US3069840A - Propulsion means and method for space vehicles - Google Patents

Propulsion means and method for space vehicles Download PDF

Info

Publication number
US3069840A
US3069840A US735192A US73519258A US3069840A US 3069840 A US3069840 A US 3069840A US 735192 A US735192 A US 735192A US 73519258 A US73519258 A US 73519258A US 3069840 A US3069840 A US 3069840A
Authority
US
United States
Prior art keywords
gases
gaseous
metal
combustion chamber
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US735192A
Inventor
Jr Harry A Toulmin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commonwealth Engineering Company of Ohio
Original Assignee
Commonwealth Engineering Company of Ohio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commonwealth Engineering Company of Ohio filed Critical Commonwealth Engineering Company of Ohio
Priority to US735192A priority Critical patent/US3069840A/en
Priority to FR794115A priority patent/FR1223817A/en
Priority to GB16518/59A priority patent/GB863196A/en
Application granted granted Critical
Publication of US3069840A publication Critical patent/US3069840A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/425Propellants
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B43/00Compositions characterised by explosive or thermic constituents not provided for in groups C06B25/00 - C06B41/00
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B47/00Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
    • C06B47/02Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase the components comprising a binary propellant
    • C06B47/12Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase the components comprising a binary propellant a component being a liquefied normally gaseous fuel

Definitions

  • This invention relates to missiles and rockets, and more particularly to improved missiles or rockets useful for space flight, and which are propelled by catalyzed combustible gases.
  • Another object of the invention is to provide a high energy fuel for operating missiles, rockets and space ships and which is efiicient in operation.
  • the invention overcomes the difficulties heretofore encountered in fuels utilized for jet propulsion and which are of the solid and liquid type, with their attendant danger of explosion.
  • the present invention provides an improved gaseous propelled missile or rocket which is propelled by blending carbon monoxide, oxygen, nitrogen, hydrogen, colloidal metal particles and hydrocarbon gases.
  • the invention provides a missile which accomplishes the blending together of the gaseous constituents in proportions such that a substantially self-combustible fuel is produced.
  • the gaseous fuel is catalyzed by blending gaseous heat-decomposable metal compounds with hydrocarbon and oxygen to release high energy propellant gases at high temperatures.
  • the gaseous propellant preferably comprises a blend of gaseous metal carbonyl and hydrocarbon gas such as propylene to which is admixed nitrogen, oxygen, and hydrogen as may be formed as a decomposition product.
  • gaseous metal carbonyl decomposes to release in situ the metal particles which catalyze the combustion to produce a high heat energy flame.
  • FIGURE 1 is an elevational view of a missile powered with gaseous propellant in accordance with the invention
  • FIGURE 2 shOWs a similar view in elevation of the missile or rocket with parts of the same broken away to illustrate the tank compartments holding the propellant gases and interconnected combustion chamber for jet propelling the missile;
  • FIGURE 3 is a view in cross-section taken on the line 3-3 and looking in the direction of the arrows;
  • FEGURE 4 is a similar view in cross-section and looking in the direction of the arrows;
  • FIGURE 5 shows a modification, and wherein the motor for driving the rocket or space vehicle is illustrated and the blending of the gases to provide the propellant jet thrust is shown schematically.
  • a missile 16 as illustrated in FIG- URE 1 comprises a warhead or payload section 11, body or fuel portion 12, and tail section 13, the latter being provided with vanes 14.
  • the interior construction of the missile comprises a guidance control and instrument section 15, multiple fuel tank section, generally indicated at 16 and 17, and a main combustion chamber 18 with an inter-communicating nozzle exhaust section generally indicated at 19.
  • Fuel tanks 21, 22, 23, 24 and 25 are fixedly positioned in the fuel section and are of less diameter than the outer casing 28 of the missile and defining a jacket or space 30 for the flow of hot exhaust gases to maintain the fuel tanks heated during operation and flight of the missile.
  • Tank 21 is filled with a gaseous metal carbonyl or the like heat-decomposable gaseous metal compound, which is thermally decomposable such as nickel carbonyl
  • tank 22 is filled with an olefin gas for example acetylene, propylene or the like
  • tank 23 is filled with nitrogen.
