Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3044545 A
Tipo de publicaciónConcesión
Fecha de publicación17 Jul 1962
Fecha de presentación2 Oct 1958
Fecha de prioridad2 Oct 1958
Número de publicaciónUS 3044545 A, US 3044545A, US-A-3044545, US3044545 A, US3044545A
InventoresTooke James W
Cesionario originalPhillips Petroleum Co
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
In situ combustion process
US 3044545 A
Imágenes(1)
Previous page
Next page
Descripción  (El texto procesado por OCR puede contener errores)

July 17, 1962 J. w. TOOKE IN srru COMBUSTION PROCESS Filed Oct. 2, 1958 OXYGEN 30 PRODUCTION 6g LP I AIR OR FUEL GAS PRODUCT WELL INJECTION WELL I OVERBURDEN COKE L M mo m E R IsuBsTRATuMI I TAR,O|L OR SHALE FORMATION INVENTOR.

J. W TOOKE BY 14% 0 A TTORNEIS 3,044,545 IN SITU COMBUSTION PROCESS James W. Tooke, Bartlesvillc, Okla., assignor to Phillips Petroleum Company, a corporation of Delaware Filed Oct. 2, 1958, Ser. No. 764,994 8 Claims. (Cl. 166-11) This invention relates to a process for recovering components of a carbonaceous deposit by in situ combustion. A specific aspect of the invention pertains to the conversion of coke, left in a carbonaceous stratum by an inverse in situ combustion wave, into the fuel gas and utilizing the resulting fuel gas in effecting an inverse in situ combustion process.

In situ combustion in the recovery of hydrocarbons from underground strata containing carbonaceous material is becoming more prevalent in the petroleum industry. In this technique of production, combustion is initiated in the carbonaceous stratum and the resulting combustion zone is caused to move through the stratum by either inverse or direct air drive whereby the heat of combustion of a substantial proportion of the hydrocarbon in the stratum drives out and, in the case of inverse drive, upgrades a substantial proportion of the unburned hydrocarbon material.

The ignition of carbonaceous material in a stratum around a bore hole thereon, followed by injection of air through the ignition borehole in the stratum, constitutes a direct drive process for effecting in situ combustion and recovery of hydrocarbons from the stratum. In this type of operation the stratum frequently plugs in front of the combustion zone because a heavy viscous liquid bank of hydrocarbon collects in the stratum in advance of the combustion zone which prevents movement of air to the combustion process. To overcome this difficulty and to permit the continued progress of the combustion zone through the stratum, inverse air injection has been resorted to. By this technique, a combustion zone is established around an ignition borehole by any suitable means and air is fed thru the stratum to the combustion zone from one or more surrounding boreholes. Most of the techniques utilized are also applied to the gasification coal veins.

When a carbonaceous stratum is produced by inverse in situ combustion with the fire front moving thru. the stratum countercurrently to the flow of air, a substantial carbonaceous or coke residue remains in the stratum. after passage of the fire front therethru. This coke residue is 1100 to 1700" F. Tests on tar sands indicate that the coke residue amounts to about 3 weight percent of the stratum. Hence, recovery of this valuable fuel in usable form is highly desirable. This invention is concerned with the recovery of this residual coke in the form of a combustible fuel gas and utilization of the fuel gas in an inverse in situ combustion process in a carbonaceous stratum.

Accordingly, it is an object of the invention to provide an improved process for the recovery of components of a carbonaceous deposit by in situ combustion. Another object is to utilize the hot coke deposit remaining in a carbonaceous stratum, after an inverse burning wave has passed therethru, in the recovery of hydrocarbons and other valuable components in the stratum in an inverse in situ combustion process effected in a carbonaceous stratum. A further object is to provide a more efficient process for recovering hydrocarbons by in situ combustion which effects better utilization of heat. It is also an object of the invention to increase the rate of advance of an inverse in situ combustion front and also the percentage of recovery of carbonaceous material from a stratum.

