US2998620A - Method and means for centrifuging curly fibers - Google Patents

Method and means for centrifuging curly fibers Download PDF

Info

Publication number
US2998620A
US2998620A US740922A US74092258A US2998620A US 2998620 A US2998620 A US 2998620A US 740922 A US740922 A US 740922A US 74092258 A US74092258 A US 74092258A US 2998620 A US2998620 A US 2998620A
Authority
US
United States
Prior art keywords
fibers
glass
orifices
spinner
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US740922A
Inventor
Charles J Stalego
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Priority to US740922A priority Critical patent/US2998620A/en
Priority to FR795813A priority patent/FR1225518A/en
Priority to GB18415/59A priority patent/GB863099A/en
Priority to DEO6808A priority patent/DE1127538B/en
Application granted granted Critical
Publication of US2998620A publication Critical patent/US2998620A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/04Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor
    • C03B37/045Construction of the spinner cups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/075Manufacture of non-optical fibres or filaments consisting of different sorts of glass or characterised by shape, e.g. undulated fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/075Manufacture of non-optical fibres or filaments consisting of different sorts of glass or characterised by shape, e.g. undulated fibres
    • C03B37/0753Manufacture of non-optical fibres or filaments consisting of different sorts of glass or characterised by shape, e.g. undulated fibres consisting of different sorts of glass, e.g. bi-component fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • C03C2213/04Dual fibres

