent appearance, flexibility and stability, and most surprisingly, the leather so tanned not only has the unique property of reversible with a valuable plumping action.
shrinkage, but is remarkably stable to action of perspiration. By reversible shrinkage we mean that the leather, after being heated above its shrinkage temperature in the presence of Water causing the leather to shrink, expands and essentially regains its original dimensions when 'cooled. This cycle of shrinkage and expansion may be repeated Without any apparent change in the leather.
We have further found, much to our surprise, that the leather tanned with glutaraldehyde is unique with regard to the stability of the leather so tanned. Stability of leather, for example, resistance to deterioration by perspiration, can be measured by a method commonly used by those skilled in the art (Colin-Russ J.I.S.L.T.C., 3'1, 329 (1947)). In this method the leather is exposed to a synthetic perspirant made up of urea, sodium lactate, disodium phosphate, sodium chloride, and water buffered to pH of 7.0 to 7.1. The shrinkage caused by this synthetic perspirant is a measure of the stability or resistance of the leather toward perspiration, that is the greater the shrinkage produced in this test, the less stable the leather. Quite unexpectedly the glutaraldehyde tanned leadthers were stable to this test in contrast to other aldehydes for example succinaldehyde, glyoxal, and formaldehyde. In fact, glutaraldehyde was superior to conventional tanning materials such as chrome or vegetable tannins, in imparting this desirable property to the letter. The resistance to perspiration of the glutaraldehyde' tannage was not impaired even though the conditions of tanning varied over a Wide pH range, for example 4.5 to 10.
We have further found that glutaraldehyde tannage can be combined with mineral tannages such as chrome, aluminum, and zirconium or with a vegetable tannage such as quebracho, sulfited quebracho, wattle and chestnut. The combination tannage can be applied directly in one operation or as separate operations.
According to the invention, untanned animal skins are impregnated with glutaraldehyde as the tanning agent, dissolved in an inert solvent, until the animal skin is tanned. Preferably, the tanning is carried out in aqueous solution and at a pH in the range of about 2 to 10, that is, in the acid range of from about 2 up to 7, under neutral conditions of pH 7, and in the alkaline range from 7 to about 10.
Glutaraldehyde tannage may be conducted in an inert solventwhich may be either organic or aqueous solution at neutral, alkaline or acid pH. By operating in aqueous acid solutions a rapid tannage is obtained simultaneously An aqueous alkaline solution tannage is somewhat more rapid and utilization of glut-araldehyde is more quantitative. Rapid tannage is also obtained in a suitable inert organic solvent, such as a lower aliphatic ketone, for example, acetone, but sucha process involves higher costs in the handling and recovery of the solvent.
We prefer to use glutaraldehyde itself in our process, however, derivatives which can be hydrolyzed to glut-araldehyde such as glutaraldehyde acetals, may be used in acid solutions. For example, glutaraldehyde acetals, 1,4-pyran, and 2-alkoxy-3,4-dihydro-2H-pyrans such as 2-ethoxy-3,4-dihydro-2H-pyran all of which are hydrolyzable to glutaraldehyde, may be used in place of glutaraldehyde.
case for example pickled skins may be treated with the 2-alkoxy dihydropyran whereby the acid from the pickled skins effects hydrolysis of the dihydropyran. After hydrolysis the pH may be adjusted to any desired value and tanning continued.