States Patent Q 3,044,545 Patented July 17, 1962 "ice an inverse in situ combustion process in a carbonaceous.-

stratum. When air alone is injected into the hot residual coke, the injected air burns a portion of the residual 'hot' coke and drives another portion out as gaseous hydrocarbon and CO, both of which are utilizable as fuel gas in assisting in the movement of an inverse burning wave in a carbonaceous stratum. In practicing the invention with a mixture of air and steam the following reactions take place:

Water gas reaction-'C+H O=CO+H Producer gas reaction- 108 C+.54 O =l.08 CO If 4.32 pounds of air is injected per pound of steam enough heat is developed by burning the coke with oxygen to sustain the endothermic Water gas reaction without reduction in stratum temperature. However, it is not essential to maintain the original stratum temperature in all cases and the amount of injected air may range from about 2 to 8 pounds per pound of steam. The heating value of the produced fuel gas is about 200 Btu. per cubic foot. Since the amount of coke left in the stratum after the inverse burning wave is about 3 weight percent of the stratum, the fuel gas produced is more than sufficient to feed-an inverse in situ combustion process in the same stratum to keep ahead of the fuel gas process, itself.

The air and steam may be injected in admixture or in separate streams into the stratum thru the same or thru separate boreholes so that these gases admix in'the. stratum and pass into thehot coke. Ordinarily in field operation, a carbonaceous stratum is produced by causing a fire front to pass thru successive annular sections of stratum. defined by successive rings of wells (radial drive) or rectangular sections defined by successive straight rows of wells (line drive). The wells immediately behind the fire front in an inverse air injection process are production wells while those immediately ahead of the fire front are wells and the next ring or row of wells in the path of the combustion front become air injection wells The production of fuel gas from the hot partially burned out stratum thru which the inverse burning wave has passed is effected between rows of wells or rings of wells in a section of the hot stratum thru which the combustion front has passed and the fuel gas, or at least a portion thereof, so produced is injected along with the injected air supporting the inverse burning wave in a section of virgin stratum.

The injection of fuel gas along with the'injected air to an inverse in situ combustion process increases the rate of movement of the inverse burning front and also increases the percentage of valuable hydrocarbons recovered from the stratum during the inverse burning phase of the process. Evidence of these advantages obtained in an inverse burning process are set forth in the application of A. R. Schleicher and 'J. C. Trantharn, S, N. 767,507, filed October 16, 1958. The amount of fuel gas injected with the combustion-supporting air should be in the range of about 0.5 to 7 volume percent in order bonaceous stratum showing an arrangement of apparatus for effecting the invention. 7

Referring to the drawing, a carbonaceous stratum '10 is penetrated by wells 12, 14,16, and 18. Well 12 is a 1100 to 1700 F. While the stratum intermediate wells 16 and 18 is at such a temperature, air or other oxygen rich gas, alone, or in admixture with steam is injected thru well 18 and passes into the stratum toward well 16, effecting partial combustion of the coke (and the water gas reaction when steam is utilized). Using air alone, a substantial concentration of hydrocarbons isfound in the efiiuent fuel gas. The fuel gas thus produced is recovered thru well 16 and is passed from tubing 22 thru line 24 to air injection line 26 for injection, along with the air, thru tubing 28 into well 14. A portion of the produced fuel gas may be separately recovered thru line 30 for use in any desired manner. The gas injected thru tubing 28 into well 14 passes thru stratum to the inverse burning front which is moved toward well 14. Hydrocarbons and combustion products from combustion front .20 pass into well 12 and are recovered thru tubing 32.

Wells 12, 14, 16, and 18 each represent a well in either a ring of wells or a row of wells,-depending upon whether the process is being effected by radial drive or by line drive, respectively. When effecting the process by radial drive, well 18 is either a central well with wells 16, 14, and 12 being successively more remote rings of Wells; or well 18 represents a well in an inner ring with the other wells representing wells in outer rings of wells, generally concentric. Normally, wells 12 and 16 are in adjacent rings or rows but this is not necessarily the practice to be followed inasmuch as the hot fuel gas recovered thru tubing 22 may be injected into the stratum in any portion of the field or stratum in which an in situ combustion process is being effected. In the operation illustrated in the drawing an inverse combustion front has been passed successively from wells 18 to wells 16, then to wells 12, and the front is in the process of moving to wells 14.

While the flow of air or airadmixed with steam is shown from Well 18 to well 16, it is also feasible to inject combustion-supporting gas and/ or steam into well 16 and recover fuel gas thru well 18, in which case, line 24 must be connected with tubing 21.