  • Control of the gases flowing from the fuel tanks 21, 22 and 23 is maintained by the electro-magnetic valves 31, 32 and 33 respectively.
  • a controlled blend of the fuel gases from tanks 21, 22 and 23 is mixed in the auxiliary chamber 35 which communicates with a central tubular opening 36 between tanks 24 and 25, and forming the first stage combustion chamber.
  • This first stage combustion chamber is provided with an igniter means 38 for ignting the gaseous mixture which, as shown in FIGURE 2, may consist of an electrically heated wire, and such may be made of Nichrome or the like heat-resistant material.
  • the oxygen tanks 24 and 25 Arranged about the central first-stage combustion chamber 36 are the oxygen tanks 24 and 25 which communicate through electro-magnetic valves 41 and 42, respectively, with the main combusion chamber 44.
  • the fuel tanks are preferably connected to the electromagnetic valves through suitable constant pressure valves, not shown, whereby controlled introduction of the gases to the combustion chamber is maintained.
  • High temperature exhaust gases from the combustion chamber 44 exit through the exhaust nozzle 45 and exert the jet thrust for propelling the missile.
  • An important feature of the missile comprises the utilization of a portion of the hot exhaust gases to preheat the fuel tanks. This is provided for by the auxiliary exhaust ports 47 which are arranged circumferentially about the upper portion of the combustion chamber 44 and permit hot exhaust gases to enter the jacket space portion 48 and circulate upward through the annular space 30 and about the fuel tanks, as indicated by the arrows in FIGURE 2, and exiting through the exhaust ports 49, a plurality of which are arranged circumferentially about the casing 28 of the missile.
  • Another important feature of the invention is the provision for forming a metal catalyst in situ upon admixing and burning of the fuel mixture. This is accomplished by introducing a thermally decomposable gaseous metal compound into the oxygen and olefin gaseous fuel mixture. While, as illustrated, the gaseous metal compound is stored in a separate tank, if desired, the same may be pro-mixed with the gaseous olefin.
  • the release of metal particles in situ which are of sub-micron fineness and nascent metal functions to enhance the combustion and is believed to assist in producing the high temperature, such as in the region of 2000 to 3500 K.
  • a useful fuel mixture for admixing and ignition in the first stage combustion chamber to which oxygen is added and burned in the main combustion chamber consists, by volume, of propylene gas mixed with 25 to 35% nickel carbonyl gas and 20 to 30% nitrogen. To this ignited mixture is introduced approximately one-third by volume of oxygen. Decomposition of the gaseous metal compound introduces the colloidal particles of nickel which catalyzes the oxidation and the metal particles released burn to increase the temperature and volume of gases thus enhancing the thrust jet force.
  • the invention utilizes the high energy developed from burning gases comprising COO and which gases are blended with hydrocarbon, particularly the olefins and oxygen, to provide a metal catalyzed'combustible mixture, and which mixture burns at a high temperature to provide a high thrust for propelling the missile or rocket.
  • a portion of the hot gases which burn in the second stage combustion chamber .4 are exhausted through the jacket portion-30 and maintain the storage fuel tanks heated, as described. 'The gases from the jacket space 30'are allowed to exhaust or are expelled through the port openings 49 as aforementioned.
  • the electro-magnetic valves are electrically controlled so as to introduce the proportionate amount of gases desired to thecombustion chambers.
  • metal particles are released upon heatdecomposition of the metal carbonyl to provide carbon monoxide and colloidal catalytic metal particles. The metal particles thus catalyze the combustion and increase the temperature of burning of the gases.
  • FIGURE a space vehicle gas power plant is schematically illustrated, and wherein the same comprises a metal carbonyl storage tank 50 and an olefin storage gas tank 51 which are connected through electro-magnetic valves 52 and 53 respectively with a mixing and ignition chamber 55, the latter communicating with a combustion chamber 56.
  • Combustion chamber 56 is connected to a venturi jet exhaust nozzle section 57 and from which the hot gases are exhausted at 58, as indicated by the arrow.
  • the tanks 50 and 51 are provided with heating jackets 60 and 61. Heat is supplied to preheat the gaseous fuel in the tanks, preferably by exhaust gases, however, if desired, suitable electrical heating means may be used for this purpose.