Definitions

  • This invention relates to a method and means for producing fibers of curly character, and more particularly to a centrifugal method and means for producing permanently curly fibers of heat-softenable mineral materials.
  • Fibers of heat-softenable mineral materials such as glass although having many admirable qualities such as high tensile strength, inertness to deterioration, and high flex strength, are somewhat limited in adaptability for many uses in that they in general lack an inherent cur1iness which would contribute to the flutfability and utilization of the high flexible properties of such fibers in the form of springiness in accumulations thereof.
  • Individual fibers of mineral material such as glass have heretofore in general been straight in character and difficult to curl because in many instances a requirement that curling be accomplished by reheating of the fibers following formation to effect setting of a deformation therein. The production of fibers of curled character, in this way, additionally present problems in economies.
  • a still further object of the present invention is to provide a centrifuging method and means for producing inherently curly fibers of heat-softenable material such as glass wherein a composite of two materials are incorporated in the individual fibers to impart the curl desired.
  • the apparatus of the invention incorporates an orificed spinner or rotor into which the different materials of the fibers are introduced and controllably fed from the orifices of the rotor where they are brought together and extruded in aligned integral relationship, whereupon after cooling they have an inherent curl imparted thereto by reason of the different dimensions to which the materials contract during cooling.
  • a still further feature of the invention lies in the highly compressible, non-itch and light density character of the accumulation of discontinuous, composite fibers of the diiferent materials producible by the method and apparatus of the invention.
  • FIGURE 1 shows a general layout of apparatus for producing curled mineral fibers according to the present invention
  • FIGURE 2 is an enlarged cross-sectional view of one form of rotor or spinner for producing composite fibers of different mineral materials according to the present invention
  • FIGURE 3 is a cross-sectional side elevational view of another spinner for producing curled mineral fibers according to the present invention.
  • FIGURE 4 is an enlarged cross-sectional view of the spinner of FIGURE 3 as taken on line 44 thereof;
  • FIGURE 5 is an enlarged partial cross-sectional view of still another spinner construction for producing composite fibers of different mineral materials according to this invention.
  • FIGURE 6 is an illustration of a type of curly fibers produced according to this invention.
  • FIGURE 1 illustrates a centrifuging process for producing glass fibers wherein a source of two molten glasses 10a and 10b, such as a dual forehearth or electrical melting unit having either an associated pair of feeders or a composite feeder 11 from which a pair of streams of molten glass 12 and 14 of different compositions are flowed to a rotor or spinner 20 through a hollow shaft 15 rotatably driven by a motor 16.
  • the two streams of glass, upon introduction into the spinner 20 are deflected to the inner periphery of the spinner by the centrifugal force thereof and are emitted as discrete fine glass streams through orifices in the spinner periphery.
  • Jets of gas from burners 18 are directed from above the streams generally perpendicularly to the direction of emission of glass from the spinner periphery to attenuate the streams into fine glass fibers which are acted upon by gravity, as well as being blown downwardly by the gas of the burners.
  • a cylindrical veil of fibers 21 is thus formed about the spinner, which veil is introduced into a hood 23 for collection on a conveyor 24 disposed below the hood.
  • the two streams of glass 12 and 14, upon introduction into the spinner 20, are maintained as separate glasses until ready to be ejected from the orifices of the spinners wherein they combine to form bi-glass streams which are then attenuated into bi-glass curly fibers by gaseous jets directed against the zone adjacent the outer periphery of the spinner.
  • the compositions of the two glasses 12 and 14 are such that their co-eflicients of expansion differ sufficiently that the composite fibers formed of the two glasses become curly due to the dif ferential contraction of the two glasses during cooling.
  • FIGURE 2 illustrates an embodiment of the spinner construction wherein the spinner 20 has a pair of distn'buting surfaces 22 and 24 for the molten glass of the two streams 12 and 14 respectively.
  • the distributing surface 22 is the bottom of the spinner on which the stream of molten glass 12 is dropped and from which the glass is thrown radially outwardly by the rotational forces of the spinner for ejectment from the orifices 27 in the outer periphery of the spinner.
  • a horizontal annular collection and distributing table surface 24 is fixedly mounted a vertical distance from the bottom of the spinner and is arranged to catch the molten glass of the second stream 14 to correspondingly effect its distribution and ejectment from the orifices 27.
  • the central opening of the surface 24 is of such size that when the stream 12 is flowed in alignment with the spinner axis, it passes therethrough to the bottom of the spinner without interruption during rotation of the spinner.
  • the stream 14, on the other hand, is caused to flow off-center from the spinner axis so that it is directed constantly to the upper distributing surface 24.
  • a generally vertical wall extending upward from the opening in the surface 38 and provided with a radially outward overhanging lip minimizes the possibility of glass from stream 12 being deposited on surface 24.
  • the surface 24 is mounted in the spinner interior so that its circumferential edge bisects each of the orifices 27 and so that the glass on each level is ejected by centrifugal force through only half of the orifice.
  • the glass on the collection surface 22 flows through the bottom half of the orifices 27, while the glass in the top collection surface 24 flows through the upper half of each orifice 27.
  • the glass on the two collection or distribution surfaces thus flow together at the orifices 27 and are emitted as bi-glass streams for attenuation by the gaseous jets of the annularly oriented burners 18.
  • the bi-glass streams are thus attenuated into fibers which form the cylindrical veil extending downwardly from the zone of attenuation.
  • This construction is mpecially adapted to formation of bi-glass streams when but a single row of orifices is provided in the periphery of the spinner.
  • Such spinner constructions are not limited to a single row arrangement in that additional horizontal platforms can be incorporated in the spinner to extend the concepts of the construction to two or more rows of bi-glass streams emitted from the spinner.
  • FIGURE 3 shows another embodiment of the present invention wherein the construction is adapted to provide a multiplicity of vertically spaced rows of orifices for the formation of bi-glass streams, while yet providing only two collection surfaces for the different glasses introduced into the spinner.
  • the orifices are arranged in vertically oriented rows and each bisected by interiorly disposed, vertical partitioning members which extend from top to bottom of the spinner interior.
  • the interior of the spinner 30 has a bottom distributing surface 35 which the glass of a central stream 32 is deposited for centrifugal distribution, while a horizontally disposed distributing surface 38 vertically spaced above the bottom surface 35 collects and distributes the glass of a second stream 34 of molten glass.
  • the surface 38 is annular in shape with a central opening through which the stream 32 flows constantly to the bottom collection surface 35.
  • a concentric cylindrical wall 31, slightly smaller in diameter than the largest interior diameter of the spinner 30 is arranged to extend from top to bottom of the interior, thus forming a zone behind the orifices 37 which can be sub-divided into compartments 41 and 42 for different glasses A and B of the separate streams 32 and 34 respectively.
  • the compartments 41 and 42 are formed by radial partitioning walls 33 each of which extend outward from the outside surface of the cylindrical wall 31 to bisect orifices 37 in an immediately oppositely disposed row of orifices.
  • the dividing walls 33 in a sense, form vertical compartments behind each adjacent vertical row of orifices 37. Every other one of the vertically oriented compartments about the inner periphery of the spinner are arranged to receive one of the glass compositions of the streams 32 and 34, while those interposed between these compartments are arranged to receive the other glass. Distribution of the glass from the streams 32 and 34 into the respective compartments is accomplished by providing separate openings or channels for each of these glasses to their respective compartments.
  • the glass of the streams 32 is distributed on the bottom surface 35 of the spinner and caused to flow into the vertically oriented compartment 41 through a series of spaced openings 39 which are provided in the bottom zone of the annular wall 31 below the annular distributing surface 38.
  • the glass of the stream 34 is correspondingly introduced into vertically oriented compartments 42 through a series of openings 36 located in the annular wall 31 just above the surface 38.
  • Any number of orifices 37 within reasonable limits can thus be aligned without ditficulty in a vertical row bisected by the edge of a dividing wall 33.
  • FIGURE 5 illustrates another embodiment of the present invention wherein a plurality of rows of orifices in the periphery of the spinner 50 are bisected by horizontal partitioning members as are the orifices of the construction of FIGURE 2.
  • the bottom surface 55 of the spinner 50 acts as a distribution surface for glass B of a stream 52, while a second surface 58, vertically spaced from the bottom of the spinner, is arranged to distribute glass A of a stream 54.
  • the glass A upon being thrown outwardly from the surface 58, passes through a series of channels 56 to be divided between compartments 56a and 56b, separated by a compartment 59 which accommodates glass B.
  • the compartments 56a and 56b in other words are supplied with molten glass A through radial channels 56 spaced about the interior of the spinner.