The following Examples 1-28 are illustrations of the invention. in each of the Examples 1-20 (Table 1), two strips (1" x 3" approximately) of acetone dehydrated 7 These may be first hydrolyzed or the hydrolysis can be accomplished in situ. In the latter hide (brought to the isoelectric point before dehydration) were used. Shortly before chemical treatment with glutaraldehyde, and with succinaldehyde and glyoxal for comparative purposes, was started the strips were soaked in cold water until completely wet. For each example two wet strips were placed in a 4-ouncwide mouth bottle (fitted with a screw cap) containing the appropriate chemical mixture as outlined. The pH of the chemical mixture was recorded when a sample was cut from the strips at given time intervals, usually 1 hour, 3 hours, 6 hours, 1 day, 2 days, 3 days, and 4 days. The samples /2" x 2%") were cut from the original 1" x 3" strips for the purpose of determining shrinkage temperature (Ts) in water. The shrinkage temperatures were determined by a procedure giving results essentially equivalent to those attained by the standard procedure of the American Leather Chemists Association. Each cut sample x 2%") was soaked in cold running water from 1 to 4 days, to assure complete washing, before the shrink temperatures (Ts) were determined. In no case did Ts change significantly after the third day of chemical treatment. However, in the case of the glutaraldehyde treatment, maximum Ts was attained in 3 to 6 hours for cowhide and less than 1 hour for calfskin.
In all the experiments summarized in Table -I, the aldehydes were added as aqueous solutions in amounts in excess of that which the hide would absorb. Each sample of hide was immersed in 50 ml. of water or of the aqueous solution of the other reagent specified, the aldehyde was added, and the bottle and contents were rotated continuously at room temperature for the times shown.
1y, glutaraldehyde was still more effective than glyoxal (Examples 10 and 13). Thus, glutaraldehyde was more efiective than either of the controls over the entire range of pH. Furthermore, analyses of spent tanning liquors showed that, especially under alkaline tanning conditions, glutaraldehyde is utilized more quantitatively than the other dialdehydes. That is, during tanning the skins will take up 95% or more of the glutaraldehyde in a tanning solution. Hence, upon experimental determination of the glutaraldehyde required to tan a given weight of skin, only this calculated amount need be incorporated into the tanning solution, whereas considerable excesses of the control dialdehydes were necessary to insure adequate tannage in their respective solutions, and then over a longer period of time.
Glutaraldehyde was also found to be significantly superior to its higher homolog, 3-methyl glutaraldehyde, again emphasizing the unobviousness of glutaraldehyde as a tanning agent. A still higher dialdehyde, whydroxyadipaldehyde, was tested in a series of experiments similar to those of Examples 1-20 but was found to have only very feeble tanning action, inferior even to glyoxal.
In addition to the pH range disclosed in Table I, similar glutaraldehyde tannages were conducted successfully in the pH range of 1.8 to 3.0.
Several experiments were run to determine the efiect of vegetable retannage of aldhyde tanned cowhide and calfskin. The materials were tanned as in Examples 10 and 18 and had shrink temperatures of 85 C. and 82 C., respectively. They were then placed in a 10% aqueous solution of vegetable tannins /3 sulfited quebracho, /3 chestnut) and allowed to soak with oc- TABLE I.-TANNING WITH DIALDEHYDES COWHIDE Ts, 0., After Various Tanning Periods Ex. pH
No. Aldehyde Used Other Reagent Range Hour Hours Hours Hours Hours 1 Glutaraldehyde- 3. 3-4. 2 81 84 85 2 Succinaldehyde. 3. 2-3.3 68 72 72 77 77 3.... Glyoxal- 3.0-3.3 63 63 63 69 70 4- Glutaraldehyde- 3. 8-4. 7 77 82 82 83 83 5 Succinaldehydo. 3. 5-4.0 72 78 79 8O 80 6 Glyoxal 3. 9-4.4 65 67 68 78 7- Gluteraldehyda 4. 2-5. 0 75 83 86 86 86 8 Succinaldehyde 3. 6-4. 1 72 77 77 S1 9 Glyoxal 3. 7-4.1 64 66 68 76 83 10- Glutaraldehyde. 8. 8-7.8 75 82 84 84 84 11 Succinaldehyde 6. 9-7. 4 68 71 71 73 75 12- Glyoxal 8.1-7. 3 71 77 78 77 81 13-.. Glutaraldehyde. 8.5-7.9 79 79 82 83 83 14- Succinaldehyde- 7. 3-7. 8 69 70 70 74 76 15 G oxal 7. 5-7.2 68 77 78 83 83 16 Glutaraldehyde- 9. 8-9. 4 78 83 84 86 86 17- Succinaldehyde. 9.1-8.8 68 75 75 75 78 CALFSKIN 18"- Glutaraldehyde. NagSO4, 5%; NaHOO 2% 7.6-8.0 83 88 88 83 83 19"- Succinaldehyde- N 828 O4, 5%; NaHOO 2% 7. 4-7. 9 71 72 72 74 77 20 Glyoxal NagsOi, 6%; NaHCO 2% 7.6 7.4 78 77 79 83 VEGETABLE TANNED HIDE 21 Glutara1dehyde 2. 8-3. 1 85 88 90 93 93 22--- Succinaldehyde. 2.9-2. 7 83 85 85 92 93 23. Glyoxal 2. 8-2. 9 84 84 85 87 88 l\ About 10 g. of cowhide or 3 g. of calfskin (on dry weight basis) were treated with approximately ml. of 0.5 in. aqueous dialdehyde solution containing indicated amounts of butler and/or salts.
