US3051568A - Offset electrophotography - Google Patents

Offset electrophotography Download PDF

Info

Publication number
US3051568A
US3051568A US551289A US55128955A US3051568A US 3051568 A US3051568 A US 3051568A US 551289 A US551289 A US 551289A US 55128955 A US55128955 A US 55128955A US 3051568 A US3051568 A US 3051568A
Authority
US
United States
Prior art keywords
image
insulating layer
belt
photoconductive
photoconductive insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US551289A
Inventor
Edward K Kaprelian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US551289A priority Critical patent/US3051568A/en
Priority to US208359A priority patent/US3115814A/en
Application granted granted Critical
Publication of US3051568A publication Critical patent/US3051568A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/18Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a charge pattern
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S101/00Printing
    • Y10S101/37Printing employing electrostatic force

Definitions

  • This latent image is next developed through the use of a finely divided, usually pigmented, material which by selective attraction to the plate produces a visible powder image, which, in turn, may be transferred to another surface, or fixed on the plate or sheet by various means well known in the art.
  • One typical method of electrostatic electrophotography utilizes a rotating drum which, as it rotates, receives the following treatment at successive stations:
  • the photconductive insulator surface usually selenium, receives an electrostatic charge.
  • the charged surface receives light in the pattern of the desired image, and the charge leaks off selectively to produce an electrostatic latent image.
  • the powder is transferred to a paper or similar base.
  • the transferred powder image is fixed through the application of heat or a solvent.
  • the present invention employs an intermediate step of transferring the electrostatic image to an insulating surface on which the image is developed.
  • the developed image is then fixed on this insulating surface, or it may be transferred to another surface and fixed there.
  • One of the objects of this invention is to permit the use of a smaller photoconductive insulator surface for a given capacity or speed of operation; or conversely to increase the capacity or speed of operation for a given size of photoconductive insulator surface.
  • Another object is to prolong the useful life of photoconductive insulator surfaces by eliminating the deteriorating efiect of developing and cleaning operations.
  • Still another object is to provide such gentle action on the surface during cycling as to permit the use of softer, frailer photoconductive insulator layers which cannot withstand repeated developing and cleaning operations.
  • Still another object is to permit simple and direct control of image contrast.
  • Still another object is to permit ready reversal of the final image, i.e. from a positive to a negative.
  • Still another object is to permit the steps of powder transfer and plate cleaning, usually performed in the dark in drum machines, to occur in light where observation, servicing and adjustment is readily accomplished.
  • Still another object is to improve the quality of line images to permit the production of half tone images.
  • FIG. 1 shows the action of transferring a charge to an uncharged surface
  • FIG. 2 shows the action of transferring a charge to a surface of opposite charge
  • FIG. 3 shows the action of transferring a charge to a surface of similar charge
  • FIG. 4 shows in schematic elevation an electrophotographic printer employing a charge transfer belt for producing multiple copies
  • FIG. 5 shows in schematic elevation an electrophotographic printer employing a charge transfer belt for producing reproductions of opaque copy
  • FIG. 6 shows in schematic elevation an electrophotographic printer in which the latent electrophotographic image is transferred directly to the paper on which the copy is to be made
  • FIG. 7 shows a printer in which each unit of opaque copy is reproduced on an individual sheet of paper through direct image charge transfer
  • FIG. 8 shows in cross section one form of image transfer belt which can be used
  • FIG. 9 shows in cross section another form of image transfer belt which can be used
  • FIG. 10 shows in cross section still another form of image transfer belt which can be used.
  • FIG. 11 shows in cross section still another form of image transfer belt which can be used.
  • FIG. 1 The action of image charge transfer is shown in FIG. 1 in which an electrophotographic drum 10 having the usual photoconductive insulator coating of selenium or other suitable material carries a positive image charge, or electrostatic latent image, consisting of alternately charged and uncharged areas 12 and '14 respectively as indicated by the plus symbols and the zeros. Transfer of the image charge to an electrostatically neutral insulating surface 16 takes place at the point of contact 18, the drum and surface moving in the direction of the arrows. After transfer, the original image on the drum and the transferred image on the sheet have shared the initial charge pattern, as shown at 20 and 22, respectively.
  • FIG. 2 there is shown the corresponding action when the insulating sheet 16 receives a negative charge 26 from corona wires 24 prior to transfer at point 218.
  • the charges resulting on the drum and sheet after transfer are shown at 30 and 32, respectively. :In addition to sharing the charge it is clear that reversal has occurred.
  • the plate 16 is positively charged by wires 24 as at 34. After transfer at point of contact 36 the charges finally remaining on the drum and plate at 3-8 and 40, respectively, show that the charge has again been shared. Obviously, corresponding transfers of opposite sign would result if the drum were initially given a negatively charged electrostatic image instead of one of positive sign. It is also possible to produce a charge on the insulating transfer belt or sheet by induction rather than by contact. In this case the belt or sheet would be brought close to the drum, and the back of the belt or sheet grounded to induce a charge on the belt in a manner well known in electrostatics.
  • FIG. 4 shows an electrostatic latent image transfer printer for producing multiple copies from transparent originals.
  • an electrophotographic drum 42 receives, through slit 44 and projection lens 46, an image of film 48.