  • Each wall of the compartments 56a and 56b acts to partition the zone of the orifices 57 so that glass from each of these compartments flow into half of each of the orifices 57, while glass of composition B distributed by the lower surface 55 of the spinner flows about the channels 56 and into the zones not covered by the compartments 56a and 56b to supply the remaining half of the glass flowing from each of orifices 57.
  • Bi-glass streams are thus ejected from each of the orifices 57, and any number of rows of orifices spaced vertically from each other can be arranged to receive the two dissimilar glasses for ejectment of bi-glass streams and formation of bi-glass fibers.
  • FIGURE 6 is illustrative of the general appearance of bi-glass fiber 60 produced with the constructions of the foregoing figures.
  • the glass upon attenuation and cooling acquires the curled character by reason of the dissimilar co-eflicients of expansion thereof.
  • the opposite sides of the fibers contract to different degrees, one side of the fiber being shorter along its entire length than the other, thus resulting in a continuous helically shaped curl.
  • the bisecting partition extend into the tubular channel of the orifices, or even through, and to a position slightly beyond the exterior of the rotor periphery, depending upon the viscosities, temperatures, and quantities of the glasses to be combined at the orifices.
  • spinner constructions herein disclosed have been illustrated with orifices bisected by members extending to a position immediately behind the orifice so that the glasses introduced into the orifices are combined within the orifiice channel prior to emission from the rotor, it will be understood that various degrees of bisection are possible.
  • the examples set forth are presented solely for the pur- Compositions B Zn Ooefliclent of Thermal Expansion+ 10- per 0 Curliness of glass fibers produced by the arrangements set out above impart a bulkiness to the mass, thereby reducing the density requirements for desired dimensions in the mass. Additionally, the curliness provides resilient or a spring-like action, as Well as a better recovery characteristic for the mass than is obtainable with masses of straight fibers. Furthermore, the irritability frequently caused by contact with numerous ends of straight fibers is practically eliminated by reason of the individual fibers being capable of bending back on themselves into the mass accumulation within which they are incorporated.
  • Discontinuous fibers of this character are especially adaptable to forming staple-type yarns by twisting and drafting in view of their tendencies toward inter-adherence.
  • Such fibers are also of character which permits ready combination with other fibers, such as cotton or cellulose fibers to produce composite blends in yarns, or mass products such as mats or paper. They can also be combined with other fibers, such a soluble fiber, like polyvinyl or alcohol fibers which might be used as a carrier for the glass fibers to improve results in picking, carding, drawing, roving and spinning the glass fibers into yarns.
  • the soluble fibers can thereafter be dissolved following processing of the yarns, such as after having been woven into a fabric.
  • Bi-glass curly fibers also have proven of desirable character in the reinforcement of gypsum board and pottery or firing clays in that they have what might be termed a mechanical hook or coiling action so that they reinforce in a different manner than straight fibers for such purposes.
  • variations of the concepts herein presented will be readily discernable to those familiar with the natural and synthetic fiber arts, and that modifications can be made in the structures and processes within the broad concepts of the invention.
  • variations might include the introduction of a stream of powder glass for combination with a molten stream of glass, or two molten streams of similar glass might be treated for the formation of a composite glass stream, which when attenuated would result in a curly glass.
  • a single glass might be divided into two streams, one of which having powder added for the formation of a composition with a difierent co-eflicient of expansion than the other, thereby making possible the formation of a curly bi-glass fiber.
  • the orifices in the spinners can be divided in diiferent proportions to join predetermined difierent quantities of the softened materials into the common streams ejected by the spinners.
  • Apparatus for producing composite fibers of heatsoftenable materials comprising a circular hollow rotor, having orifices distributed in its circumferential periphery, partitioning members dividing the interior of said rotor into separate zones for centrifugal distribution of diiferent heat softened material introduced to the rotor, each of said orifices being partitioned in bisecting relation by said members for centrifugal projection of material distributed by each of said zones in composite relation with the material of the other of said zones.
  • Apparatus for producing composite fibers of heatsoftenable materials comprising a hollow spinner, a hollow shaft for driving said spinner, means for driving said shaft and rotor, orifices distributed in the circumferential periphery of said rotor, means for supplying dissimilar heat softened fiber-forming materials to said spinner, partitioning means providing separate material distributing zones on the interior of said spinner for each of said materials, each of said orifices being divided in bisected relation by a partitioning member, one side of each of said orifices being connected with a distributing zone for one of said materials while the other side of each of said partitioning members is connected with the distributing zone for the other of said materials, whereby each of the two materials introduced to said spinner is projected simultaneously with the other from each orifice in a composite stream, and means for attenuation of such composite streams projected from said orifices into composite fibers of the two materials.
  • Apparatus for producing fibers of heat-softenable materials comprising in combination a support, a hollow rotor, a hollow shaft connected to drive said rotor, means carried by the support for rotatably supporting the shaft and rotor, means for rotating the shaft and rotor, said rotor having orifices in its circumferential periphery through which the material in the rotor is projected by centrifugal forces to form discrete bodies of heat softened material introduced therein, said orifices being arranged in circumferential spaced relation about the circumferen tial periphery of said rotor, an annular partition extending horizontally across the interior of said rotor dividing it into upper and lower material distributing zones and being arnanged to horizontally bisect each of the orifices in said periphery, the opening in said annular partition being centrally located in line with the axis of rotation of said rotor, means for delivering heat softened material through the opening in said annular member into said lower distributing zone,
  • Apparatus for producing fibers of heat-softenable materials comprising in combination a support, a hollow rotor, a hollow shaft connected to drive said rotor, means carried by the support for rotatably supporting the shaft and rotor, means for rotating the shaft and rotor, said rotor having orifices in its circumferential periphery through which the material in the rotor is projected by centrifugal forces to form discrete bodies of heat softened mate-rial introduced therein, said orifices being arranged in a plurality of circumferential rows spaced from each other and with the orifices thereof being arranged in columns, a cylindrical wall internal of said rotor extending from top to bottom of the rotor interior and having a diameter slightly less than the interior diameter of said rotor, generally radially aligned dividing walls partitioning into compartments in the Zone between said cylindrical Wall and orificed periphery, said dividing walls each extending from a position of bisection of a column of orifices in
  • Apparatus for producing fibers of heat-softenable materials comprising in combination a support, a hollow rotor, a hollow shaft connected to drive said rotor, means carried by the support for rotatably supporting the shaft and rotor, means for rotating the shaft and rotor, said rotor having orifices in its circumferential periphery through which the material in the rotor is projected by centrifugal forces to form discrete bodies of heat softened material introduced therein, said orifices being arranged in a plurality of rows vertically spaced from each other in the circumferential periphery of said rotor, the circumferential rows being arranged so that the orifices are oriented in vertical columns, a horizontal annular distributing surface in the interior of said rotor dividing it into an upper and lower distributing zone, members bisecting each of said orifices horizontally and forming channels for directing flow of material from each of said zones to each of said orifices, means for delivering heat softened material through said
  • the method of producing composite textile fibers of dissimilar heat softened material comprising flowing separate streams of said dissimilar materials into a common centrifuge, centrifuging said materials in separated relation, centrifugally ejecting said dissimilar materials in side-by-side opposite relation from common orifices in said centrifuge as discrete composite streams of such materials, and then subjecting said composite streams to the forces of gaseous blasts to attenuate them into small diameter composite textile fibers of such materials said blast being directed perpendicular to the path of emission of the streams from said spinner to redirect the path over which attenuation of said streams is effected.
  • the method of producing composite textile fibers of two dissimilar heat-softened glasses comprising introducing two streams of said dissimilar glasses into a rotating spinner, introducing each stream into a separate distributing zone within said spinner, projecting said dissimilar glasses in side-by-side opposite relation as composite streams from common orifices under the influence of the centrifugal force of the rotating spinner, and attenuating said composite streams into fibers of small diameter suitable for textile purposes by subjecting them to the forces of a gaseous blast, said blast being directed perpendicular to the path of emission of the composite streams from said spinner to redirect the path of attenuation of said streams.