  • Means are provided such as electrically heated wire 62 in the chamber 55 for igniting the fuel mixture which is then passed into the main combustion chamber 56 wherein the fuel is burned and exhausted through the nozzle 57 to provide the thrust.
  • the space vehicle is propelled by the burning of two gases blended to release catalytic metal particles as in the missile power plant or motor illustrated in FIGURES l and 2.
  • a certain amount of liquid or solid fuel may be introduced into the second stage combustion chamber to increase the volume of hot gases released.
  • metal carbonyl gas there may be used various heat decomposable gaseous metal carbonyl compounds of nickel, chromium, titanium, molybdenum, cobalt and the like.
  • Metals may be introduced as gaseous metal carbonyls or vaporized solutions of certain of the metal carbonyls in readily vaporizable solvents (for example petroleum ether) also nitroxyl compounds, nitrosyl carbonyls, metal hydrides, metal alkyls, metal halides, and the like.
  • Illustrative compoundsof the light metals e.g. aluminum, magnesium, tin and zinc are the alkyl or aryls such as aluminum triethyl, magnesium trimethyl, and thecorresponding triphenyls, and organo tin and zinc com pounds which are volatile and thermally decomposable;
  • Illustrative compounds of other groups are the nitroxyls,'- such as coppernitroxyl; nitrosyl carbonyls, for example,- cobalt nitrosyl carbonyl; hydrides, such as antimony" hydride, tin hydride; metal alkyls, and halides such as chromyl chloride; and carbonyl halogens, for example,
  • Each material from which a metal may be released has a temperature at which decomposition is complete. However, decomposition may take place slowly at a lower temperature or while the vapors are being raised in temperature through some particular range. Where the temperature at which the gaseous metal compound employed decomposes at tempratures below about 400 F. the tank is provided with a heat-insulating jacket, such as may be made of glass wool. The tank thus heat insulated is prevented from becoming over-heated and such as to .cause premature decomposition of the gaseous metal compound.
  • the alkenes for example ethylene, propylene and the like, which are gases at ordinary temperatures or substantially at room temperature, and may be stored at relatively high temperatures and pressures
  • the following table shows the melting point and boil-- ing point of the alkenes which are useful for the purpose of this invention.
  • the physical constants of the alkenes, which are used to blend with the gaseous metal compounds have relatively low boiling points and. can be burned when mixed with oxygen or carbon mom-- oxide.
  • Hydrocarbons such as olefins as employed upon combustion provide many free radical reactions.
  • the oxidation of hydrocarbons in the vapor phase is different than that which takes place in the presence of catalysts.
  • the hydrocarbons may be oxidized at somewhat lower temperatures so that the combustion can be readily maintained.
  • Methane for example, is oxidized at rather high temperature above 500 C. in the absence-of catalyst. With the catalyst it can be oxidized at lower temperatures;
  • the concentration of the gases of the metal carbonyl, olefin and oxygen is preferably maintained at a ratio of metal carbonyl to olefin of approximately -l.:2 by volume and the oxygen is introduced in the proportion of approximately one-third by volume of the mixture of metal carbonyl, nitrogen and olefin gases.
  • Nitrogen gas is added in an amount to admix with approximately 30% by volume of the mixture of gaseous metal carbonyl and gaseous olefin.
  • the fuel tanks are adapted to maintain a gas pressure of 500 to 1000 p.s.i., the fuel gases being preferably compressed to approximately 400 p.s.i. gauge pressure.
  • the following table shows the heat of combustion and cubic feet of oxygen required per cubic foot of a number of gaseous hydrocarbons for combustion of the same As will be noted from the above table, as the number of carbon-hydrogen radicals increase the heat of com.- bustion increases and as Well as the oxygen required for burning the same.
  • the concentration of the gaseous fuel mixture will be varied depending upon the temperature of operation desired and may be maintained either below or above explosive limits. In the practice of the invention it is desired to maintain the gases below their explosive limits since concentration of gases above these limits results in heat release so great and so rapid that reasonable temperatures cannot be maintained in the combustion chamber and may result in damage to the space vehicle or missile being propelled.
  • the catalytic metal is released as a by-product by decomposition of the gaseous metal compounds of the metals such as nickel, aluminum, magnesium, platinum, chrominum, copper, zinc, tin or their oxides.