  • a suitable li ht source is provided above the film by head 50.
  • the film is driven by a sprocket 52 in the direction shown through suitable gearing, or equivalent, at the proper speed relative to that of the drum to insure that the image is stationary on the drum, i.e. at a speed ratio equal to that of the conjugate foci of the lens.
  • Drum42 rotating in the direction shown, receives a charge at charging station 54 and is exposed as it passes slit 44. It contacts an endless belt 56 at 58 where the electrostatic image or image charge is transferred to the belt in the manner shown in FIGS. 1 to 3.
  • the belt rotating. in the direction shown may or may not receive a modifying charge from electrodes 60 for the purpose of controlling image contrast or otherwise modifying the .image.
  • a developing station 62 of the type which cascades a carrier type developer over the drum produces a powder image which is then transferred, at transfer station 64, to a suitable base, such as paper from a roll 66.
  • This transfer station includes a first point 68 at which an initial heavy transfer of powder occurs and a second'point 70 at which all powder in excess of that necessary to form an acceptable image is returned to the belt electrostatically .in :a manner already known in the art.
  • the image on the paper is permanently fused to the base at a fixing station 72.
  • the belt progresses to succeeding transfer stations 74, 76 and 78 and is thereafter cleaned at a cleaning station 80 for the purpose of removing residual powder.
  • the belt continues past a charging station 82 and the cycle is repeated.
  • Belt'56 is made of a suitable flexible dielectric material such as rubber or some synthetic resin as polyethylene or various polyesters and vinyls. While shown as a belt for convenience the transfer surface may be in the form of a cylinder, for example, if such shape is desirable of the geometry of the printing machine.
  • the surface of the belt may be smooth or provided with a texture as described below.
  • FIG. shows a charge transfer printer for opaque copy.
  • a conveying belt 90 carries the sheets 92 of material to be copied past suitable light sources such as mercury vapor tubes 94 and against an enveloping belt 96 which reverses the direction of the copy material and guides it to a receiving tray 98.
  • Belt 90 is suitably driven through gears or toothed belt 100 from a speed change transmission 102.
  • the transmission is in turn connected to drive electrophotographic drum 104 through similar positive drive means-106.
  • the transmission ratio can be changed to accommodate various magnifications or reductions.
  • Copy 92 is imaged by lens 107 past slit 108 onto the drum.
  • a mirror 110 may be employed to fold the path for reasons of compactness and also for the purpose of producing rectified (unreversed) prints.
  • the usual charging station 112 is associated with the drum at a point near the slit. After exposure at the slit the charge is transferred to a moving belt 114 and the transferred electrostatic image is developed at station 116.
  • Two vibrating rollers 118 in contact with the belt and driven by suitable motors or vibrators 120 remove excess or unwanted powder from the belt prior to reaching transfer station 122 where the powder image is transferred to paper from roll 124.
  • the printed copies are fixed at station 126 and are wound on reel 128.
  • the belt is charged at charging station 130 to control contact or type of the final image or may be left uncharged as desired.
  • FIG. 6 the latent electrostatic image is transferred directly to the paper base.
  • a projection head generally indicated at 140 moves the film syn chronously with an electrophotographic drum 142 in amanner similar to that shown and described in connection with FIG. 4.
  • the drum transfers the image charge to a sheet of paper or other suitable material from a roll 146 at a transfer station 148.
  • the paper is carried on a belt supported by pulleys 152.
  • the paper enters a developing station 154 which may employ cascading carrier beads or a powder cloud and separates from the belt 150 at the bottom pulley 152.
  • the image is fixed at station 156 and passes through rollers 158 to a take-up reel 160.
  • FIG. 7 shows a printer which accepts opaque copy and transfers the electrostatic latent image directly to the paper base.
  • opaque copy 180 is fed by a synchronously driven endless belt 182 of transparent or translucent woven plastic webbing or plastic sheet past a slit 184 Where it is illuminated by suitable lamps 186.
  • a tray 188 receives the processed copy after passage through the projection head.
  • a lens 190 images the copy on electrophotographic drum 192 behind slit 194. The drum is charged and exposed, the electrostatic latent image reaching a transfer station 196 comprising an endless belt 198 carried on pulleys 200.
  • Print paper from a roll 202 is fed between the drum and belt 198 where it receives the electrostatic latent image. Feeding is accomplished through metering rollers 204 and feed rollers 206 in accordance with signals provided by a control system.
  • the control system for feeding the print paper includes a sensing head 208 which can consist, for example, of either a photocell for detecting the passage of the front edge of a piece of copy, or a sensitive switch actuated by passage of the front edge of the piece of copy.
  • the re sulting signal is passed through an amplifier or relay 210 into a control box 212 which selectively times the operation of (1) solenoid 214 for controlling drive rollers 204, (2) solenoid 216 for controlling rollers 206, and (3) solenoid 218 which operates a paper cutting knife 220.
  • slit 1S4 sensing head 208 responds, solenoids 214 and 216 are actuated, and rolls 204 begin to feed paper toward roll 206. After the following edge of copy 180 passes the slit sensing head 208 again responds, solenoid 214 is deenergized, and rollers 204 are stopped. Solenoid 218 is then operated, cutting the paper sufficiently long to receive the complete transferred image with such additional border as is required.
  • Rollers 206 which may or may not have been stopped during the cutting operation, continue to feed the cut piece of paper past a charging station 222 and into the transfer station, after which solenoid 216 is deenergized, thereby stopping rollers 206, or permitting them to overrun if such is desirable.