Description

Sept. 5, 1961 c. J. STALEGO METHOD AND MEANS FOR CENTRIFUGING CURLY FIBERS Filed June 9, 1958 INVEN TOR. (H/ p155 J 572L560 ATTORNEYS United States Patent 2,998,620 METHOD AND MEANS FOR CENTRIFUGING CURLY FIBERS Charles J. Stalego, Newark, Ohio, assignor to Owens- Corning Fiberglas Corporation, a corporation of Delaware Filed June 9, 1958, Ser. No. 740,922 7 Claims. (Cl. 182.6)
This invention relates to a method and means for producing fibers of curly character, and more particularly to a centrifugal method and means for producing permanently curly fibers of heat-softenable mineral materials.
Fibers of heat-softenable mineral materials such as glass, although having many admirable qualities such as high tensile strength, inertness to deterioration, and high flex strength, are somewhat limited in adaptability for many uses in that they in general lack an inherent cur1iness which would contribute to the flutfability and utilization of the high flexible properties of such fibers in the form of springiness in accumulations thereof. Individual fibers of mineral material such as glass have heretofore in general been straight in character and difficult to curl because in many instances a requirement that curling be accomplished by reheating of the fibers following formation to effect setting of a deformation therein. The production of fibers of curled character, in this way, additionally present problems in economies.
In view of the foregoing, it is a principal object of the present invention to provide an economical method and means for producing inherently curly fibers of heat-softenable mineral material such as glass.
It is another object of the invention to provide a centrifuge method and means for producing inherently curly fibers of heat-softenable mineral material.
A still further object of the present invention is to provide a centrifuging method and means for producing inherently curly fibers of heat-softenable material such as glass wherein a composite of two materials are incorporated in the individual fibers to impart the curl desired.
The objects of the invention are attained according to the invention of the present disclosure by combining into individual fibers, heat-softenable materials having different degrees of thermal expansivity, the materials being combined in a fiber-forming zone, whereby upon cooling, they contrast to different dimensions to accordingly impart a permanent curl to the fibers under all temperature conditions of ordinary atmosphere. In brief, the apparatus of the invention incorporates an orificed spinner or rotor into which the different materials of the fibers are introduced and controllably fed from the orifices of the rotor where they are brought together and extruded in aligned integral relationship, whereupon after cooling they have an inherent curl imparted thereto by reason of the different dimensions to which the materials contract during cooling.
Features of the invention lie in the economy of production of such curly mineral fibers due to the extremely high rates of production made possible by centrifuging and the controllable rates at which the materials can be introduced in the spinner to provide preselected amounts of the different materials in each fiber of the mass produced.
'Another feature of the invention lies in the extreme fineness of fibers of composite form producible by the method'of the invention.
A still further feature of the invention lies in the highly compressible, non-itch and light density character of the accumulation of discontinuous, composite fibers of the diiferent materials producible by the method and apparatus of the invention.
Other objects and features which I believe to be characteristic of my invention are set forth with particularity in the appended claims. My invention itself, however, both as to its method of operation and manner of construction, together with other objects and advantages, may best be understood by reference to the accompanying drawings in which:
FIGURE 1 shows a general layout of apparatus for producing curled mineral fibers according to the present invention;
FIGURE 2 is an enlarged cross-sectional view of one form of rotor or spinner for producing composite fibers of different mineral materials according to the present invention;
FIGURE 3 is a cross-sectional side elevational view of another spinner for producing curled mineral fibers according to the present invention;
FIGURE 4 is an enlarged cross-sectional view of the spinner of FIGURE 3 as taken on line 44 thereof;
FIGURE 5 is an enlarged partial cross-sectional view of still another spinner construction for producing composite fibers of different mineral materials according to this invention; and
FIGURE 6 is an illustration of a type of curly fibers produced according to this invention,
Although the invention is herein exemplified by reference to production of curly fibers of glass, it will be apparent in view of the disclosure that it has application to production of fibers of other materials as well. For example, fibers of rock wool type materials, as well as carborundum and other mineral materials can be produced. Composite fibers of different resinous materials can also be produced by the centrifuging process of this invention.
Referring to the drawings in greater detail, FIGURE 1 illustrates a centrifuging process for producing glass fibers wherein a source of two molten glasses 10a and 10b, such as a dual forehearth or electrical melting unit having either an associated pair of feeders or a composite feeder 11 from which a pair of streams of molten glass 12 and 14 of different compositions are flowed to a rotor or spinner 20 through a hollow shaft 15 rotatably driven by a motor 16. The two streams of glass, upon introduction into the spinner 20 are deflected to the inner periphery of the spinner by the centrifugal force thereof and are emitted as discrete fine glass streams through orifices in the spinner periphery. Jets of gas from burners 18 are directed from above the streams generally perpendicularly to the direction of emission of glass from the spinner periphery to attenuate the streams into fine glass fibers which are acted upon by gravity, as well as being blown downwardly by the gas of the burners. A cylindrical veil of fibers 21 is thus formed about the spinner, which veil is introduced into a hood 23 for collection on a conveyor 24 disposed below the hood.
The two streams of glass 12 and 14, upon introduction into the spinner 20, are maintained as separate glasses until ready to be ejected from the orifices of the spinners wherein they combine to form bi-glass streams which are then attenuated into bi-glass curly fibers by gaseous jets directed against the zone adjacent the outer periphery of the spinner. The compositions of the two glasses 12 and 14 are such that their co-eflicients of expansion differ sufficiently that the composite fibers formed of the two glasses become curly due to the dif ferential contraction of the two glasses during cooling.
FIGURE 2 illustrates an embodiment of the spinner construction wherein the spinner 20 has a pair of distn'buting surfaces 22 and 24 for the molten glass of the two streams 12 and 14 respectively. The distributing surface 22 is the bottom of the spinner on which the stream of molten glass 12 is dropped and from which the glass is thrown radially outwardly by the rotational forces of the spinner for ejectment from the orifices 27 in the outer periphery of the spinner. A horizontal annular collection and distributing table surface 24 is fixedly mounted a vertical distance from the bottom of the spinner and is arranged to catch the molten glass of the second stream 14 to correspondingly effect its distribution and ejectment from the orifices 27. The central opening of the surface 24 is of such size that when the stream 12 is flowed in alignment with the spinner axis, it passes therethrough to the bottom of the spinner without interruption during rotation of the spinner. The stream 14, on the other hand, is caused to flow off-center from the spinner axis so that it is directed constantly to the upper distributing surface 24. A generally vertical wall extending upward from the opening in the surface 38 and provided with a radially outward overhanging lip minimizes the possibility of glass from stream 12 being deposited on surface 24.
The surface 24 is mounted in the spinner interior so that its circumferential edge bisects each of the orifices 27 and so that the glass on each level is ejected by centrifugal force through only half of the orifice. The glass on the collection surface 22 flows through the bottom half of the orifices 27, While the glass in the top collection surface 24 flows through the upper half of each orifice 27. The glass on the two collection or distribution surfaces thus flow together at the orifices 27 and are emitted as bi-glass streams for attenuation by the gaseous jets of the annularly oriented burners 18. The bi-glass streams are thus attenuated into fibers which form the cylindrical veil extending downwardly from the zone of attenuation.
This construction is mpecially adapted to formation of bi-glass streams when but a single row of orifices is provided in the periphery of the spinner. Such spinner constructions, however, are not limited to a single row arrangement in that additional horizontal platforms can be incorporated in the spinner to extend the concepts of the construction to two or more rows of bi-glass streams emitted from the spinner.
FIGURE 3 shows another embodiment of the present invention wherein the construction is adapted to provide a multiplicity of vertically spaced rows of orifices for the formation of bi-glass streams, while yet providing only two collection surfaces for the different glasses introduced into the spinner. In this construction the orifices are arranged in vertically oriented rows and each bisected by interiorly disposed, vertical partitioning members which extend from top to bottom of the spinner interior.
In greater detail, it will be seen that the interior of the spinner 30 has a bottom distributing surface 35 which the glass of a central stream 32 is deposited for centrifugal distribution, while a horizontally disposed distributing surface 38 vertically spaced above the bottom surface 35 collects and distributes the glass of a second stream 34 of molten glass. The surface 38 is annular in shape with a central opening through which the stream 32 flows constantly to the bottom collection surface 35. A concentric cylindrical wall 31, slightly smaller in diameter than the largest interior diameter of the spinner 30 is arranged to extend from top to bottom of the interior, thus forming a zone behind the orifices 37 which can be sub-divided into compartments 41 and 42 for different glasses A and B of the separate streams 32 and 34 respectively. The compartments 41 and 42 are formed by radial partitioning walls 33 each of which extend outward from the outside surface of the cylindrical wall 31 to bisect orifices 37 in an immediately oppositely disposed row of orifices. Thus, the dividing walls 33, in a sense, form vertical compartments behind each adjacent vertical row of orifices 37. Every other one of the vertically oriented compartments about the inner periphery of the spinner are arranged to receive one of the glass compositions of the streams 32 and 34, while those interposed between these compartments are arranged to receive the other glass. Distribution of the glass from the streams 32 and 34 into the respective compartments is accomplished by providing separate openings or channels for each of these glasses to their respective compartments. The glass of the streams 32 is distributed on the bottom surface 35 of the spinner and caused to flow into the vertically oriented compartment 41 through a series of spaced openings 39 which are provided in the bottom zone of the annular wall 31 below the annular distributing surface 38. The glass of the stream 34 is correspondingly introduced into vertically oriented compartments 42 through a series of openings 36 located in the annular wall 31 just above the surface 38.
Each of the dividing walls 33 extending from the cylindrical wall 31 in bisecting relation with the orifices 37, thus have different glasses flowing on opposite sides thereof into the orifices 37, as indicated more clearly in FIG- URE 4, to form bi-glass streams which then are attenuated into the bi-glass curly fibers. Any number of orifices 37 within reasonable limits can thus be aligned without ditficulty in a vertical row bisected by the edge of a dividing wall 33.
FIGURE 5 illustrates another embodiment of the present invention wherein a plurality of rows of orifices in the periphery of the spinner 50 are bisected by horizontal partitioning members as are the orifices of the construction of FIGURE 2. In this construction, the bottom surface 55 of the spinner 50 acts as a distribution surface for glass B of a stream 52, while a second surface 58, vertically spaced from the bottom of the spinner, is arranged to distribute glass A of a stream 54. The glass A, upon being thrown outwardly from the surface 58, passes through a series of channels 56 to be divided between compartments 56a and 56b, separated by a compartment 59 which accommodates glass B. The compartments 56a and 56b in other words are supplied with molten glass A through radial channels 56 spaced about the interior of the spinner. Each wall of the compartments 56a and 56b acts to partition the zone of the orifices 57 so that glass from each of these compartments flow into half of each of the orifices 57, while glass of composition B distributed by the lower surface 55 of the spinner flows about the channels 56 and into the zones not covered by the compartments 56a and 56b to supply the remaining half of the glass flowing from each of orifices 57. Bi-glass streams are thus ejected from each of the orifices 57, and any number of rows of orifices spaced vertically from each other can be arranged to receive the two dissimilar glasses for ejectment of bi-glass streams and formation of bi-glass fibers.