casional agitation. After two days the calfskin was thoroughly tanned and its Ts had been raised to 93. The cowhide, which was quite heavy, required a longer time for complete penetration, its Ts then being 92". The tannins penetrated it evenly from both sides, there being no evidence of case hardening.
While we have used cowhide and calfskin in Examples 1-20 described above because of their commercial imhyde (see Examples 11-12 and 14-15), but, surprising- 75 portance, the process of the invention is not limited thereto. In fact, any animal skin that is commonly used in the preparation of leather may be tanned with similar good results by use of our process; for example, pigskin, sheepskin, goatskin and horsehide. By the term animal skins we mean to include all such hides and skins.
Having shown the versatile nature of our invention the following examples further illustrate its practical application. The scope of our invention, however, is not limited to the specific conditions defined in these exam- ,ples. The amount of reagents used is given not only in grams but, parenthetically, also as the percentage or parts per hundred based on the drained pickled weight of the skin. This latter method is commonly used in the leather industry to express amounts of material used.
Example 24 A pickled and degreased Sudan sheepskin was cut along the backbone into two matched halves. One half weighted 600 grams and was placed in a solution comprising 1200 grams (200% based on drained pickled weight of skin) of water, 66 g. (11%) sodium chloride, and 24 grams (4%) of anhydrous sodium acetate. The skin was drummed in this solution for 2 hours, the pH at the end of this .time was 4.6 and Ts of the untanned sheepskin was 52 C. Next 72 grams of a 25% aqueous solution of glutaraldehyde was added in two feeds of 36 grams each 2.5 hours apart. This corresponds to a total of 18 grams of pure aldehyde or 0.03 mole glutaralde hyde per 100 g. of pickled skin. The skin was drummed in the tanning solutions for a total of 24 hours, the pH remaining substantially constant at 4.4 to 4.6. The tanned skin was washed, set out and dried at room temperature.
The leather was soft and pliable even though it contained no fat liquor. The shrinkage temperature of the leather was 82 C.
The stability of the glutaraldehyde tannage was meas ured by determining the resistance of this leather to a synthetic perspirant according to the method of Colin- Russ. A specimen of this leather when submitted to the perspiration test showed no shrinkage in area. Furthermore, the leather remained flexible after this test.
Substantially the same results were obtained when the glutaraldehyde tannage was applied to other skins or under other conditions of tanning.
Example 25 The matching half of the Sudan sheepskin mentioned in Example 24 was tanned with succinaldehyde by a procedure identical to the tanning of its mate with glutaraldehyde. The skin, weighing 560 grams, was placed in a solution comprising 1120 g. (200% based on the drained pickled weight of the skin) of water, 62 g. (11%) of sodium chloride, and 22.4 g. (4%) of anhydrous sodium acetate. The skin was drummed in' this solution for 2 hours, the pH at the end of this time was 4.6 and the Ts of the untanned skin was 520 C. Next 52.6 g. of a 27.5% aqueous solution of succinaldehyde was added in two feeds of 26.3 g. each 2.5 hours apart. This corresponds to a total of 14.5 g. of pure aldehyde or 0.03 mole of succinaldehyde per 100 g. of pickled skin. The skin was drummed in the tanning solution for a total of 24 hours, the pH remaining substantially constant at 4.4 to 4.6. The tanned skin was washed, set out and dried at room temperature. The shrinkage temperature of the leather was 77 C.
This leather was submitted to the Colin-Russ perspiration test as Was done in Example 24 showed a shrinkage of 29% in area, reflecting a marked instability of the succinaldehyde tannage. Furthermore, the leather became quite stiff as a result of the test.
This result is in marked contrast to the results obtained with the glutaraldehyde tanned leather (Example 24).