  • Belt 198 drops the piece of paper on to a second endless belt which is preferably of porous rubber or plastic construction and which carries the paper through a developing station 226 preferably of the powder cloud type.
  • a pair of suction heads 228 serve to hold the paper against the belt as the latter enters the developing station and to entrain and remove any of the developer cloud which escapes between the lip of the station and the belt.
  • the sheet is dropped from the lower end of belt 224 onto an endless conveyor belt 230 which carries the sheet under a fixing chamber 232 and discharges it into a receiving tray 234.
  • the transfer belts 56 and 114 used in the modifications of FIGS. 4 and 5 respectively can be of solid cross section for most applications. It is sometimes desirable, however, to provide the transfer surface with a texture or pattern for the purpose of improving the rendition of half-tones, for improving the fill-in of large solid black areas in the copy, or for the otherwise breaking up the electrostatic latent image into a number of minute charge areas.
  • large solid black areas do not fill in well with developer because of characteristics of electric fields. By breaking up the single charge at these large solid areas into a multiplicity of smaller ones the developer can produce a uniform density in these areas.
  • FIG. 8 shows a plastic or rubber belt body 250 provided with uniformly or randomly spaced flat topped projections 252 the width of which may vary from 0.3 mm. to 0.03 mm.
  • the tops of these projections may be from 1 to 0.1 mm. above the bottom of the depressed surface 254 between the projections.
  • the depressed surface is provided with a conducting layer 256 of evaporated metal or metal foil.
  • This belt is readily produced by heating the plastic surface, embossing it with a roller or die plate, coating the surface with evaporated aluminum, and removing the aluminum at the top of the projections by polishing against an abrasive surface. Alter-.
  • a piece of adhesive-backed metal foil can be placed on the heated plastic surface, pressed with a patterned roller or die to obtain bonding and to simultaneously produce the projections, and the unwanted foil removed from the tops of the projections by abrasion or by roller coating the tops of the projections with an acid.
  • the plastic or rubber base is embossed to produce a series of rounded projections 258 having dimensions similar to those of projections 252 of FIG. 8 and a radius of curvature between .015 mm. to 1.5 mm.
  • FIG. 10 shows a belt having alternately raised insulat ing portions 260 and depressed conducting portions 262.
  • the latter may be of rubber or plastic containing electrically conductive ingredients for lowering the resistivity of these portions.
  • Such a belt may be made by studding a plain belt of low resistivity material with small beads or bits of high resistivity material and vulcanizing or polymerizing the two materials to each other.
  • a belt base 264 which may be of high or low conductivity flexible material or webbing, is covered with a layer of high resistivity material of sponge-like or cellular construction and which may or may not contain low resistivity particles.
  • electrostatic latent image can be employed in electrophotographic cameras as well as printers.
  • the rotating drum can be used in aerial strip cameras for example.
  • Charges can of course be transferred from fiat electrophotographic plates into intermediate electrostatic image blankets Which can be developed and the powder image transferred to a suitable base on which it is fixed.
  • transfer of the electrostatic latent image from a flat plate directly onto the final base where it is developed and fixed is feasible.
  • a method of electrophotography employing an electrophotographic plate comprising a photoconductive insulating layer overlying a conductive backing layer and in electrically conductive contact therewith, said method comprising the steps of uniformly charging said photoconductive insulating layer by subjecting the latter to a charging potential, exposing said charged photoconductive insulating layer to a light image pattern to increase its conductivity selectively, allowing current flow selectively from the charged photoconductive insulating layer to the conductive backing layer in accordance with the light image pattern to produce a corresponding electrostatic latent irnage on said layer, bringing an insulating surface into juxtaposition on top of said photoconductive insulating layer, applying pressure to force said insulating surface and said photoconductive insulating layer into intimate contact to cause transfer of the charges comprising the electrostatic latent image from said photoconductive insulating layer to said insulating surface, lifting said insulating surface oif said photoconductive insulating layer to thereby carry off said transferred electrostatic image, and modifying the contrast characteristics of said transferred electrostatic latent image on said
  • a method of electrophotography employing an electrophotographic plate comprising a photoconductive insulating layer overlying a conductive backing layer and in electrically conductive contact therewith, said method comprising the steps of uniformly charging said photoconductive insulating layer by subjecting the latter to a charging potential, exposing said charged photoconductive insulating layer to a light image pattern to increase its conductivity selectively, allowing current flow selectively from the charged photoconductive insulating layer to the conductive backing layer in accordance with the light image pattern to produce a corresponding electrostatic latent image on said layer, bringing an insulating surface into juxtaposition on top of said photoconductive insulating layer, applying pressure to force said insulating surface and said photoconductive insulating layer into intimate contact to cause transfer of the charges comprising the electrostatic latent image from said photoconductive insulating layer to said insulating surface, lifting said insulating surface off said photoconductive insulating layer to thereby carry off said transferred electrostatic image, and modifying the contrast characteristics of said transferred electrostatic latent image on said insulating surface by
  • a method of electrophotography as claimed in claim 2 said depressed areas comprising discrete isolated electrically conducting spots.