FIGURE 6 is illustrative of the general appearance of bi-glass fiber 60 produced with the constructions of the foregoing figures. As indicated above, the glass upon attenuation and cooling acquires the curled character by reason of the dissimilar co-eflicients of expansion thereof. Because of the differences in co-efiicients, the opposite sides of the fibers contract to different degrees, one side of the fiber being shorter along its entire length than the other, thus resulting in a continuous helically shaped curl.
For example, in some instances it may be desirable that the bisecting partition extend into the tubular channel of the orifices, or even through, and to a position slightly beyond the exterior of the rotor periphery, depending upon the viscosities, temperatures, and quantities of the glasses to be combined at the orifices. Although the spinner constructions herein disclosed have been illustrated with orifices bisected by members extending to a position immediately behind the orifice so that the glasses introduced into the orifices are combined within the orifiice channel prior to emission from the rotor, it will be understood that various degrees of bisection are possible.
The following are examples of glass compositions which can be used to produce curly bi-glass fibers or filaments. The examples set forth are presented solely for the pur- Compositions B Zn Ooefliclent of Thermal Expansion+ 10- per 0 Curliness of glass fibers produced by the arrangements set out above impart a bulkiness to the mass, thereby reducing the density requirements for desired dimensions in the mass. Additionally, the curliness provides resilient or a spring-like action, as Well as a better recovery characteristic for the mass than is obtainable with masses of straight fibers. Furthermore, the irritability frequently caused by contact with numerous ends of straight fibers is practically eliminated by reason of the individual fibers being capable of bending back on themselves into the mass accumulation within which they are incorporated. Discontinuous fibers of this character are especially adaptable to forming staple-type yarns by twisting and drafting in view of their tendencies toward inter-adherence. Such fibers are also of character which permits ready combination with other fibers, such as cotton or cellulose fibers to produce composite blends in yarns, or mass products such as mats or paper. They can also be combined with other fibers, such a soluble fiber, like polyvinyl or alcohol fibers which might be used as a carrier for the glass fibers to improve results in picking, carding, drawing, roving and spinning the glass fibers into yarns. The soluble fibers can thereafter be dissolved following processing of the yarns, such as after having been woven into a fabric.
Bi-glass curly fibers also have proven of desirable character in the reinforcement of gypsum board and pottery or firing clays in that they have what might be termed a mechanical hook or coiling action so that they reinforce in a different manner than straight fibers for such purposes.
It will be understood that variations of the concepts herein presented will be readily discernable to those familiar with the natural and synthetic fiber arts, and that modifications can be made in the structures and processes within the broad concepts of the invention. For example, in addition to providing dissimilar glasses into streams for forming bi-glass fibers, variations might include the introduction of a stream of powder glass for combination with a molten stream of glass, or two molten streams of similar glass might be treated for the formation of a composite glass stream, which when attenuated would result in a curly glass. In this regard, a single glass might be divided into two streams, one of which having powder added for the formation of a composition with a difierent co-eflicient of expansion than the other, thereby making possible the formation of a curly bi-glass fiber. Furthermore, the orifices in the spinners can be divided in diiferent proportions to join predetermined difierent quantities of the softened materials into the common streams ejected by the spinners.
In view of the foregoing, it will be understood that while I have shown certain particular forms of my invention, that I do not wish to be limited thereto, since many modifications may be made within the concepts of the invention and I, therefore, contemplate by the appended claims to cover allsuch modifications which fall within the true spirit and scope of my invention.
I claim:
1(Apparatus for producing composite fibers of heatsoftenable materials comprising a circular hollow rotor, having orifices distributed in its circumferential periphery, partitioning members dividing the interior of said rotor into separate zones for centrifugal distribution of diiferent heat softened material introduced to the rotor, each of said orifices being partitioned in bisecting relation by said members for centrifugal projection of material distributed by each of said zones in composite relation with the material of the other of said zones.
2. Apparatus for producing composite fibers of heatsoftenable materials comprising a hollow spinner, a hollow shaft for driving said spinner, means for driving said shaft and rotor, orifices distributed in the circumferential periphery of said rotor, means for supplying dissimilar heat softened fiber-forming materials to said spinner, partitioning means providing separate material distributing zones on the interior of said spinner for each of said materials, each of said orifices being divided in bisected relation by a partitioning member, one side of each of said orifices being connected with a distributing zone for one of said materials while the other side of each of said partitioning members is connected with the distributing zone for the other of said materials, whereby each of the two materials introduced to said spinner is projected simultaneously with the other from each orifice in a composite stream, and means for attenuation of such composite streams projected from said orifices into composite fibers of the two materials.
3. Apparatus for producing fibers of heat-softenable materials comprising in combination a support, a hollow rotor, a hollow shaft connected to drive said rotor, means carried by the support for rotatably supporting the shaft and rotor, means for rotating the shaft and rotor, said rotor having orifices in its circumferential periphery through which the material in the rotor is projected by centrifugal forces to form discrete bodies of heat softened material introduced therein, said orifices being arranged in circumferential spaced relation about the circumferen tial periphery of said rotor, an annular partition extending horizontally across the interior of said rotor dividing it into upper and lower material distributing zones and being arnanged to horizontally bisect each of the orifices in said periphery, the opening in said annular partition being centrally located in line with the axis of rotation of said rotor, means for delivering heat softened material through the opening in said annular member into said lower distributing zone, and means for delivering different heat softened material to the top of said partition for distribution in the upper distributing zone, whereby material distributed by both distributing zones are caused to be simultaneously projected from each of said orifices as a common. discrete stream.
4. Apparatus for producing fibers of heat-softenable materials comprising in combination a support, a hollow rotor, a hollow shaft connected to drive said rotor, means carried by the support for rotatably supporting the shaft and rotor, means for rotating the shaft and rotor, said rotor having orifices in its circumferential periphery through which the material in the rotor is projected by centrifugal forces to form discrete bodies of heat softened mate-rial introduced therein, said orifices being arranged in a plurality of circumferential rows spaced from each other and with the orifices thereof being arranged in columns, a cylindrical wall internal of said rotor extending from top to bottom of the rotor interior and having a diameter slightly less than the interior diameter of said rotor, generally radially aligned dividing walls partitioning into compartments in the Zone between said cylindrical Wall and orificed periphery, said dividing walls each extending from a position of bisection of a column of orifices in the rotor periphery radially inward into abut- 7 ting relationship with the cylindrical wall, an annular partition extending generally horizontally across the interior of said rotor dividing it into upper and lower distributing zones and engaging the interior of said cylindrical wall, flow channels connecting the upper distributing zone alternate ones of the compartments formed by said dividing walls, and other flow channels connecting the remaining compartments directly to the lower distributing zone, means for delivering heat softened material through said annular partition into said lower distributing zone, and means for delivering a second heat softened material to the top of said annular partition for distribution in said upper distributing zone, whereby the heat softened materials of each of said zones is introduced into alternate compartments for projection from each orifice of the rotor in intimate relation with the heat softened material of the adjacent compartment.
5. Apparatus for producing fibers of heat-softenable materials comprising in combination a support, a hollow rotor, a hollow shaft connected to drive said rotor, means carried by the support for rotatably supporting the shaft and rotor, means for rotating the shaft and rotor, said rotor having orifices in its circumferential periphery through which the material in the rotor is projected by centrifugal forces to form discrete bodies of heat softened material introduced therein, said orifices being arranged in a plurality of rows vertically spaced from each other in the circumferential periphery of said rotor, the circumferential rows being arranged so that the orifices are oriented in vertical columns, a horizontal annular distributing surface in the interior of said rotor dividing it into an upper and lower distributing zone, members bisecting each of said orifices horizontally and forming channels for directing flow of material from each of said zones to each of said orifices, means for delivering heat softened material through said annular member into said lower distributing zone and means for delivering different heat softened material to the top of said surface for distribution in said upper distributing zone, whereby each of the two materials introduced into said rotor is directed to two different distributing zones and is pro- 8 jected from half of each of said orifices in intimate con tact with the other of said heat softened materials.
6. The method of producing composite textile fibers of dissimilar heat softened material comprising flowing separate streams of said dissimilar materials into a common centrifuge, centrifuging said materials in separated relation, centrifugally ejecting said dissimilar materials in side-by-side opposite relation from common orifices in said centrifuge as discrete composite streams of such materials, and then subjecting said composite streams to the forces of gaseous blasts to attenuate them into small diameter composite textile fibers of such materials said blast being directed perpendicular to the path of emission of the streams from said spinner to redirect the path over which attenuation of said streams is effected.
7. The method of producing composite textile fibers of two dissimilar heat-softened glasses, comprising introducing two streams of said dissimilar glasses into a rotating spinner, introducing each stream into a separate distributing zone within said spinner, projecting said dissimilar glasses in side-by-side opposite relation as composite streams from common orifices under the influence of the centrifugal force of the rotating spinner, and attenuating said composite streams into fibers of small diameter suitable for textile purposes by subjecting them to the forces of a gaseous blast, said blast being directed perpendicular to the path of emission of the composite streams from said spinner to redirect the path of attenuation of said streams.
References Cited in the file of this patent UNITED STATES PATENTS 2,313,296 Lamesch Mar. 9, 1943 2,331,945 Pazsiczky Oct. 19, 1943 2,333,218 Pazsiczky Nov. 2, 1943 2,338,473 Pazsiczky Ian. 4, 1944 2,624,912 Heymes et al. Ian. 13, 1953 FOREIGN PATENTS 849,842 France Aug. 28, 1939
US740922A 1958-06-09 1958-06-09 Method and means for centrifuging curly fibers Expired - Lifetime US2998620A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US740922A US2998620A (en) 1958-06-09 1958-06-09 Method and means for centrifuging curly fibers
FR795813A FR1225518A (en) 1958-06-09 1959-05-27 Method and apparatus for centrifuging spiral fibers
GB18415/59A GB863099A (en) 1958-06-09 1959-05-29 A method and apparatus for producing composite fibres
DEO6808A DE1127538B (en) 1958-06-09 1959-06-08 Device for the production of permanently curled threads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US740922A US2998620A (en) 1958-06-09 1958-06-09 Method and means for centrifuging curly fibers