When combustion front 21 arrives at or approaches well 14, injection of air and fuel gas thru an outer more remote ring of wells or line of wells (not shown) is initiated and the combustion front is moved beyond wells 14, the latter being used as production wells in the same manner as wells 12 were utilized as production wells during the movement of combustion front 20 from wells 12 to wells 14. Normally the burning out of the carbonaceous residue between wells 16 and 18 can be controlled so as to complete this. burning about the time combustion front 20 arrives at wells 14. This makes it feasible to then convert the residual hot coke in the stratum between wells 12 and 16 to fuel as while coniaoaacas bustion front 28 is being moved from wells 14 out to the next ring or row of wells. 7

It is to be understood that carbonaceous deposit" encompasses any subterranean deposit of combustible organic material including oilshale, tar sand, oil sand,

partially depleted oil sand, lignite, porous and/or fractured coal veins, and coke left by pyrolysis of the foregoing strata.

The term O -containing gas encompasses pure oxygen, air, O -enriched air, and diluted air which is capable of supporting combustion. Where the term air is used, it

is to be understood that combustion supporting O -containing gas may be used.

Certain modifications of the invention will become apparent to those skilled in the art and the illustrative details disclosed are not to be construed as imposing unnecessary limitationson the invention.

.1 claim:

l. A process for producing hydrocarbons from a permeable carbonaceous stratum which comprises injecting a first gas selected from the group consisting of O containing gas and a mixture of same with steam into a first section of said stratum thru which an inversely burning combustion zone has beenpassed, leaving hot coke in same at combustion supporting temperature, while said first section is at said temperature to produce fuel gas by reaction of said first gas with said coke, said gas being injected thru a first injection wellin said first section and said fuel gas being produced thru a production well therein; simultaneously maintaining a combustion zone in an unburned second section of said stratum intermediate a second production well and a second injection well therein and moving said zone thru same by feeding a mixture of combustion-supporting gas and said fuel gas in which the concentration of fuel gas is in the range of 0.5 to 7.0 volume percent to said combustion zone thru said second injection well and recovering produced hydrocarbons thru said second production well.

2. The process of claim 1 wherein the injected. gas compnses air.

3. The process of claim 1 wherein the injected gas comprises air and steam.

4. The process of claim 3 wherein the air is in the range of 2 to 8 pounds per pound of steam.

5. The process of claim 1 wherein the combustion zone is moved thru the second section from said second production well to said second injection well by igniting said second section around said production well.

6. The process of claim 5 wherein said hot fuel gas is recovered from said first section of stratum and injected into said second section of stratum while substantially at the recovery temperature.

7. The process of claim 5 wherein said mixture comprises air.

' 8. The process of claim 5 wherein said mixture comprises air and steam, said air being in the range of 2 to 8 pounds per pound of steam.

References Cited in the file of this patent UNITED STATES PATENTS 2,481,051 Uren Sept. 6, 1949 2,642,943 ,Smith et al. June 23, 1953 2,793,696 Morse May 28, 1957 2,880,803 Parker Apr. 7, 1959