Description

Aug. 28, 1962 E. K. KAPRELIAN OFFSET ELECTROPHOTOGRAPHY 2 Sheets-Sheet 1 Filed Dec. 6, 1955 o 2 igo q eeifii sn s -OOOOO/O 0009 32 O a O 5 2 F/G. ll
INVENTOR MW 26 IIIIIIIIIIII Aug. 28, 1962 E. K. KAPRELIAN OFFSET ELECTROPHOTOGRAPHY 2 Sheets-Sheet 2 Filed Dec. 6, 1955 INVENTOR 3,051,568 Patented Aug. 28, 1962 3,ll51,568 OFFSET ELECTRQPHQTQGRAPHY Edward K. Kaprelian, Weatogne, Conn. (29 Riveredge Road, New Shrewsnnry, NJ.) Filed Dec. 6, 1955, er. No. 551,289 3 Claims. ((11. 961) This invention relates to electrophotography of the type whereby photographs are produced by the action of light on an electrostatically charged photoconductive insulator.
The use of such certain photoconductive insulators as selenium, anthracene, zinc oxide, etc. to produce photographs through the practice of such methods of electrophotography as Xerography and Electrofax is well known. In the usual method a thin layer of the photoconductive insulator is given an electrostatic charge and the charged plate or sheet is exposed in a camera or printer. Whereever the light strikes the'surface the charge leaks off in proportion to the amount of light, with the result that a latent image of varying electrostatic potentials is produced on the plate surface. This latent image is next developed through the use of a finely divided, usually pigmented, material which by selective attraction to the plate produces a visible powder image, which, in turn, may be transferred to another surface, or fixed on the plate or sheet by various means well known in the art.
One typical method of electrostatic electrophotography utilizes a rotating drum which, as it rotates, receives the following treatment at successive stations:
(1) The photconductive insulator surface, usually selenium, receives an electrostatic charge.
(2) The charged surface receives light in the pattern of the desired image, and the charge leaks off selectively to produce an electrostatic latent image.
(3) The electrostatic latent image is developed into visible form by the application of a suitable finely divided powder.
-(4) The powder is transferred to a paper or similar base.
(5) The transferred powder image is fixed through the application of heat or a solvent.
(6) The plate surface is cleaned preparatory to repetition of the cycle.
By contrast with this method the present invention employs an intermediate step of transferring the electrostatic image to an insulating surface on which the image is developed. The developed image is then fixed on this insulating surface, or it may be transferred to another surface and fixed there.
One of the objects of this invention is to permit the use of a smaller photoconductive insulator surface for a given capacity or speed of operation; or conversely to increase the capacity or speed of operation for a given size of photoconductive insulator surface.
Another object is to prolong the useful life of photoconductive insulator surfaces by eliminating the deteriorating efiect of developing and cleaning operations.
Still another object is to provide such gentle action on the surface during cycling as to permit the use of softer, frailer photoconductive insulator layers which cannot withstand repeated developing and cleaning operations.
Still another object is to permit simple and direct control of image contrast.
Still another object is to permit ready reversal of the final image, i.e. from a positive to a negative.
Still another object is to permit the steps of powder transfer and plate cleaning, usually performed in the dark in drum machines, to occur in light where observation, servicing and adjustment is readily accomplished.
Still another object is to improve the quality of line images to permit the production of half tone images.
These and other objects of the invention can be determined from the specification and drawings in which:
FIG. 1 shows the action of transferring a charge to an uncharged surface,
FIG. 2 shows the action of transferring a charge to a surface of opposite charge,
FIG. 3 shows the action of transferring a charge to a surface of similar charge,
FIG. 4 shows in schematic elevation an electrophotographic printer employing a charge transfer belt for producing multiple copies,
FIG. 5 shows in schematic elevation an electrophotographic printer employing a charge transfer belt for producing reproductions of opaque copy,
FIG. 6 shows in schematic elevation an electrophotographic printer in which the latent electrophotographic image is transferred directly to the paper on which the copy is to be made,
FIG. 7 shows a printer in which each unit of opaque copy is reproduced on an individual sheet of paper through direct image charge transfer,
FIG. 8 shows in cross section one form of image transfer belt which can be used,
FIG. 9 shows in cross section another form of image transfer belt which can be used,
FIG. 10 shows in cross section still another form of image transfer belt which can be used.
FIG. 11 shows in cross section still another form of image transfer belt which can be used.
The action of image charge transfer is shown in FIG. 1 in which an electrophotographic drum 10 having the usual photoconductive insulator coating of selenium or other suitable material carries a positive image charge, or electrostatic latent image, consisting of alternately charged and uncharged areas 12 and '14 respectively as indicated by the plus symbols and the zeros. Transfer of the image charge to an electrostatically neutral insulating surface 16 takes place at the point of contact 18, the drum and surface moving in the direction of the arrows. After transfer, the original image on the drum and the transferred image on the sheet have shared the initial charge pattern, as shown at 20 and 22, respectively.
In FIG. 2 there is shown the corresponding action when the insulating sheet 16 receives a negative charge 26 from corona wires 24 prior to transfer at point 218. The charges resulting on the drum and sheet after transfer are shown at 30 and 32, respectively. :In addition to sharing the charge it is clear that reversal has occurred.
In FIG. 3 the plate 16 is positively charged by wires 24 as at 34. After transfer at point of contact 36 the charges finally remaining on the drum and plate at 3-8 and 40, respectively, show that the charge has again been shared. Obviously, corresponding transfers of opposite sign would result if the drum were initially given a negatively charged electrostatic image instead of one of positive sign. It is also possible to produce a charge on the insulating transfer belt or sheet by induction rather than by contact. In this case the belt or sheet would be brought close to the drum, and the back of the belt or sheet grounded to induce a charge on the belt in a manner well known in electrostatics.
FIG. 4 shows an electrostatic latent image transfer printer for producing multiple copies from transparent originals. In this modification an electrophotographic drum 42 receives, through slit 44 and projection lens 46, an image of film 48. A suitable li ht source is provided above the film by head 50. The film is driven by a sprocket 52 in the direction shown through suitable gearing, or equivalent, at the proper speed relative to that of the drum to insure that the image is stationary on the drum, i.e. at a speed ratio equal to that of the conjugate foci of the lens.