Publications (1)

Publication Number Publication Date
US2998620A true US2998620A (en) 1961-09-05

Family

ID=24978615

Family Applications (1)

Application Number Title Priority Date Filing Date
US740922A Expired - Lifetime US2998620A (en) 1958-06-09 1958-06-09 Method and means for centrifuging curly fibers

Country Status (4)

Country Link
US (1) US2998620A (en)
DE (1) DE1127538B (en)
FR (1) FR1225518A (en)
GB (1) GB863099A (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174182A (en) * 1962-06-22 1965-03-23 Edward W O Shaughnessy Spinning arrangement for spinning fibers from molten plastic or the like
US3190736A (en) * 1962-08-21 1965-06-22 Johns Manville Rotor for the forming of glass filaments
US3298058A (en) * 1964-12-31 1967-01-17 Lummus Co Apparatus for forming melt droplets
US3358322A (en) * 1965-06-10 1967-12-19 Monsanto Co Process and apparatus for spinning bicomponent micro-denier fibers
US3853569A (en) * 1963-02-07 1974-12-10 Saint Gobain Silicate glass fiber compositions
WO1995012551A1 (en) * 1993-11-05 1995-05-11 Owens Corning Apparatus for making dual-glass fibers
WO1995012554A1 (en) * 1993-11-05 1995-05-11 Owens Corning Glass compositions for producing dual-glass fibers
WO1995012552A1 (en) * 1993-11-05 1995-05-11 Owens Corning Method of making glass fiber insulation product
US5431992A (en) * 1993-11-05 1995-07-11 Houpt; Ronald A. Dual-glass fibers and insulation products therefrom
WO1995029880A1 (en) * 1994-05-02 1995-11-09 Owens Corning Method for making dual-glass fibers
WO1995029882A1 (en) * 1994-05-02 1995-11-09 Owens Corning Spinner for manufacturing dual-component fibers
WO1995029881A1 (en) * 1994-05-02 1995-11-09 Owens Corning Spinner for manufacturing dual-component fibers
US5474590A (en) * 1993-11-05 1995-12-12 Owens-Corning Fiberglas Technology, Inc. Spinner for manufacturing dual-component fibers having an angled array of orifices
US5482527A (en) * 1994-09-20 1996-01-09 Owens-Corning Fiberglas Technology, Inc. Spinner apparatus for producing dual component fibers
TR28152A (en) * 1994-07-14 1996-02-29 Owens Corning Fiberglass Corp Method for making insulating products from glass fiber.
EP0703196A1 (en) 1994-09-20 1996-03-27 Owens-Corning Fiberglas Corporation Spinner for producing dual-component fibers
WO1996009257A1 (en) * 1994-09-20 1996-03-28 Owens Corning Spinner for dual-component fibers having multiple exits for each inlet
WO1996009256A1 (en) * 1994-09-21 1996-03-28 Owens Corning Hollow multicomponent insulation fibers and the manufacturing of same
WO1996009258A1 (en) * 1994-09-21 1996-03-28 Owens-Corning Dual glass delivery system
EP0710631A1 (en) * 1994-11-03 1996-05-08 Owens-Corning Fiberglas Corporation Method for manufacturing a dual-component mineral fiber product
US5523265A (en) * 1995-05-04 1996-06-04 Owens-Corning Fiberglas Technology, Inc. Glass compositions and fibers therefrom
TR28369A (en) * 1994-11-18 1996-08-16 Owens Corning Fiberglass Corp Glass compositions for the production of double glass fiber.
EP0741114A1 (en) * 1995-05-04 1996-11-06 Owens Corning Irregularly shaped glass fibers and insulation therefrom
WO1996034835A1 (en) * 1995-05-04 1996-11-07 Owens Corning Irregularly shaped glass fibers and insulation therefrom
WO1996034834A1 (en) * 1995-05-04 1996-11-07 Owens Corning Fiber manufacturing spinner and fiberizer
WO1996034837A1 (en) * 1995-05-04 1996-11-07 Owens Corning Irregularly shaped glass fibers and insulation therefrom
TR28765A (en) * 1994-05-02 1997-03-03 Owens Corning Corp Spinner for the production of double component fiber.
US5618328A (en) * 1993-11-05 1997-04-08 Owens Corning Fiberglass Technology, Inc. Spinner for manufacturing dual-component fibers
US5624742A (en) * 1993-11-05 1997-04-29 Owens-Corning Fiberglass Technology, Inc. Blended loose-fill insulation having irregularly-shaped fibers
US5629089A (en) * 1993-11-05 1997-05-13 Owens-Corning Fiberglas Technology, Inc. Glass fiber insulation product
WO1997033841A1 (en) * 1996-02-29 1997-09-18 Owens Corning Bicomponent glass and polymer fibers made by rotary process
EP0801040A2 (en) * 1996-04-12 1997-10-15 Isover Saint-Gobain Device for fiberising molten mineral materials and its manufacture
EP0801038A2 (en) * 1996-04-12 1997-10-15 Isover Saint-Gobain Mineral wool products and method and device for producing them
US5679126A (en) * 1995-11-15 1997-10-21 Owens-Corning Fiberglas Technology, Inc. Method for collecting fibers from rotary fiberizer
US5683810A (en) * 1993-11-05 1997-11-04 Owens-Corning Fiberglas Technology Inc. Pourable or blowable loose-fill insulation product
US5688301A (en) * 1994-09-21 1997-11-18 Owens-Corning Fiberglas Technology Inc Method for producing non-woven material from irregularly shaped glass fibers
US5702658A (en) * 1996-02-29 1997-12-30 Owens-Corning Fiberglas Technology, Inc. Bicomponent polymer fibers made by rotary process
EP0818425A1 (en) * 1996-07-11 1998-01-14 Isover Saint-Gobain Material based on mineral fibres
US5723216A (en) * 1993-11-05 1998-03-03 Owens-Corning Fiberglas Technology, Inc. Dual-glass fiber insulation product
US5779760A (en) * 1996-09-30 1998-07-14 Owens Corning Fiberglas Technology, Inc. Fiber manufacturing spinner
US5786082A (en) * 1993-11-05 1998-07-28 Owens Corning Fiberglas Technology, Inc. Loose-fill insulation having irregularly shaped fibers
US5785996A (en) * 1996-11-27 1998-07-28 Owens Corning Fiberglas Technology, Inc. Fiber manufacturing spinner and fiberizer
FR2764597A1 (en) * 1997-06-17 1998-12-18 Saint Gobain Isover COMPOSITION OF MINERAL WOOL
US5980680A (en) * 1994-09-21 1999-11-09 Owens Corning Fiberglas Technology, Inc. Method of forming an insulation product
US6010785A (en) * 1998-02-25 2000-01-04 E. I. Du Pont De Nemours And Company Cardable blends of dual glass fibers
US6391444B1 (en) * 2000-03-14 2002-05-21 Johns Manville International, Inc. Core-sheath glass fibers
US20030188557A1 (en) * 2002-04-04 2003-10-09 Joseph Skarzenski High throughput capactiy spinner for manufacturing dual-component curly fibers
US20030203200A1 (en) * 2002-04-29 2003-10-30 Joseph Skarzenski Hybrid spinner for making a mixture of single-glass and dual-glass fibres right at the fibre forming stage
US20050026527A1 (en) * 2002-08-05 2005-02-03 Schmidt Richard John Nonwoven containing acoustical insulation laminate
US20080136054A1 (en) * 2006-12-08 2008-06-12 Spindynamics, Inc. Fiber and nanofiber spinning apparatus
US20090091056A1 (en) * 2007-10-05 2009-04-09 Spindynamics, Inc. Attenuated fiber spinning apparatus
US20090320528A1 (en) * 2008-06-25 2009-12-31 Joseph Skarzenski Spinner for manufacturing dual-component irregularly-shaped hollow insulation fiber
US10196759B2 (en) 2010-03-25 2019-02-05 Carl Freudenberg Kg Multi-component fibers produced by a rotational spinning method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591459A (en) * 1995-02-28 1997-01-07 Owens Corning Fiberglas Technology, Inc. Apparatus for reinforcing a fiber producing spinner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR849842A (en) * 1938-02-04 1939-12-02 Saint Gobain Process for manufacturing artificial mineral fibers, more particularly glass fibers, with a rough surface
US2313296A (en) * 1936-09-30 1943-03-09 Lamesch Armand Fiber or filament of glass
US2333218A (en) * 1938-11-11 1943-11-02 Pazsiczky Gedeon Von Method of and apparatus for producing glass fibers
US2338473A (en) * 1938-11-15 1944-01-04 Passiczky Gedeon Von Method of and apparatus for producing glass fibers
US2624912A (en) * 1946-05-31 1953-01-13 Saint Gobain Process and apparatus for the production of fibers from thermoplastics

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE625355C (en) * 1934-02-05 1936-02-10 Glanzstoff Ag Process for the aftertreatment of viscose rayon
DE683867C (en) * 1937-12-14 1939-11-17 Kaiser Wilhelm Inst Fuer Silik Method for producing curled glass threads
GB580764A (en) * 1943-05-13 1946-09-19 American Viscose Corp Improvements in or relating to the manufacture of composite artificial filaments
US2517695A (en) * 1945-07-13 1950-08-08 Ciba Pharm Prod Inc Production of 1-alkyl 4-phenylpiperidyl 4-ketones
US2572936A (en) * 1947-02-27 1951-10-30 American Viscose Corp Process for making crimped artificial filaments