  • the oxides, phosphates and stearates of the light metals e.g. aluminum, magnesium and tin may be introduced into the second stage combustion chamber as an optional constituent to increase the catalytic action.
  • the metal particles are colloidal and form during heat decomposition of the gaseous metal compound and which can be gasified and heat-decomposed to release the metal.
  • the missile is preferably gas plated with a high temperature resistant metal such as zirconium or tungsten, the latter having a melting point of 3380 C, whereas zirconium metal withstands a temperature approximating 2000 C.
  • a high temperature resistant metal such as zirconium or tungsten, the latter having a melting point of 3380 C, whereas zirconium metal withstands a temperature approximating 2000 C.
  • This gas plating deposits metal to form a thin, skinlike outer heat-resistant shell or coating.
  • Table VI shows that while the temperature of the earths atmosphere is relatively low in the lower layers, it increases considerably in the higher ionosphere layer. This accounts, to some extent at least, for heat destruction or" meteorites and space satellites which enter the earths upper atmosphere at high velocities.
  • the pressures in the chambers of the gaseous constituents are preferably maintained during the operation of the propellant motor so that the same will lie between 300 and 600 p.s.i. and preferably about 400 p.s.i. gauge, as aforementioned.
  • a method of creating thrust by introducing and burning a fuel mixture in a combustion chamber of a reaction motor consisting of admixing and igniting in said combustion chamber with oxygen a metal catalyzed mixture consisting by volume of propy1 ene gas mixed with gaseous metal carbonyl and nitrogen, said metal carbonyl being present in the propylene gas in the amount of 25 to 35% by volume, and said nitrogen being present in the amount of 20% to 30% by volume of the propylene gas mixture, and introducing into the resultant ignited mixture approximately one-third by volume of oxygen and burning the mixture, whereby a large volume of high temperature propellant gases are produced.
  • metal carbonyl is selected from the group consisting of the carbonyls of nickel, chromium, titanium, molybdenum and cobalt, and in place of propylene there 8 is substituted an alkene selected from the group consisting of ethylene, butene, and isobutylene.

Description

c. 25, 1962 H. A. TOULMIN, JR
PROPULSION MEANS AND METHOD FOR SPACE VEHICLES Filed May 14, 1958 2 Sheets-Sheet l INVENTOR HARRY/4. 7'00; M/N, we
A'ITORNEKS c. 25, 1962 H. A. TOULMIN, JR 3,069,840
PROPULSION MEANS AND METHOD FOR SPACE VEHICLES Fil ed May 14, 1958 2 Sheets-Sheet 2 INVENTOR HA RPYA. TOUL M/N, (JR.
BY mm ATTORNEYS res fine
3,659,349 PRGPULSIGN MEANS AND METHGD FUR SEAtCE VEHICLES Harry A. Toulmiu, J12, Layton, Ghio, assignor to The Commonwealth Engineering Company of Qhio, Dayton, (Bhio Filed May 14, 1955, Ser. No. 735,1@2 2 Elaims. (Cl. oil-35.4}
This invention relates to missiles and rockets, and more particularly to improved missiles or rockets useful for space flight, and which are propelled by catalyzed combustible gases.
it is one of the objects of the invention to provide a missile or rocket of the character described which is propelled by a gaseous fuel operated motor and which eliminates the disadvantages encountered in the use of propellants such as solid and liquid fuels.
Another object of the invention is to provide a high energy fuel for operating missiles, rockets and space ships and which is efiicient in operation.
The invention overcomes the difficulties heretofore encountered in fuels utilized for jet propulsion and which are of the solid and liquid type, with their attendant danger of explosion.
The present invention provides an improved gaseous propelled missile or rocket which is propelled by blending carbon monoxide, oxygen, nitrogen, hydrogen, colloidal metal particles and hydrocarbon gases.
The invention provides a missile which accomplishes the blending together of the gaseous constituents in proportions such that a substantially self-combustible fuel is produced. The gaseous fuel is catalyzed by blending gaseous heat-decomposable metal compounds with hydrocarbon and oxygen to release high energy propellant gases at high temperatures.