Drum42, rotating in the direction shown, receives a charge at charging station 54 and is exposed as it passes slit 44. It contacts an endless belt 56 at 58 where the electrostatic image or image charge is transferred to the belt in the manner shown in FIGS. 1 to 3. The belt, rotating. in the direction shown may or may not receive a modifying charge from electrodes 60 for the purpose of controlling image contrast or otherwise modifying the .image. A developing station 62 of the type which cascades a carrier type developer over the drum produces a powder image which is then transferred, at transfer station 64, to a suitable base, such as paper from a roll 66. This transfer station includes a first point 68 at which an initial heavy transfer of powder occurs and a second'point 70 at which all powder in excess of that necessary to form an acceptable image is returned to the belt electrostatically .in :a manner already known in the art. The image on the paper is permanently fused to the base at a fixing station 72. The belt progresses to succeeding transfer stations 74, 76 and 78 and is thereafter cleaned at a cleaning station 80 for the purpose of removing residual powder. The belt continues past a charging station 82 and the cycle is repeated. Belt'56 is made of a suitable flexible dielectric material such as rubber or some synthetic resin as polyethylene or various polyesters and vinyls. While shown as a belt for convenience the transfer surface may be in the form of a cylinder, for example, if such shape is desirable of the geometry of the printing machine. The surface of the belt may be smooth or provided with a texture as described below.
FIG. shows a charge transfer printer for opaque copy. A conveying belt 90 carries the sheets 92 of material to be copied past suitable light sources such as mercury vapor tubes 94 and against an enveloping belt 96 which reverses the direction of the copy material and guides it to a receiving tray 98. Belt 90 is suitably driven through gears or toothed belt 100 from a speed change transmission 102. The transmission is in turn connected to drive electrophotographic drum 104 through similar positive drive means-106. The transmission ratio can be changed to accommodate various magnifications or reductions.
Copy 92 is imaged by lens 107 past slit 108 onto the drum. A mirror 110 may be employed to fold the path for reasons of compactness and also for the purpose of producing rectified (unreversed) prints. The usual charging station 112 is associated with the drum at a point near the slit. After exposure at the slit the charge is transferred to a moving belt 114 and the transferred electrostatic image is developed at station 116. Two vibrating rollers 118 in contact with the belt and driven by suitable motors or vibrators 120 remove excess or unwanted powder from the belt prior to reaching transfer station 122 where the powder image is transferred to paper from roll 124. The printed copies are fixed at station 126 and are wound on reel 128. The belt is charged at charging station 130 to control contact or type of the final image or may be left uncharged as desired.
In FIG. 6 the latent electrostatic image is transferred directly to the paper base. In this modification a projection head generally indicated at 140 moves the film syn chronously with an electrophotographic drum 142 in amanner similar to that shown and described in connection with FIG. 4. After exposure is accomplished at slit 144, the drum transfers the image charge to a sheet of paper or other suitable material from a roll 146 at a transfer station 148. The paper is carried on a belt supported by pulleys 152. The paper enters a developing station 154 which may employ cascading carrier beads or a powder cloud and separates from the belt 150 at the bottom pulley 152. The image is fixed at station 156 and passes through rollers 158 to a take-up reel 160.
FIG. 7 shows a printer which accepts opaque copy and transfers the electrostatic latent image directly to the paper base. In this modification opaque copy 180 is fed by a synchronously driven endless belt 182 of transparent or translucent woven plastic webbing or plastic sheet past a slit 184 Where it is illuminated by suitable lamps 186. A tray 188 receives the processed copy after passage through the projection head. A lens 190 images the copy on electrophotographic drum 192 behind slit 194. The drum is charged and exposed, the electrostatic latent image reaching a transfer station 196 comprising an endless belt 198 carried on pulleys 200. Print paper from a roll 202 is fed between the drum and belt 198 where it receives the electrostatic latent image. Feeding is accomplished through metering rollers 204 and feed rollers 206 in accordance with signals provided by a control system.
The control system for feeding the print paper includes a sensing head 208 which can consist, for example, of either a photocell for detecting the passage of the front edge of a piece of copy, or a sensitive switch actuated by passage of the front edge of the piece of copy. The re sulting signal is passed through an amplifier or relay 210 into a control box 212 which selectively times the operation of (1) solenoid 214 for controlling drive rollers 204, (2) solenoid 216 for controlling rollers 206, and (3) solenoid 218 which operates a paper cutting knife 220.
The operation of the control is as follows. When a piece of copy enters slit 1S4 sensing head 208 responds, solenoids 214 and 216 are actuated, and rolls 204 begin to feed paper toward roll 206. After the following edge of copy 180 passes the slit sensing head 208 again responds, solenoid 214 is deenergized, and rollers 204 are stopped. Solenoid 218 is then operated, cutting the paper sufficiently long to receive the complete transferred image with such additional border as is required. Rollers 206, which may or may not have been stopped during the cutting operation, continue to feed the cut piece of paper past a charging station 222 and into the transfer station, after which solenoid 216 is deenergized, thereby stopping rollers 206, or permitting them to overrun if such is desirable. Belt 198 drops the piece of paper on to a second endless belt which is preferably of porous rubber or plastic construction and which carries the paper through a developing station 226 preferably of the powder cloud type. A pair of suction heads 228 serve to hold the paper against the belt as the latter enters the developing station and to entrain and remove any of the developer cloud which escapes between the lip of the station and the belt. The sheet is dropped from the lower end of belt 224 onto an endless conveyor belt 230 which carries the sheet under a fixing chamber 232 and discharges it into a receiving tray 234.