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US2481051 *15 Dic 19456 Sep 1949Texaco Development CorpProcess and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations
US2642943 *20 May 194923 Jun 1953Sinclair Oil & Gas CoOil recovery process
US2793696 *22 Jul 195428 May 1957Pan American Petroleum CorpOil recovery by underground combustion
US2880803 *16 Ene 19587 Abr 1959Phillips Petroleum CoInitiating in situ combustion in a stratum
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3196945 *8 Oct 196227 Jul 1965Pan American Petroleum CompanyMethod of forward in situ combustion with water injection
US3454958 *4 Nov 19668 Jul 1969Phillips Petroleum CoProducing oil from nuclear-produced chimneys in oil shale
US3457996 *30 Jul 196829 Jul 1969Phillips Petroleum CoThermal oil recovery process utilizing decomposition of co
US3596993 *14 Feb 19693 Ago 1971Mc Donnell Douglas CorpMethod of extracting oil and by-products from oil shale
US3809159 *2 Oct 19727 May 1974Continental Oil CoProcess for simultaneously increasing recovery and upgrading oil in a reservoir
US3892270 *6 Jun 19741 Jul 1975Chevron ResProduction of hydrocarbons from underground formations
US4005752 *16 Oct 19751 Feb 1977Occidental Petroleum CorporationMethod of igniting in situ oil shale retort with fuel rich flue gas
US4026357 *26 Jun 197431 May 1977Texaco Exploration Canada Ltd.In situ gasification of solid hydrocarbon materials in a subterranean formation
US4069867 *17 Dic 197624 Ene 1978The United States Of America As Represented By The United States Department Of EnergyCyclic flow underground coal gasification process
US4127171 *17 Ago 197728 Nov 1978Texaco Inc.Method for recovering hydrocarbons
US4537252 *20 Ene 198427 Ago 1985Standard Oil Company (Indiana)Circulating hot synthesis gas from coal combustion of liquefactionand gasification by pyrolysis
US4573530 *7 Nov 19834 Mar 1986Mobil Oil CorporationSaturation with combustible gas, reinitiating combustion and injecting oxygen containing gas and steam
US4662439 *14 May 19855 May 1987Amoco CorporationMethod of underground conversion of coal
US4662443 *5 Dic 19855 May 1987Amoco CorporationCombination air-blown and oxygen-blown underground coal gasification process
US5054551 *3 Ago 19908 Oct 1991Chevron Research And Technology CompanyIn-situ heated annulus refining process
US5145003 *22 Jul 19918 Sep 1992Chevron Research And Technology CompanyPetroleum recovery by viscosity reduction and catalytic hydrogenation
US5456315 *1 Feb 199410 Oct 1995Alberta Oil Sands Technology And ResearchHorizontal well gravity drainage combustion process for oil recovery
US658168424 Abr 200124 Jun 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US658850324 Abr 20018 Jul 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US658850424 Abr 20018 Jul 2003Shell Oil CompanyConversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground coal formations; pyrolysis
US659190624 Abr 200115 Jul 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US659190724 Abr 200115 Jul 2003Shell Oil CompanyPyrolysis
US660703324 Abr 200119 Ago 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US660957024 Abr 200126 Ago 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US668838724 Abr 200110 Feb 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US669851524 Abr 20012 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US670201624 Abr 20019 Mar 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US670875824 Abr 200123 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US671213524 Abr 200130 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US671213624 Abr 200130 Mar 2004Shell Oil CompanyProviding heat to the formation; controlling the heat from the heat source such that an average temperature within at least a majority of the selected section of the formation is less than about 375 degrees c.
US671213724 Abr 200130 Mar 2004Shell Oil CompanyHeat exchanging to superimpose heat
US671554624 Abr 20016 Abr 2004Shell Oil CompanyChemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed
US671554724 Abr 20016 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US671554824 Abr 20016 Abr 2004Shell Oil CompanyElectrical heaters may be used to heat the subterranean formation by radiation and/or conduction
US671554924 Abr 20016 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US671904724 Abr 200113 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US672242924 Abr 200120 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US672243024 Abr 200120 Abr 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US672243124 Abr 200120 Abr 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US672592024 Abr 200127 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US672592124 Abr 200127 Abr 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US672592824 Abr 200127 Abr 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US672939524 Abr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US672939624 Abr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US672939724 Abr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US672940124 Abr 20014 May 2004Shell Oil CompanySynthesis gas may be produced from the formation. synthesis gas may be used as a feed stream in an ammonia synthesis process. ammonia may be used as a feed stream in a urea synthesis process.
US673279424 Abr 200111 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US673279524 Abr 200111 May 2004Shell Oil CompanyProviding heat from one or more heat sources to at least one portion of formation; allowing heat to transfer from the one or more heat sources to a selected section of the formation; controlling the heat; producing a mixture from the formation
US673279624 Abr 200111 May 2004Shell Oil CompanyHeating section of formation with heat sources to temperature allowing generation of synthesis gas, providing synthesis gas generating fluid to section, removing synthesis gas generated, repeating for second section, blending for desired ratio
US673621524 Abr 200118 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US673939324 Abr 200125 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US673939424 Abr 200125 May 2004Shell Oil CompanyProviding heat and a synthesis gas generating fluid to the section to generate synthesis gas