In fact the glutaraldehyde tannage is unique in its property of resisting perspiration. Glyoxal and formaldehyde tanned sheepskins when submitted to this test underwent area shrinkage of about 50 and 60% respectively and became very hard and useless as regards leather properties.
Example 26 Three pickled cabretta skins were tanned as follows: The drained pickled sheepskins, weighing 2,115 grams, were added to a solution comprising 2,115 grams (100% of the drained pickled weight of the skin) of water, 127 grams (6%) of sodium chloride, and 254 grams (12%) of commercial glutaraldehyde solution containing 25% by weight of glutaraldehyde. The skins were drummed in this solution for V2 hour, the pH being 2.3 at the end of this time. Then 85 grams (4%) of anhydrous sodium formate was added and the drumming continued for 2 hours. The pH at the end of this time was 4.0 and Ts of the skin was 70 C. Next 63.5 grams (3%) of sodium bicarbonate was added and drumming continued for 1% hours. The pH was 6.6. This was followed by an additional 10.5 grams (0.5%) of sodium bicarbonate and drumming continued for 2 hours. The pH at the end of this sequence of steps was 7.0 and the Ts of the skins was raised to 82 C. To the drum was then added 37 grams (1.75%) of 90% formic acid solution. After drumming for /2 hour the pH was 4.4. The leather (Ts 83 C.) was washed and drained.
These skins tanned with glutaraldehyde were fat liquored and finished by the conventional post tanning steps applied to chrome tanned sheepskin garment leather. The finished leather was soft and mellow, resisted deterioration by perspiration, and was a most satisfactory example of garment type leather.
Example 27 A pickled degreased Syrian sheepskin of commerce weighing 968 g. was added to a solution made of 968 g. (100%) of water, 97 g. (10%) of anhydrous sodium sulfate and 116 g. 12%) of aqueous glutaraldehyde containing 25% by weight of glutaraldehyde. After drumming for /2 hour the pH of the tanning solution was 2.1. Then to the drum was added simultaneously 48 g. (5%) of sodium bicarbonate and 29 g. (3%) of magnesium oxide. The addition of these two alkaline agents brought the pH of the tanning solution to above 9 and drumming was continued for 24 hours. At the end of this time the pH was 9.2 and Ts of the leather was 83 C. Analysis of the tanning liquor showed that over of the glutaraldehyde was consumed during tanning.
The glutaraldehyde tanned skin was acidified to a pH of about 5 with acetic acid and processed into finished garment leather. This leather showed substantially the same properties, i.e., softness and perspiration resistance, as that tanned in Example 26.
Example 28 A gram portion of pickled degreased Turkish sheepskin was added to a solution prepared from 100 g. (100% based on the drained pickled weight) of water, 6 g. (6%) of sodium chloride, and 4 g. (4%) of 2- ethoxy-3,4-dihydro-2H-pyran. This quantity of the sub stituted dihydropyran corresponds to about 3 g. of pure glutaraldehyde. The pickled skin in this solution was tumbled for 3 /2 hours, and the pH of the solution at the end of this time was 2.0. Then 5 g. (5 of anhydrous sodium acetate was added and tumbling continued for 24 hours. At the end of tanning the pH was 4.1 and Ts was 81 C. The leather was washed and allowed to air dry and was fully equivalent to that obtained when glutaraldehyde itself was used for tanning.
We claim:
1. The process of tanning an untanned animal skin comprising treating the animal skin with glutaraldehyde,
as the tanning agent, dissolved in an inert solvent selected from the group consisting of water and a lower aliphatic ketone, at a pH in the range of about from 2 to 10, until 'the animal skin is tanned.
2. The process of claim 1 wherein the inert solvent is water. i
3. The process of tanning an. untanned animal skin comprising immersing an acid pickled skin in an aqueous solution of a compound selected from. the group consisting of a glutaraldehyde acetal, 1,4-pyran, and an 2- alkoxy-3,4-dihydro-2H-pyran, whereby glutaraldehyde is formed in situ, adjusting the pH of said aqueous solution to a value in the range of about from 2 to 10, and tanning said skin in the solution of adjusted pH until the skin is tanned.
ReEerences Cited in the file of this patent UNITED STATES PATENTS 2,516,284 Winheim July 25, 1950