In accordance with applicants invention the gaseous propellant preferably comprises a blend of gaseous metal carbonyl and hydrocarbon gas such as propylene to which is admixed nitrogen, oxygen, and hydrogen as may be formed as a decomposition product. During combustion the gaseous metal carbonyl decomposes to release in situ the metal particles which catalyze the combustion to produce a high heat energy flame.
The invention may be better understood from the following detailed description, taken in conjunction with the drawings, in which FIGURE 1 is an elevational view of a missile powered with gaseous propellant in accordance with the invention;
FIGURE 2 shOWs a similar view in elevation of the missile or rocket with parts of the same broken away to illustrate the tank compartments holding the propellant gases and interconnected combustion chamber for jet propelling the missile;
FIGURE 3 is a view in cross-section taken on the line 3-3 and looking in the direction of the arrows;
FEGURE 4 is a similar view in cross-section and looking in the direction of the arrows;
FIGURE 5 shows a modification, and wherein the motor for driving the rocket or space vehicle is illustrated and the blending of the gases to provide the propellant jet thrust is shown schematically.
Referring to the drawings in more detail, particularly to FIGURES 1 and 2, a missile 16, as illustrated in FIG- URE 1 comprises a warhead or payload section 11, body or fuel portion 12, and tail section 13, the latter being provided with vanes 14.
The interior construction of the missile, as illustrated in FIGURE 2, comprises a guidance control and instrument section 15, multiple fuel tank section, generally indicated at 16 and 17, and a main combustion chamber 18 with an inter-communicating nozzle exhaust section generally indicated at 19. Fuel tanks 21, 22, 23, 24 and 25 are fixedly positioned in the fuel section and are of less diameter than the outer casing 28 of the missile and defining a jacket or space 30 for the flow of hot exhaust gases to maintain the fuel tanks heated during operation and flight of the missile.
Tank 21 is filled with a gaseous metal carbonyl or the like heat-decomposable gaseous metal compound, which is thermally decomposable such as nickel carbonyl, whereas tank 22 is filled with an olefin gas for example acetylene, propylene or the like, and tank 23 is filled with nitrogen. Control of the gases flowing from the fuel tanks 21, 22 and 23 is maintained by the electro- magnetic valves 31, 32 and 33 respectively. A controlled blend of the fuel gases from tanks 21, 22 and 23 is mixed in the auxiliary chamber 35 which communicates with a central tubular opening 36 between tanks 24 and 25, and forming the first stage combustion chamber. This first stage combustion chamber is provided with an igniter means 38 for ignting the gaseous mixture which, as shown in FIGURE 2, may consist of an electrically heated wire, and such may be made of Nichrome or the like heat-resistant material.
Arranged about the central first-stage combustion chamber 36 are the oxygen tanks 24 and 25 which communicate through electro- magnetic valves 41 and 42, respectively, with the main combusion chamber 44. The fuel tanks are preferably connected to the electromagnetic valves through suitable constant pressure valves, not shown, whereby controlled introduction of the gases to the combustion chamber is maintained. High temperature exhaust gases from the combustion chamber 44 exit through the exhaust nozzle 45 and exert the jet thrust for propelling the missile.
An important feature of the missile comprises the utilization of a portion of the hot exhaust gases to preheat the fuel tanks. This is provided for by the auxiliary exhaust ports 47 which are arranged circumferentially about the upper portion of the combustion chamber 44 and permit hot exhaust gases to enter the jacket space portion 48 and circulate upward through the annular space 30 and about the fuel tanks, as indicated by the arrows in FIGURE 2, and exiting through the exhaust ports 49, a plurality of which are arranged circumferentially about the casing 28 of the missile.