US674258724 Abr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US674258824 Abr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US674258924 Abr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US674259324 Abr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US674583124 Abr 20018 Jun 2004Shell Oil CompanyMixture of hydrocarbons, h2, and/or other formation fluids may be produced from the formation. heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature.
US674583224 Abr 20018 Jun 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US674583724 Abr 20018 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US674902124 Abr 200115 Jun 2004Shell Oil CompanyPyrolysis
US675221024 Abr 200122 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US675826824 Abr 20016 Jul 2004Shell Oil CompanyHeat exchanging, pyrolysis; monitoring temperature
US676121624 Abr 200113 Jul 2004Shell Oil CompanyPyrolysis temperature
US676388624 Abr 200120 Jul 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US676948324 Abr 20013 Ago 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US676948524 Abr 20013 Ago 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US678962524 Abr 200114 Sep 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US680519524 Abr 200119 Oct 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US682068824 Abr 200123 Nov 2004Shell Oil CompanyHeat exchanging after pyrolyzation to support synthesis gas generation
US686609724 Abr 200115 Mar 2005Shell Oil CompanySuperpositioning of heaters for pyrolysis to form mixture of hydrocarbons and hydrogen; controlling pressure; heat exchanging
US687170724 Abr 200129 Mar 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US687755424 Abr 200112 Abr 2005Shell Oil CompanyPyrolysis
US687755524 Abr 200212 Abr 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US688063324 Abr 200219 Abr 2005Shell Oil CompanyIncludes shutting-in an in situ treatment process in an oil shale formation may include terminating heating from heat sources providing heat to a portion of the formation; hydrocarbon vapor may be produced
US688063524 Abr 200119 Abr 2005Shell Oil CompanyMethods and systems for production of hydrocarbons, hydrogen, and/or other products from underground coal formations
US688976924 Abr 200110 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US689605324 Abr 200124 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US690200324 Abr 20017 Jun 2005Shell Oil CompanyAllowing heat to transfer from heaters to a formation selected for heating using a total organic matter weight percentage of > 5% and recirculating hydrogen
US690200424 Abr 20017 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US691053624 Abr 200128 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US691307824 Abr 20015 Jul 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US691585024 Abr 200212 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US691844224 Abr 200219 Jul 2005Shell Oil CompanyIn situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground oil shale formations
US691844324 Abr 200219 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US692325724 Abr 20022 Ago 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US692325812 Jun 20032 Ago 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US692906724 Abr 200216 Ago 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US693215524 Oct 200223 Ago 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US694856224 Abr 200227 Sep 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US694856324 Abr 200127 Sep 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US695124724 Abr 20024 Oct 2005Shell Oil CompanyControl the heat exchanging, pyrolyzing hydrocarbons, enhancing oil recovery
US695308724 Abr 200111 Oct 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US695976124 Abr 20011 Nov 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US696430024 Abr 200215 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US696637224 Abr 200122 Nov 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US696637424 Abr 200222 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US696912324 Oct 200229 Nov 2005Shell Oil CompanyUpgrading and mining of coal
US697396724 Abr 200113 Dic 2005Shell Oil Companyhydrocarbons within a coal formation are converted in situ within the formation to yield a mixture of relatively high quality hydrocarbon products, hydrogen, and other products; the coal is heated to to temperatures that allow pyrolysis
US698154824 Abr 20023 Ene 2006Shell Oil Companyheating and pyrolysis of heavy hydrocarbon sections in subterranean wells to produce light hydrocarbons; reduced viscosity improves movement; fluid removal in liquid and/or vapor phase
US699103124 Abr 200131 Ene 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US699103224 Abr 200231 Ene 2006Shell Oil CompanyHeat sources positioned within the formation in a selected pattern raise a temperature of a portion of the formation to a pyrolysis temperature.
US699103324 Abr 200231 Ene 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US699103624 Abr 200231 Ene 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US699104524 Oct 200231 Ene 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US699416024 Abr 20017 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US699416124 Abr 20017 Feb 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US699416824 Abr 20017 Feb 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US699416924 Abr 20027 Feb 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US699725524 Abr 200114 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US699751824 Abr 200214 Feb 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US700424724 Abr 200228 Feb 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US700425124 Abr 200228 Feb 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US701115424 Oct 200214 Mar 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US701397224 Abr 200221 Mar 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US701766124 Abr 200128 Mar 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US703266024 Abr 200225 Abr 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US703658324 Sep 20012 May 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US704039824 Abr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US704039924 Abr 20029 May 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US704040024 Abr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US705180724 Abr 200230 May 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US705180824 Oct 200230 May 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US705181124 Abr 200230 May 