Claims (1)

1. THE PROCESS OF TANNING AN UNTANNED ANIMAL SKIN COMPRISING TREATING THE ANIMAL SKIN WITH GLUTARALDEHYDE, AS THE TANNING AGENT, DISSOLVED IN AN INERT SOLVENT SELECTED FROM THE GROUP CONSISTING OF WATER AND A LOWER ALIPHATIC KETONE, AT A PH OF THE RANGE OF ABOUT FROM 2 TO 10, UNTIL THE ANIMAL SKIN IS TANNED.
US805103A 1959-04-08 1959-04-08 Tanning with glutaraldehyde Expired - Lifetime US2941859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US805103A US2941859A (en) 1959-04-08 1959-04-08 Tanning with glutaraldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US805103A US2941859A (en) 1959-04-08 1959-04-08 Tanning with glutaraldehyde

Publications (1)

Publication Number Publication Date
US2941859A true US2941859A (en) 1960-06-21

Family

ID=25190679

Family Applications (1)

Application Number Title Priority Date Filing Date
US805103A Expired - Lifetime US2941859A (en) 1959-04-08 1959-04-08 Tanning with glutaraldehyde

Country Status (1)

Country Link
US (1) US2941859A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971814A (en) * 1957-12-23 1961-02-14 Seligsberger Ludwig Tanning with alkaline glyoxal
US3342543A (en) * 1964-11-04 1967-09-19 William F Happich Glutaraldehyde stabilized wool
US3892523A (en) * 1973-01-08 1975-07-01 Rohm & Haas Bleaching of aldehyde-tanned leather with sodium borohydride
US3909193A (en) * 1972-04-01 1975-09-30 Basf Ag Tanning formulations
US5360453A (en) * 1992-01-28 1994-11-01 Ciba-Geigy Corporation Process for pickling and pretanning raw hides
USRE34986E (en) * 1988-04-02 1995-07-04 Schill & Seilacher Gmbh & Co. Tanning agent formulation for manufacture of semifinished leather products
EP0690135A1 (en) 1994-06-28 1996-01-03 Bayer Ag Hydrogen sulfite blocked polyisocyanates as tanning agents
US5492539A (en) * 1992-12-14 1996-02-20 Rohm Gmbh Method of preparing leather from unhaired hides
US5733340A (en) * 1994-12-15 1998-03-31 Ciba Specialty Chemicals Corporation Aqueous composition for the pretanning of hide pelts or retanning of leather
WO1998038340A1 (en) * 1997-02-26 1998-09-03 Bayer Aktiengesellschaft Biologically degradable leather
US5820634A (en) * 1996-06-21 1998-10-13 Bayer Aktiengesellschaft Process for tanning leather
EP1029930A1 (en) * 1999-02-15 2000-08-23 Dr. Th. Böhme KG Chem. Fabrik GmbH & Co. Process for tanning
US6251414B1 (en) 1992-01-28 2001-06-26 Tfl Ledertechnik Gmbh & Co. Kg Aqueous formulation for pretanning raw hides
US6277439B1 (en) 1999-04-26 2001-08-21 Pittards Public Limited Company Impregnation of leather with micro-encapsulated material
US6685746B1 (en) 1999-04-27 2004-02-03 Pittards Public Limited Company Impregnation of leather with micro-encapsulated material
WO2004067782A1 (en) * 2003-01-28 2004-08-12 Basf Aktiengesellschaft Tanning agents and preservatives
US20050125906A1 (en) * 2002-05-07 2005-06-16 Basf Aktiengesellschaft Tanning agent and curing agent based on dialdehydes
US20060101583A1 (en) * 2003-01-28 2006-05-18 Basf Aktiengesellschaft Adducts based on cyclic compounds and the use thereof as tanning agents and curing agents
US20070022541A1 (en) * 2002-10-21 2007-02-01 Basf Aktiengessellschaft Method for producing leather
WO2009001943A1 (en) 2007-06-28 2008-12-31 Midori Hokuyo Co., Ltd. Leather
US9212440B2 (en) 2012-03-30 2015-12-15 Deckers Outdoor Corporation Natural wool pile fabric and method for making wool pile fabric
DE102016004191A1 (en) * 2016-04-06 2017-10-12 Tfl Ledertechnik Gmbh Tanning composition and method based on an acetal of an aldehyde tanning agent
WO2017174181A1 (en) * 2016-04-06 2017-10-12 Tfl Ledertechnik Gmbh Tanning composition and method based on an acetal of an aldehydic tanning agent
WO2018073010A1 (en) 2016-10-18 2018-04-26 Basf Se Processes for making leather
US20200291493A1 (en) * 2017-08-23 2020-09-17 DB Patents Ltd. Method for tanning an animal skin with dialdehydes
US10801139B2 (en) 2017-01-27 2020-10-13 Deckers Outdoor Corporation Sheared wool fleece and method for making sheared wool fleece utilizing yarn knitting
US10815542B2 (en) 2016-04-06 2020-10-27 Tfl Ledertechnik Gmbh Tanning composition and method based on an acetal of an aldehydic tanning agent
US11041219B2 (en) 2015-07-14 2021-06-22 DB Patents Ltd. Methods for tanning animal skins
US11713524B2 (en) 2017-01-27 2023-08-01 Deckers Outdoor Corporation Sheared wool fleece and method for making sheared wool fleece utilizing yarn knitting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2516284A (en) * 1949-08-31 1950-07-25 Adolph H Winheim Impregnating a dialdehyde tanned hide with a resin of urea, formaldehyde, and a primary amine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2516284A (en) * 1949-08-31 1950-07-25 Adolph H Winheim Impregnating a dialdehyde tanned hide with a resin of urea, formaldehyde, and a primary amine