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2313296A (en) * 1936-09-30 1943-03-09 Lamesch Armand Fiber or filament of glass
FR849842A (en) * 1938-02-04 1939-12-02 Saint Gobain Process for manufacturing artificial mineral fibers, more particularly glass fibers, with a rough surface
US2331945A (en) * 1938-02-04 1943-10-19 Pazsiczky Gedeon Von Production of curled mineral fibers
US2333218A (en) * 1938-11-11 1943-11-02 Pazsiczky Gedeon Von Method of and apparatus for producing glass fibers
US2338473A (en) * 1938-11-15 1944-01-04 Passiczky Gedeon Von Method of and apparatus for producing glass fibers
US2624912A (en) * 1946-05-31 1953-01-13 Saint Gobain Process and apparatus for the production of fibers from thermoplastics

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174182A (en) * 1962-06-22 1965-03-23 Edward W O Shaughnessy Spinning arrangement for spinning fibers from molten plastic or the like
US3190736A (en) * 1962-08-21 1965-06-22 Johns Manville Rotor for the forming of glass filaments
US3853569A (en) * 1963-02-07 1974-12-10 Saint Gobain Silicate glass fiber compositions
US3298058A (en) * 1964-12-31 1967-01-17 Lummus Co Apparatus for forming melt droplets
US3358322A (en) * 1965-06-10 1967-12-19 Monsanto Co Process and apparatus for spinning bicomponent micro-denier fibers
US5723216A (en) * 1993-11-05 1998-03-03 Owens-Corning Fiberglas Technology, Inc. Dual-glass fiber insulation product
US5629089A (en) * 1993-11-05 1997-05-13 Owens-Corning Fiberglas Technology, Inc. Glass fiber insulation product
WO1995012552A1 (en) * 1993-11-05 1995-05-11 Owens Corning Method of making glass fiber insulation product
US5431992A (en) * 1993-11-05 1995-07-11 Houpt; Ronald A. Dual-glass fibers and insulation products therefrom
US5536550A (en) * 1993-11-05 1996-07-16 Owens Corning Fiberglas Technology, Inc. Dual-glass fibers and insulation products therefrom
US5618327A (en) * 1993-11-05 1997-04-08 Owens-Corning Fiberglas Technology, Inc. Method of making an insulation product from irregularly-shaped conjugate glass fibers
US5618328A (en) * 1993-11-05 1997-04-08 Owens Corning Fiberglass Technology, Inc. Spinner for manufacturing dual-component fibers
US5468275A (en) * 1993-11-05 1995-11-21 Owens-Corning Fiberglas Technology, Inc. Apparatus having elongated orifices for centrifuging dual-component, curly, glass fibers
US5474590A (en) * 1993-11-05 1995-12-12 Owens-Corning Fiberglas Technology, Inc. Spinner for manufacturing dual-component fibers having an angled array of orifices
US5624742A (en) * 1993-11-05 1997-04-29 Owens-Corning Fiberglass Technology, Inc. Blended loose-fill insulation having irregularly-shaped fibers
US5786082A (en) * 1993-11-05 1998-07-28 Owens Corning Fiberglas Technology, Inc. Loose-fill insulation having irregularly shaped fibers
US5683810A (en) * 1993-11-05 1997-11-04 Owens-Corning Fiberglas Technology Inc. Pourable or blowable loose-fill insulation product
WO1995012554A1 (en) * 1993-11-05 1995-05-11 Owens Corning Glass compositions for producing dual-glass fibers
WO1995012551A1 (en) * 1993-11-05 1995-05-11 Owens Corning Apparatus for making dual-glass fibers
US6017835A (en) * 1993-11-05 2000-01-25 Owens Corning Fiberglas Technology, Inc. Glass compositions for producing dual-glass fibers
US5672429A (en) * 1993-11-05 1997-09-30 Owens-Corning Fiberglas Technology, Inc. Glass fiber insulation product
CN1046686C (en) * 1994-05-02 1999-11-24 欧文斯·科尔宁格公司 Spinner for mfg. dual-component fibers
US5509953A (en) * 1994-05-02 1996-04-23 Owens-Corning Fiberglas Technology, Inc. Spinner for manufacturing dual-component fibers
TR28719A (en) * 1994-05-02 1997-01-27 Owens Corning Fiberglass Corp The method for the production of double / double glass fiber.
WO1995029881A1 (en) * 1994-05-02 1995-11-09 Owens Corning Spinner for manufacturing dual-component fibers
WO1995029882A1 (en) * 1994-05-02 1995-11-09 Owens Corning Spinner for manufacturing dual-component fibers
US5529596A (en) * 1994-05-02 1996-06-25 Owens-Corning Fiberglas Technology, Inc. Method for making dual-glass fibers by causing one glass to flow around another glass as they are spun from a rotating spinner
WO1995029880A1 (en) * 1994-05-02 1995-11-09 Owens Corning Method for making dual-glass fibers
TR28765A (en) * 1994-05-02 1997-03-03 Owens Corning Corp Spinner for the production of double component fiber.
EP0686607A1 (en) 1994-06-06 1995-12-13 Owens-Corning Fiberglas Corporation Spinner for manufacturing dual-component fibers
TR28152A (en) * 1994-07-14 1996-02-29 Owens Corning Fiberglass Corp Method for making insulating products from glass fiber.
US5514199A (en) * 1994-09-20 1996-05-07 Owens-Corning Fiberglas Technology, Inc. Spinner for producing dual component fibers
US5482527A (en) * 1994-09-20 1996-01-09 Owens-Corning Fiberglas Technology, Inc. Spinner apparatus for producing dual component fibers
EP0703196A1 (en) 1994-09-20 1996-03-27 Owens-Corning Fiberglas Corporation Spinner for producing dual-component fibers
WO1996009255A1 (en) * 1994-09-20 1996-03-28 Owens Corning Spinner apparatus for producing dual-component fibers
US5595766A (en) * 1994-09-20 1997-01-21 Owens-Corning Fiberglas Technology, Inc. Spinner for dual component fibers having multiple exits for each inlet
WO1996009257A1 (en) * 1994-09-20 1996-03-28 Owens Corning Spinner for dual-component fibers having multiple exits for each inlet
WO1996009258A1 (en) * 1994-09-21 1996-03-28 Owens-Corning Dual glass delivery system
US5688301A (en) * 1994-09-21 1997-11-18 Owens-Corning Fiberglas Technology Inc Method for producing non-woven material from irregularly shaped glass fibers
US5770309A (en) * 1994-09-21 1998-06-23 Owens Corning Fiberglas Technology Inc. Hollow multi-component insulation fibers and the manufacturing of same
US5743932A (en) * 1994-09-21 1998-04-28 Owens-Corning Fiberglas Technology Inc. Method of making an insulation product from hollow fibers
US5647883A (en) * 1994-09-21 1997-07-15 Owens Corning Fiberglas Technology Inc. Apparatus for making hollow multi-component insulation fibers
US5885390A (en) * 1994-09-21 1999-03-23 Owens-Corning Fiberglas Technology Inc. Processing methods and products for irregularly shaped bicomponent glass fibers
WO1996009256A1 (en) * 1994-09-21 1996-03-28 Owens Corning Hollow multicomponent insulation fibers and the manufacturing of same
US5980680A (en) * 1994-09-21 1999-11-09 Owens Corning Fiberglas Technology, Inc. Method of forming an insulation product
EP0710631A1 (en) * 1994-11-03 1996-05-08 Owens-Corning Fiberglas Corporation Method for manufacturing a dual-component mineral fiber product
TR28369A (en) * 1994-11-18 1996-08-16 Owens Corning Fiberglass Corp Glass compositions for the production of double glass fiber.
WO1996034835A1 (en) * 1995-05-04 1996-11-07 Owens Corning Irregularly shaped glass fibers and insulation therefrom
US5576252A (en) * 1995-05-04 1996-11-19 Owens-Corning Fiberglas Technology, Inc. Irregularly-shaped glass fibers and insulation therefrom
WO1996034837A1 (en) * 1995-05-04 1996-11-07 Owens Corning Irregularly shaped glass fibers and insulation therefrom
US5582841A (en) * 1995-05-04 1996-12-10 Owens Corning Fiberglas Technology, Inc. Fiber manufacturing spinner and fiberizer
EP0741114A1 (en) * 1995-05-04 1996-11-06 Owens Corning Irregularly shaped glass fibers and insulation therefrom
CN1091754C (en) * 1995-05-04 2002-10-02 欧文斯·科尔宁格公司 Irregularly shaped glass fibers and insulation therefrom
WO1996034834A1 (en) * 1995-05-04 1996-11-07 Owens Corning Fiber manufacturing spinner and fiberizer
US5523265A (en) * 1995-05-04 1996-06-04 Owens-Corning Fiberglas Technology, Inc. Glass compositions and fibers therefrom
US5622903A (en) * 1995-05-04 1997-04-22 Owens-Corning Fiberglas Technology, Inc. Irregularly shaped glass fibers and insulation therefrom
US5998021A (en) * 1995-11-15 1999-12-07 Owens Corning Fiberglas Technology, Inc. Method for collecting fibers from a rotary fiberizer
US5679126A (en) * 1995-11-15 1997-10-21 Owens-Corning Fiberglas Technology, Inc. Method for collecting fibers from rotary fiberizer
WO1997033841A1 (en) * 1996-02-29 1997-09-18 Owens Corning Bicomponent glass and polymer fibers made by rotary process
US5702658A (en) * 1996-02-29 1997-12-30 Owens-Corning Fiberglas Technology, Inc. Bicomponent polymer fibers made by rotary process
US5987928A (en) * 1996-04-12 1999-11-23 Isover Saint-Gobain Device for fiberizing molten mineral materials
EP0801040A3 (en) * 1996-04-12 1998-01-28 Isover Saint-Gobain Device for fiberising molten mineral materials and its manufacture
EP0801038A3 (en) * 1996-04-12 1998-03-18 Isover Saint-Gobain Mineral wool products and method and device for producing them
EP0801040A2 (en) * 1996-04-12 1997-10-15 Isover Saint-Gobain Device for fiberising molten mineral materials and its manufacture
EP0801038A2 (en) * 1996-04-12 1997-10-15 Isover Saint-Gobain Mineral wool products and method and device for producing them
EP0818425A1 (en) * 1996-07-11 1998-01-14 Isover Saint-Gobain Material based on mineral fibres
US5968645A (en) * 1996-07-11 1999-10-19 Isover Saint-Gobain Inorganic fibre material
US6167729B1 (en) 1996-09-30 2001-01-02 Owens Corning Fiberglas Technology, Inc. Fiber manufacturing spinner
EP0931027A1 (en) * 1996-09-30 1999-07-28 Owens Corning Fiber manufacturing spinner
EP0931027A4 (en) * 1996-09-30 2002-09-25 Owens Corning Fiberglass Corp Fiber manufacturing spinner
US5779760A (en) * 1996-09-30 1998-07-14 Owens Corning Fiberglas Technology, Inc. Fiber manufacturing spinner
US5785996A (en) * 1996-11-27 1998-07-28 Owens Corning Fiberglas Technology, Inc. Fiber manufacturing spinner and fiberizer
WO1998057900A1 (en) * 1997-06-17 1998-12-23 Isover Saint-Gobain Mineral wool composition
FR2764597A1 (en) * 1997-06-17 1998-12-18 Saint Gobain Isover COMPOSITION OF MINERAL WOOL
US6010785A (en) * 1998-02-25 2000-01-04 E. I. Du Pont De Nemours And Company Cardable blends of dual glass fibers
US6151763A (en) * 1998-02-25 2000-11-28 E. I. Du Pont De Nemours And Company Cardable blends of dual glass fibers
US6365532B1 (en) 1998-02-25 2002-04-02 E. I. Du Pont De Nemours And Company Cardable blends of dual glass fibers
US6468930B2 (en) 1998-02-25 2002-10-22 E.I. Du Pont De Nemours And Company Cardable blends of dual glass fibers
US6559080B2 (en) 1998-02-25 2003-05-06 Toray Industries, Inc. Cardable blends of dual glass fibers
US6391444B1 (en) * 2000-03-14 2002-05-21 Johns Manville International, Inc. Core-sheath glass fibers
US20030188557A1 (en) * 2002-04-04 2003-10-09 Joseph Skarzenski High throughput capactiy spinner for manufacturing dual-component curly fibers
US6990837B2 (en) 2002-04-04 2006-01-31 Ottawa Fibre Inc. High throughput capacity spinner for manufacturing dual-component curly fibers
US20030203200A1 (en) * 2002-04-29 2003-10-30 Joseph Skarzenski Hybrid spinner for making a mixture of single-glass and dual-glass fibres right at the fibre forming stage
US7003987B2 (en) 2002-04-29 2006-02-28 Ottawa Fibre, Inc. Hybrid spinner for making a mixture of single-glass and dual-glass fibres right at the fibre forming stage
US20050026527A1 (en) * 2002-08-05 2005-02-03 Schmidt Richard John Nonwoven containing acoustical insulation laminate
US20080136054A1 (en) * 2006-12-08 2008-06-12 Spindynamics, Inc. Fiber and nanofiber spinning apparatus
US7857608B2 (en) 2006-12-08 2010-12-28 Spindynamics, Inc. Fiber and nanofiber spinning apparatus
US20090091056A1 (en) * 2007-10-05 2009-04-09 Spindynamics, Inc. Attenuated fiber spinning apparatus
US7901195B2 (en) 2007-10-05 2011-03-08 Spindynamics, Inc. Attenuated fiber spinning apparatus
US20090320528A1 (en) * 2008-06-25 2009-12-31 Joseph Skarzenski Spinner for manufacturing dual-component irregularly-shaped hollow insulation fiber
US8291730B2 (en) 2008-06-25 2012-10-23 Certainteed Insulation Canada, Inc. Spinner for manufacturing dual-component irregularly-shaped hollow insulation fiber
US10196759B2 (en) 2010-03-25 2019-02-05 Carl Freudenberg Kg Multi-component fibers produced by a rotational spinning method