The transfer belts 56 and 114 used in the modifications of FIGS. 4 and 5 respectively can be of solid cross section for most applications. It is sometimes desirable, however, to provide the transfer surface with a texture or pattern for the purpose of improving the rendition of half-tones, for improving the fill-in of large solid black areas in the copy, or for the otherwise breaking up the electrostatic latent image into a number of minute charge areas. In normal electrophotography large solid black areas do not fill in well with developer because of characteristics of electric fields. By breaking up the single charge at these large solid areas into a multiplicity of smaller ones the developer can produce a uniform density in these areas.
Four modifications of belt surfaces are shown in FIGS. 8 to 11. FIG. 8 shows a plastic or rubber belt body 250 provided with uniformly or randomly spaced flat topped projections 252 the width of which may vary from 0.3 mm. to 0.03 mm. The tops of these projections may be from 1 to 0.1 mm. above the bottom of the depressed surface 254 between the projections. The depressed surface is provided with a conducting layer 256 of evaporated metal or metal foil. This belt is readily produced by heating the plastic surface, embossing it with a roller or die plate, coating the surface with evaporated aluminum, and removing the aluminum at the top of the projections by polishing against an abrasive surface. Alter-.
natively a piece of adhesive-backed metal foil can be placed on the heated plastic surface, pressed with a patterned roller or die to obtain bonding and to simultaneously produce the projections, and the unwanted foil removed from the tops of the projections by abrasion or by roller coating the tops of the projections with an acid.
In the arrangement shown in FIG. 9 the plastic or rubber base is embossed to produce a series of rounded projections 258 having dimensions similar to those of projections 252 of FIG. 8 and a radius of curvature between .015 mm. to 1.5 mm.
FIG. 10 shows a belt having alternately raised insulat ing portions 260 and depressed conducting portions 262. The latter may be of rubber or plastic containing electrically conductive ingredients for lowering the resistivity of these portions. Such a belt may be made by studding a plain belt of low resistivity material with small beads or bits of high resistivity material and vulcanizing or polymerizing the two materials to each other.
In FIG. 11 a belt base 264, which may be of high or low conductivity flexible material or webbing, is covered with a layer of high resistivity material of sponge-like or cellular construction and which may or may not contain low resistivity particles.
It is also possible to provide paper having surface characteristics generally similar to those of the belts shown in FIGS. 8 to 11 to thereby obtain the same advantages without requiring the use of a transfer belt as in the printers shown in FIGS. 6 and 7.
Obviously the transfer of the electrostatic latent image can be employed in electrophotographic cameras as well as printers. The rotating drum can be used in aerial strip cameras for example. Charges can of course be transferred from fiat electrophotographic plates into intermediate electrostatic image blankets Which can be developed and the powder image transferred to a suitable base on which it is fixed. Also, transfer of the electrostatic latent image from a flat plate directly onto the final base where it is developed and fixed is feasible.
I claim:
1. A method of electrophotography employing an electrophotographic plate comprising a photoconductive insulating layer overlying a conductive backing layer and in electrically conductive contact therewith, said method comprising the steps of uniformly charging said photoconductive insulating layer by subjecting the latter to a charging potential, exposing said charged photoconductive insulating layer to a light image pattern to increase its conductivity selectively, allowing current flow selectively from the charged photoconductive insulating layer to the conductive backing layer in accordance with the light image pattern to produce a corresponding electrostatic latent irnage on said layer, bringing an insulating surface into juxtaposition on top of said photoconductive insulating layer, applying pressure to force said insulating surface and said photoconductive insulating layer into intimate contact to cause transfer of the charges comprising the electrostatic latent image from said photoconductive insulating layer to said insulating surface, lifting said insulating surface oif said photoconductive insulating layer to thereby carry off said transferred electrostatic image, and modifying the contrast characteristics of said transferred electrostatic latent image on said insulating surface by subjecting said image to the electrostatic field 6 of a charged electrode, said insulating surface being provided with a uniform pattern of protuberant and depressed areas.
2. A method of electrophotography employing an electrophotographic plate comprising a photoconductive insulating layer overlying a conductive backing layer and in electrically conductive contact therewith, said method comprising the steps of uniformly charging said photoconductive insulating layer by subjecting the latter to a charging potential, exposing said charged photoconductive insulating layer to a light image pattern to increase its conductivity selectively, allowing current flow selectively from the charged photoconductive insulating layer to the conductive backing layer in accordance with the light image pattern to produce a corresponding electrostatic latent image on said layer, bringing an insulating surface into juxtaposition on top of said photoconductive insulating layer, applying pressure to force said insulating surface and said photoconductive insulating layer into intimate contact to cause transfer of the charges comprising the electrostatic latent image from said photoconductive insulating layer to said insulating surface, lifting said insulating surface off said photoconductive insulating layer to thereby carry off said transferred electrostatic image, and modifying the contrast characteristics of said transferred electrostatic latent image on said insulating surface by subjecting said image to the electrostatic field of a charged electrode, said insulating surface being provided with a uniform pattern of discrete protuberant and depressed areas said areas having average linear dimensions in the range from 0.3 mm. to 0.03 mm.
3. A method of electrophotography as claimed in claim 2 said depressed areas comprising discrete isolated electrically conducting spots.
References Cited in the file of this patent UNITED STATES PATENTS 2,277,013 Carlson Mar. 17, 1942 2,297,691 Carlson Oct. 6, 1942 2,558,900 Hooper July 3, 1951 2,588,675 Walkup et al Mar. 11, 1952 2,599,542 Carlson June 10, 1952 2,600,580 Sabel et al. June 17, 1952 2,618,551 Walkup Nov. 18, 1952 2,637,651 Copley May 5, 1953 2,693,416 Butterfield Nov. 2, 1954 2,756,676 Steinhilper July 31, 1956 2,758,524 Sugarman Aug. 14, 1956 2,764,693 Jacobs Sept. 25, 1956 2,808,329 Jacob Oct. 1, 1957 2,817,277 Bogdonoff Dec. 24, 1957 2,817,765 Hayford et al. Dec. 24, 1957 2,825,814 Walkup Mar. 4, 1958 2,833,648 Walkup May 6, 1958 2,868,642 Hayford et al. Ian. 13, 1959 2,895,847 Mayo July 21, 1959 2,914,403 Sugarman Nov. 24, 1959 2,937,943 Walkup May 24, 1960 2,937,944 Van Dorn et a1. May 24, 1960 FOREIGN PATENTS 168,181 Australia Dec. 7, 1956 529,234 Belgium June 15, 1954