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971814A (en) * 1957-12-23 1961-02-14 Seligsberger Ludwig Tanning with alkaline glyoxal
US3342543A (en) * 1964-11-04 1967-09-19 William F Happich Glutaraldehyde stabilized wool
US3909193A (en) * 1972-04-01 1975-09-30 Basf Ag Tanning formulations
US3892523A (en) * 1973-01-08 1975-07-01 Rohm & Haas Bleaching of aldehyde-tanned leather with sodium borohydride
USRE34986E (en) * 1988-04-02 1995-07-04 Schill & Seilacher Gmbh & Co. Tanning agent formulation for manufacture of semifinished leather products
US6251414B1 (en) 1992-01-28 2001-06-26 Tfl Ledertechnik Gmbh & Co. Kg Aqueous formulation for pretanning raw hides
US5360453A (en) * 1992-01-28 1994-11-01 Ciba-Geigy Corporation Process for pickling and pretanning raw hides
US5492539A (en) * 1992-12-14 1996-02-20 Rohm Gmbh Method of preparing leather from unhaired hides
US5505864A (en) * 1992-12-14 1996-04-09 Rohm Gmbh Tanning agent containing a dialdehyde
EP0690135A1 (en) 1994-06-28 1996-01-03 Bayer Ag Hydrogen sulfite blocked polyisocyanates as tanning agents
US5618317A (en) * 1994-06-28 1997-04-08 Bayer Aktiengesellschaft Bisulfite-blocked polyisocyanates as tanning agents
US5733340A (en) * 1994-12-15 1998-03-31 Ciba Specialty Chemicals Corporation Aqueous composition for the pretanning of hide pelts or retanning of leather
US5820634A (en) * 1996-06-21 1998-10-13 Bayer Aktiengesellschaft Process for tanning leather
WO1998038340A1 (en) * 1997-02-26 1998-09-03 Bayer Aktiengesellschaft Biologically degradable leather
EP1029930A1 (en) * 1999-02-15 2000-08-23 Dr. Th. Böhme KG Chem. Fabrik GmbH & Co. Process for tanning
US6277439B1 (en) 1999-04-26 2001-08-21 Pittards Public Limited Company Impregnation of leather with micro-encapsulated material
US6685746B1 (en) 1999-04-27 2004-02-03 Pittards Public Limited Company Impregnation of leather with micro-encapsulated material
US7354457B2 (en) * 2002-05-07 2008-04-08 Basf Aktiengesellschaft Tanning agent and curing agent based on dialdehydes
US20050125906A1 (en) * 2002-05-07 2005-06-16 Basf Aktiengesellschaft Tanning agent and curing agent based on dialdehydes
US20070022541A1 (en) * 2002-10-21 2007-02-01 Basf Aktiengessellschaft Method for producing leather
US20060101583A1 (en) * 2003-01-28 2006-05-18 Basf Aktiengesellschaft Adducts based on cyclic compounds and the use thereof as tanning agents and curing agents
US7282066B2 (en) 2003-01-28 2007-10-16 Basf Aktiengesellschaft Processes for preparing and using tanning agents and preservatives
WO2004067782A1 (en) * 2003-01-28 2004-08-12 Basf Aktiengesellschaft Tanning agents and preservatives
US7410504B2 (en) * 2003-01-28 2008-08-12 Basf Aktiengesellschaft Adducts based on cyclic compounds and the use thereof as tanning agents and curing agents
US20060053564A1 (en) * 2003-01-28 2006-03-16 Basf Aktiengesellschaft Tanning agents and preservatives
WO2009001943A1 (en) 2007-06-28 2008-12-31 Midori Hokuyo Co., Ltd. Leather
US20100325811A1 (en) * 2007-06-28 2010-12-30 Midori Hokuyo Co., Ltd. Leather
US8481169B2 (en) 2007-06-28 2013-07-09 Midori Hokuyo Co., Ltd. Leather
US10287720B2 (en) 2012-03-30 2019-05-14 Deckers Outdoor Corporation Natural wool pile fabric and method for making wool pile fabric
US9212440B2 (en) 2012-03-30 2015-12-15 Deckers Outdoor Corporation Natural wool pile fabric and method for making wool pile fabric
US9657420B2 (en) 2012-03-30 2017-05-23 Deckers Outdoor Corporation Sheared wool weaving method
US11041219B2 (en) 2015-07-14 2021-06-22 DB Patents Ltd. Methods for tanning animal skins
WO2017174181A1 (en) * 2016-04-06 2017-10-12 Tfl Ledertechnik Gmbh Tanning composition and method based on an acetal of an aldehydic tanning agent
EP3561081A1 (en) * 2016-04-06 2019-10-30 TFL Ledertechnik GmbH Composition and method for tanning based on an acetal of an aldehydic tanning agent
US10604813B2 (en) 2016-04-06 2020-03-31 Tfl Ledertechnik Gmbh Tanning composition and method based on an acetal of an aldehydic tanning agent
US10815542B2 (en) 2016-04-06 2020-10-27 Tfl Ledertechnik Gmbh Tanning composition and method based on an acetal of an aldehydic tanning agent
DE102016004191A1 (en) * 2016-04-06 2017-10-12 Tfl Ledertechnik Gmbh Tanning composition and method based on an acetal of an aldehyde tanning agent
WO2018073010A1 (en) 2016-10-18 2018-04-26 Basf Se Processes for making leather
US10801139B2 (en) 2017-01-27 2020-10-13 Deckers Outdoor Corporation Sheared wool fleece and method for making sheared wool fleece utilizing yarn knitting
US11713524B2 (en) 2017-01-27 2023-08-01 Deckers Outdoor Corporation Sheared wool fleece and method for making sheared wool fleece utilizing yarn knitting
US20200291493A1 (en) * 2017-08-23 2020-09-17 DB Patents Ltd. Method for tanning an animal skin with dialdehydes