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US705560024 Abr 20026 Jun 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US706314524 Oct 200220 Jun 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US706625424 Oct 200227 Jun 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US706625724 Oct 200227 Jun 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US707357824 Oct 200311 Jul 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US707719824 Oct 200218 Jul 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US707719924 Oct 200218 Jul 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US708646524 Oct 20028 Ago 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US708646824 Abr 20018 Ago 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US709001324 Oct 200215 Ago 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US709694124 Abr 200129 Ago 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US709694224 Abr 200229 Ago 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US709695324 Abr 200129 Ago 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US710099424 Oct 20025 Sep 2006Shell Oil CompanyProducing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US710431924 Oct 200212 Sep 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US711456624 Oct 20023 Oct 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US712134124 Oct 200317 Oct 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US712134223 Abr 200417 Oct 2006Shell Oil CompanyThermal processes for subsurface formations
US712815324 Oct 200231 Oct 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US715617624 Oct 20022 Ene 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US716561524 Oct 200223 Ene 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US721973424 Oct 200322 May 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US722586631 Ene 20065 Jun 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US732036422 Abr 200522 Ene 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US735387222 Abr 20058 Abr 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US735718022 Abr 200515 Abr 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US736058817 Oct 200622 Abr 2008Shell Oil CompanyThermal processes for subsurface formations
US737070422 Abr 200513 May 2008Shell Oil CompanyTriaxial temperature limited heater
US738387722 Abr 200510 Jun 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US742491522 Abr 200516 Sep 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US743107622 Abr 20057 Oct 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US743503721 Abr 200614 Oct 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US746169123 Ene 20079 Dic 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US748127422 Abr 200527 Ene 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US749066522 Abr 200517 Feb 2009Shell Oil CompanyVariable frequency temperature limited heaters
US750052821 Abr 200610 Mar 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US751000022 Abr 200531 Mar 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US752709421 Abr 20065 May 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US753371920 Abr 200719 May 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US754032419 Oct 20072 Jun 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US754687321 Abr 200616 Jun 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US754947020 Oct 200623 Jun 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US755609520 Oct 20067 Jul 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US755609620 Oct 20067 Jul 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US755936720 Oct 200614 Jul 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US755936820 Oct 200614 Jul 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US756270620 Oct 200621 Jul 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US756270719 Oct 200721 Jul 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US757505221 Abr 200618 Ago 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US757505321 Abr 200618 Ago 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US758158920 Oct 20061 Sep 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US758478920 Oct 20068 Sep 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US759131020 Oct 200622 Sep 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US759714720 Abr 20076 Oct 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US760405220 Abr 200720 Oct 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US761096220 Abr 20073 Nov 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US763168920 Abr 200715 Dic 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US763169019 Oct 200715 Dic 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US763502320 Abr 200722 Dic 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US763502419 Oct 200722 Dic 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US763502520 Oct 200622 Dic 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US76409807 Abr 20085 Ene 2010Shell Oil CompanyThermal processes for subsurface formations
US764476519 Oct 200712 Ene 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US767368119 Oct 20079 Mar 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US767378620 Abr 20079 Mar 2010Shell Oil CompanyWelding shield for coupling heaters
US767731019 Oct 200716 Mar 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US767731419 Oct 200716 Mar 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US768164719 Oct 200723 Mar 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US768329620 Abr 200723 Mar 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US770351319 Oct 200727 Abr 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US771717119 Oct 200718 May 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US773094519 Oct 20078 Jun 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US773094619 Oct 20078 Jun 2010Shell Oil CompanyTreating tar sands formations with dolomite
US773094719 Oct 20078 Jun 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US77359351 Jun 200715 Jun 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US774006230 Ene 200822 Jun 2010Alberta Research Council Inc.System and method for the recovery of hydrocarbons by in-situ combustion
US778542720 Abr 200731 Ago 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US779372220 Abr 200714 Sep 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US779822018 Abr 200821 Sep 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US779822131 May 200721 Sep 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US783113421 Abr 20069 Nov 2010Shell Oil CompanyGrouped exposed metal heaters