Claims (1)

1. A METHOD OF ELECTROPHOTOGRAPHY EMPLOYING AN ELECTROPHOTOGRAPHIC PLATE COMPRISING A PHOTOCONDUCTIVE INSULATING LAYER OVERLYING A CONDUCTIVE BACKING LAYER AND IN ELECTRICLLY CONDUCTIVE CONTACT THEREWITH, SAID METHOD COMPRISING THE STEPS OF UNIFORMLY CHARGING SAID PHOTOCONDUCTIVE INSULATING LAYER BY SUBJECTING THE LATTER TO A CHARGING POTENTIAL, EXPOSING SAID CHARGED PHOTOCONDUCTIVE INSULATING LAYER TO A LIGHT IMAGE PATTERN TO INCREASE ITS CONDUCTIVITY SELECTIVELY, ALLOWING CURRENT FLOW SELECTIVELY FROM THE CHARGED PHOTOCONDUCTIVE INSULATING LAYER TO THE CONDUCTIVE BACKING LAYER IN ACCORDANCE WITH THE LIGHT IMAGE PATTERN TO PRODUCE A CORRESPONDING ELECTROSTATIC LATENT IMAGE ON SAID LAYER, BRINGING AN INSULATING SURFACE INTO JUXTAPOSITION ON TOP OF SAID PHOTOCONDUCTIVE INSULATING LAYER, APPLYING PRESSURE TO FORCE SAID INSULATING SURFACE AND SAID PHOTOCONDUCTIVE INSULATING LAYER INTO INTIMATE CONTACT TO CAUSE TRANSFER OF THE CHARGES COMPRISING THE ELECTROSTATIC LATENT IMAGE FROM SAID PHOTOCONDUCTIVE INSULATING LAYER TO SAID INSULATING SURFACE, LIFTING SAID INSULATING SURFACE OFF SAID PHOTOCONDUCTIVE INSULATING LAYER TO THEREBY CARRY OFF SAID TRANSFERRED ELECTROSTATIC IMAGE, AND MODIFYING THE CONTRAST CHARACTERISTICS OF SAID TRANSFERRED ELECTROSTATIC LATENT IMAGE ON SAID INSULATING SURFACE BY SUBJECTING SAID IMAGE TO THE ELECTROSTATIC FLUID OF A CHARGED ELECTRODE, SAID INSULATING SURFACE BEING PROVIDED WITH A UNIFORM PATTERN OF PROTUBERANT AND DEPRESSED AREAS.
US551289A 1955-12-06 1955-12-06 Offset electrophotography Expired - Lifetime US3051568A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US551289A US3051568A (en) 1955-12-06 1955-12-06 Offset electrophotography
US208359A US3115814A (en) 1955-12-06 1962-07-09 Offset electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US551289A US3051568A (en) 1955-12-06 1955-12-06 Offset electrophotography

Publications (1)

Publication Number Publication Date
US3051568A true US3051568A (en) 1962-08-28

Family

ID=24200647

Family Applications (1)

Application Number Title Priority Date Filing Date
US551289A Expired - Lifetime US3051568A (en) 1955-12-06 1955-12-06 Offset electrophotography

Country Status (1)

Country Link
US (1) US3051568A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3168022A (en) * 1956-03-08 1965-02-02 Zindler Lumoprint Kg Apparatus for producing photocopies
US3181420A (en) * 1963-05-23 1965-05-04 American Photocopy Equip Co Copying machine
US3194674A (en) * 1961-05-24 1965-07-13 Burroughs Corp Apparatus and method for duplicating messages which are electrostatically charged, developed and fixed on a master dielectric medium onto copy media capable of retainingelectrostatic charges
US3248216A (en) * 1961-03-28 1966-04-26 Gen Aniline & Film Corp Process and apparatus for half-tone electrophotography
US3256791A (en) * 1962-11-02 1966-06-21 Azoplate Corp Electrophotographic process and apparatus for the automatic and continuous reproduction of originals
US3318213A (en) * 1964-12-01 1967-05-09 Cartofax Corp Electrophotographic reproducing apparatus
US3339469A (en) * 1962-08-06 1967-09-05 Sun Chemical Corp Electrostatic printing apparatus
US3352218A (en) * 1963-01-03 1967-11-14 Scm Corp Sheet feed apparatus
US3401613A (en) * 1964-10-30 1968-09-17 Xerox Corp Web cutter control device for xero-graphic reproducing apparatus
US3591276A (en) * 1967-11-30 1971-07-06 Xerox Corp Method and apparatus for offset xerographic reproduction
US3928669A (en) * 1972-12-12 1975-12-23 Fuji Photo Film Co Ltd Image-forming method

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE529234A (en) * 1953-05-29
US2277013A (en) * 1939-06-27 1942-03-17 Chester F Carison Electric recording and transmission of pictures
US2297691A (en) * 1939-04-04 1942-10-06 Chester F Carlson Electrophotography
US2558900A (en) * 1945-03-26 1951-07-03 William C Huebner Electrostatic printing method and apparatus
US2588675A (en) * 1948-12-07 1952-03-11 Haloid Co Electrocopy apparatus
US2599542A (en) * 1948-03-23 1952-06-10 Chester F Carlson Electrophotographic plate
US2600580A (en) * 1949-06-03 1952-06-17 Haloid Co Electrophotographic apparatus
US2618551A (en) * 1948-10-20 1952-11-18 Haloid Co Developer for electrostatic images
US2637651A (en) * 1948-10-02 1953-05-05 Battelle Development Corp Method of producing images on rigid surfaces
US2693416A (en) * 1950-05-19 1954-11-02 Western Electric Co Method of electrostatic electrophotography
US2756676A (en) * 1953-05-04 1956-07-31 Haloid Co Method for the production of electrophotographic prints
US2758524A (en) * 1953-12-30 1956-08-14 Rca Corp Electrostatic photographic printing
US2764693A (en) * 1951-05-25 1956-09-25 Gen Electric Process and apparatus for image production and recordation
US2808329A (en) * 1954-11-22 1957-10-01 Eastman Kodak Co Photographic color correction using colored and uncolored couplers
US2817765A (en) * 1956-01-03 1957-12-24 Haloid Co Xerographic method
US2817277A (en) * 1955-01-07 1957-12-24 Haloid Co Electrophotographic camera
US2825814A (en) * 1953-07-16 1958-03-04 Haloid Co Xerographic image formation
US2833648A (en) * 1953-07-16 1958-05-06 Haloid Co Transfer of electrostatic charge pattern
US2868642A (en) * 1955-01-03 1959-01-13 Haloid Xerox Inc Electrophotographic method
US2895847A (en) * 1953-12-21 1959-07-21 Battelle Development Corp Electric image development
US2914403A (en) * 1955-05-17 1959-11-24 Rca Corp Electrostatic printing
US2937943A (en) * 1957-01-09 1960-05-24 Haloid Xerox Inc Transfer of electrostatic charge pattern
US2937944A (en) * 1957-11-20 1960-05-24 Haloid Xerox Inc Xerographic light-sensitive member and process therefor