Also Published As

Publication number Publication date
DE1127538B (en) 1962-04-12
GB863099A (en) 1961-03-15
FR1225518A (en) 1960-07-01

Similar Documents

Publication Publication Date Title
US2998620A (en) Method and means for centrifuging curly fibers
US3259479A (en) Method of making curly composite fibers
US2331945A (en) Production of curled mineral fibers
US2897874A (en) Method and apparatus of forming, processing and assembling fibers
US3824086A (en) By-pass fiber collection system
US4194897A (en) Method for making fibers from glass or other attenuable materials
EP0686607B1 (en) Spinner for manufacturing dual-component fibers
US2431205A (en) Apparatus for manufacturing fibrous glass
US2751962A (en) Method and apparatus for producing fibrous products
US2212448A (en) Method and apparatus for the production of fibers from molten glass and similar meltable materials
US5468275A (en) Apparatus having elongated orifices for centrifuging dual-component, curly, glass fibers
JPS61141638A (en) Hollow centrifugal spinner
US4224373A (en) Fibrous product of non-woven glass fibers and method and apparatus for producing same
US2133236A (en) Glass wool and method and apparatus for making same
US2395371A (en) Crimped fibrous glass
US3019078A (en) Method of forming fibers
KR900009019B1 (en) Formation of fibers by centrifuging and gas attenuation
US2991507A (en) Manufacture of fibers from thermoplastic materials such as glass
US5514199A (en) Spinner for producing dual component fibers
US2632920A (en) Method and apparatus for producing mineral wool
US3257183A (en) Apparatus for processing heatsoftenable materials
US3254482A (en) Apparatus for forming and processing fibers
US3865566A (en) Method and apparatus for producing and collecting fibers
US4102662A (en) Method and apparatus for making fibers from thermoplastic materials
US3523774A (en) Rotary apparatus for forming glass fibers