US783248418 Abr 200816 Nov 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US784140119 Oct 200730 Nov 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US784140818 Abr 200830 Nov 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US784142518 Abr 200830 Nov 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US784541119 Oct 20077 Dic 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US784992218 Abr 200814 Dic 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US786037721 Abr 200628 Dic 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US786638520 Abr 200711 Ene 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US786638613 Oct 200811 Ene 2011Shell Oil Companyproduction of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations through use of oxidizing fluids and heat
US786638813 Oct 200811 Ene 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US791235820 Abr 200722 Mar 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US793108618 Abr 200826 Abr 2011Shell Oil CompanyHeating systems for heating subsurface formations
US794219721 Abr 200617 May 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US79422034 Ene 201017 May 2011Shell Oil CompanyThermal processes for subsurface formations
US795045318 Abr 200831 May 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US798686921 Abr 200626 Jul 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US801145113 Oct 20086 Sep 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US802757121 Abr 200627 Sep 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US804261018 Abr 200825 Oct 2011Shell Oil CompanyParallel heater system for subsurface formations
US807084021 Abr 20066 Dic 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US808381320 Abr 200727 Dic 2011Shell Oil CompanyMethods of producing transportation fuel
US811327213 Oct 200814 Feb 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US814666113 Oct 20083 Abr 2012Shell Oil CompanyCryogenic treatment of gas
US814666913 Oct 20083 Abr 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US81518809 Dic 201010 Abr 2012Shell Oil CompanyMethods of making transportation fuel
US815190710 Abr 200910 Abr 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US816205913 Oct 200824 Abr 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US816240510 Abr 200924 Abr 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US817233510 Abr 20098 May 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US817730510 Abr 200915 May 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US819163028 Abr 20105 Jun 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US819268226 Abr 20105 Jun 2012Shell Oil CompanyHigh strength alloys
US819665813 Oct 200812 Jun 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US82205399 Oct 200917 Jul 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US822416324 Oct 200317 Jul 2012Shell Oil CompanyVariable frequency temperature limited heaters
US822416424 Oct 200317 Jul 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US822416521 Abr 200617 Jul 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US822586621 Jul 201024 Jul 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US823092716 May 201131 Jul 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US823378229 Sep 201031 Jul 2012Shell Oil CompanyGrouped exposed metal heaters
US823873024 Oct 20037 Ago 2012Shell Oil CompanyHigh voltage temperature limited heaters
US824077413 Oct 200814 Ago 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US82565129 Oct 20094 Sep 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US82618329 Oct 200911 Sep 2012Shell Oil CompanyHeating subsurface formations with fluids
US82671709 Oct 200918 Sep 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US82671859 Oct 200918 Sep 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US827245513 Oct 200825 Sep 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US827666113 Oct 20082 Oct 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US82818619 Oct 20099 Oct 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US832768118 Abr 200811 Dic 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US83279329 Abr 201011 Dic 2012Shell Oil CompanyRecovering energy from a subsurface formation
US83533479 Oct 200915 Ene 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US835562322 Abr 200515 Ene 2013Shell Oil CompanyTemperature limited heaters with high power factors
US838181518 Abr 200826 Feb 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US84345559 Abr 20107 May 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US84487079 Abr 201028 May 2013Shell Oil CompanyNon-conducting heater casings
US845935918 Abr 200811 Jun 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US848525211 Jul 201216 Jul 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US853649713 Oct 200817 Sep 2013Shell Oil CompanyMethods for forming long subsurface heaters
US855597131 May 201215 Oct 2013Shell Oil CompanyTreating tar sands formations with dolomite
US856207825 Nov 200922 Oct 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US857903117 May 201112 Nov 2013Shell Oil CompanyThermal processes for subsurface formations
US860609120 Oct 200610 Dic 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US860824926 Abr 201017 Dic 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US86278878 Dic 200814 Ene 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US86318668 Abr 201121 Ene 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US863632325 Nov 200928 Ene 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US866217518 Abr 20084 Mar 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US87017688 Abr 201122 Abr 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US87017698 Abr 201122 Abr 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US87398748 Abr 20113 Jun 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US875290410 Abr 200917 Jun 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
USRE30019 *30 Jun 19775 Jun 1979Chevron Research CompanyProduction of hydrocarbons from underground formations
WO2001081239A2 *24 Abr 20011 Nov 2001Shell Oil CoIn situ recovery from a hydrocarbon containing formation
Clasificaciones
Clasificación de EE.UU.166/260, 166/261
Clasificación internacionalE21B43/16, E21B43/243
Clasificación cooperativaE21B43/243
Clasificación europeaE21B43/243