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2297691A (en) * 1939-04-04 1942-10-06 Chester F Carlson Electrophotography
US2277013A (en) * 1939-06-27 1942-03-17 Chester F Carison Electric recording and transmission of pictures
US2558900A (en) * 1945-03-26 1951-07-03 William C Huebner Electrostatic printing method and apparatus
US2599542A (en) * 1948-03-23 1952-06-10 Chester F Carlson Electrophotographic plate
US2637651A (en) * 1948-10-02 1953-05-05 Battelle Development Corp Method of producing images on rigid surfaces
US2618551A (en) * 1948-10-20 1952-11-18 Haloid Co Developer for electrostatic images
US2588675A (en) * 1948-12-07 1952-03-11 Haloid Co Electrocopy apparatus
US2600580A (en) * 1949-06-03 1952-06-17 Haloid Co Electrophotographic apparatus
US2693416A (en) * 1950-05-19 1954-11-02 Western Electric Co Method of electrostatic electrophotography
US2764693A (en) * 1951-05-25 1956-09-25 Gen Electric Process and apparatus for image production and recordation
US2756676A (en) * 1953-05-04 1956-07-31 Haloid Co Method for the production of electrophotographic prints
BE529234A (en) * 1953-05-29
US2825814A (en) * 1953-07-16 1958-03-04 Haloid Co Xerographic image formation
US2833648A (en) * 1953-07-16 1958-05-06 Haloid Co Transfer of electrostatic charge pattern
US2895847A (en) * 1953-12-21 1959-07-21 Battelle Development Corp Electric image development
US2758524A (en) * 1953-12-30 1956-08-14 Rca Corp Electrostatic photographic printing
US2808329A (en) * 1954-11-22 1957-10-01 Eastman Kodak Co Photographic color correction using colored and uncolored couplers
US2868642A (en) * 1955-01-03 1959-01-13 Haloid Xerox Inc Electrophotographic method
US2817277A (en) * 1955-01-07 1957-12-24 Haloid Co Electrophotographic camera
US2914403A (en) * 1955-05-17 1959-11-24 Rca Corp Electrostatic printing
US2817765A (en) * 1956-01-03 1957-12-24 Haloid Co Xerographic method
US2937943A (en) * 1957-01-09 1960-05-24 Haloid Xerox Inc Transfer of electrostatic charge pattern
US2937944A (en) * 1957-11-20 1960-05-24 Haloid Xerox Inc Xerographic light-sensitive member and process therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3168022A (en) * 1956-03-08 1965-02-02 Zindler Lumoprint Kg Apparatus for producing photocopies
US3248216A (en) * 1961-03-28 1966-04-26 Gen Aniline & Film Corp Process and apparatus for half-tone electrophotography
US3194674A (en) * 1961-05-24 1965-07-13 Burroughs Corp Apparatus and method for duplicating messages which are electrostatically charged, developed and fixed on a master dielectric medium onto copy media capable of retainingelectrostatic charges
US3339469A (en) * 1962-08-06 1967-09-05 Sun Chemical Corp Electrostatic printing apparatus
US3256791A (en) * 1962-11-02 1966-06-21 Azoplate Corp Electrophotographic process and apparatus for the automatic and continuous reproduction of originals
US3352218A (en) * 1963-01-03 1967-11-14 Scm Corp Sheet feed apparatus
US3181420A (en) * 1963-05-23 1965-05-04 American Photocopy Equip Co Copying machine
DE1214997B (en) * 1963-05-23 1966-04-21 American Photocopy Equip Co Continuous electrophotographic copier
US3401613A (en) * 1964-10-30 1968-09-17 Xerox Corp Web cutter control device for xero-graphic reproducing apparatus
US3318213A (en) * 1964-12-01 1967-05-09 Cartofax Corp Electrophotographic reproducing apparatus
US3591276A (en) * 1967-11-30 1971-07-06 Xerox Corp Method and apparatus for offset xerographic reproduction
US3928669A (en) * 1972-12-12 1975-12-23 Fuji Photo Film Co Ltd Image-forming method

Similar Documents

Publication Publication Date Title
US3115814A (en) Offset electrophotography
US2807233A (en) Electrophotographic printing machine
US2901374A (en) Development of electrostatic image and apparatus therefor
US3837741A (en) Control arrangement for transfer roll power supply
US3152012A (en) Apparatus for the development of electrostatic images
US2895847A (en) Electric image development
US3267840A (en) Powder image transfer system
US3671118A (en) Apparatus for creating duplex reproductions
US3936171A (en) Electrostatographic methods and apparatus
US3937572A (en) Apparatus for inductive electrophotography
US3647292A (en) Transfer apparatus
US3685896A (en) Duplicating method and apparatus
US2885955A (en) Xerographic machine
US3592642A (en) Duplicating method wherein a paper sheet heated to the melting point of a toner image simultaneously causes the transfer of the toner from the photoconductor and fusing of the toner image on the paper sheet
US3051568A (en) Offset electrophotography
US3707138A (en) Apparatus for transferring a developed image from a photosensitive member to a receiver
US3630608A (en) High-speed copier
US4023894A (en) Transfer apparatus
US3288605A (en) Electrophotographic printing method
US3743403A (en) Transport assembly
US3838921A (en) Photoelectrostatic copying apparatus
US3997688A (en) Developing an electrical image
US3806355A (en) Electrostatic printing apparatus and method
US3442645A (en) Electrophotographic method
US2880699A (en) Xerographic development