Similar Documents

Publication Publication Date Title
US2941859A (en) Tanning with glutaraldehyde
CN107835860B (en) Process for tanning animal skins
US3104151A (en) Combination tannage with tetrakis (hydroxy-methyl) phosphonium chloride and a phenol
US3254938A (en) Leather tanning
JPS6354040B2 (en)
US3888625A (en) Method of chrome-retanning leather
JPH01500130A (en) Non-chrome tanning method
US4875900A (en) Method of treating leather
US5372609A (en) Self-tanning, pretanning and assist tanning of pelts and skin pelts and retanning of leather and skin
US10604813B2 (en) Tanning composition and method based on an acetal of an aldehydic tanning agent
US3892523A (en) Bleaching of aldehyde-tanned leather with sodium borohydride
US2316740A (en) Leather manufacture
US2880053A (en) Process of tanning hides with polymethoxyaldehyde compounds and optionally vegetable tanning
US2942930A (en) Alum tannage
US2470450A (en) Tanning with free formaldehyde and melamine simultaneously
US3960481A (en) Process for tanning leather
US3557078A (en) Method for treating and improving the properties of proteinaceous matter comprising reacting hide material with hcho and a malonic acid
Lawal et al. Tanning of different animal skins/hides and study of their properties for textile application
US3010779A (en) Production of shrunk leather
US3254937A (en) Dry chrome pretannage and dry syntan or vegetable tannage
US3027221A (en) Rapid tannage of sole leather
US1975616A (en) Tanning process and product produced thereby
US2938763A (en) Tanning with acetonylacetone
US2512708A (en) Resorcinol-aldehyde tanning product
US2729534A (en) Lignin-tanned leather and process for making same