Another important feature of the invention is the provision for forming a metal catalyst in situ upon admixing and burning of the fuel mixture. This is accomplished by introducing a thermally decomposable gaseous metal compound into the oxygen and olefin gaseous fuel mixture. While, as illustrated, the gaseous metal compound is stored in a separate tank, if desired, the same may be pro-mixed with the gaseous olefin. The release of metal particles in situ which are of sub-micron fineness and nascent metal functions to enhance the combustion and is believed to assist in producing the high temperature, such as in the region of 2000 to 3500 K.
in operation of the missile illustrated in FIGURES 1 through 4, controlled amounts of the fuel gas mixture from tanks 21, 22 and 23 are blended and ignited in the first stage combustion chamber 35 and thence into the main combustion chamber 4-4 where oxygen is introduced into the metal catalyzed burning mixture from the first stage. A useful fuel mixture for admixing and ignition in the first stage combustion chamber to which oxygen is added and burned in the main combustion chamber consists, by volume, of propylene gas mixed with 25 to 35% nickel carbonyl gas and 20 to 30% nitrogen. To this ignited mixture is introduced approximately one-third by volume of oxygen. Decomposition of the gaseous metal compound introduces the colloidal particles of nickel which catalyzes the oxidation and the metal particles released burn to increase the temperature and volume of gases thus enhancing the thrust jet force.
The invention utilizes the high energy developed from burning gases comprising COO and which gases are blended with hydrocarbon, particularly the olefins and oxygen, to provide a metal catalyzed'combustible mixture, and which mixture burns at a high temperature to provide a high thrust for propelling the missile or rocket.
The high temperatures developed by flames of COO mixtures withhydrocarbon is described in the publication of the National Bureau of Standards, Circular 523, March :10, 1954, entitled Energy Pressure in Hot Gases. The high energy distribution in flames of COO and 2, 850 2, 625 Above 3,000 3, 000
In the above table it will be readily seen that mixtures or blends of hydrocarbon gases and oxygen and nitrogen produce high temperature burning flames which when catalyzed by the metal particles formed in situ by the heat-decomposable gaseous metal compound, produce a large volume of high temperature propellant gases.
A portion of the hot gases which burn in the second stage combustion chamber .4 are exhausted through the jacket portion-30 and maintain the storage fuel tanks heated, as described. 'The gases from the jacket space 30'are allowed to exhaust or are expelled through the port openings 49 as aforementioned.
The electro-magnetic valves are electrically controlled so as to introduce the proportionate amount of gases desired to thecombustion chambers. During the initial combustion stage, metal particles are released upon heatdecomposition of the metal carbonyl to provide carbon monoxide and colloidal catalytic metal particles. The metal particles thus catalyze the combustion and increase the temperature of burning of the gases.
In FIGURE a space vehicle gas power plant is schematically illustrated, and wherein the same comprises a metal carbonyl storage tank 50 and an olefin storage gas tank 51 which are connected through electro- magnetic valves 52 and 53 respectively with a mixing and ignition chamber 55, the latter communicating with a combustion chamber 56. Combustion chamber 56 is connected to a venturi jet exhaust nozzle section 57 and from which the hot gases are exhausted at 58, as indicated by the arrow.
In the plant illustrated in'FIGURE 5, the tanks 50 and 51are provided with heating jackets 60 and 61. Heat is supplied to preheat the gaseous fuel in the tanks, preferably by exhaust gases, however, if desired, suitable electrical heating means may be used for this purpose.
Means are provided such as electrically heated wire 62 in the chamber 55 for igniting the fuel mixture which is then passed into the main combustion chamber 56 wherein the fuel is burned and exhausted through the nozzle 57 to provide the thrust.
The space vehicle, as illustrated, is propelled by the burning of two gases blended to release catalytic metal particles as in the missile power plant or motor illustrated in FIGURES l and 2.
Where desired, a certain amount of liquid or solid fuel may be introduced into the second stage combustion chamber to increase the volume of hot gases released.
As the metal carbonyl gas there may be used various heat decomposable gaseous metal carbonyl compounds of nickel, chromium, titanium, molybdenum, cobalt and the like.
Metals may be introduced as gaseous metal carbonyls or vaporized solutions of certain of the metal carbonyls in readily vaporizable solvents (for example petroleum ether) also nitroxyl compounds, nitrosyl carbonyls, metal hydrides, metal alkyls, metal halides, and the like.
Illustrative compoundsof the light metals, e.g. aluminum, magnesium, tin and zinc are the alkyl or aryls such as aluminum triethyl, magnesium trimethyl, and thecorresponding triphenyls, and organo tin and zinc com pounds which are volatile and thermally decomposable;
Illustrative compounds of other groups are the nitroxyls,'- such as coppernitroxyl; nitrosyl carbonyls, for example,- cobalt nitrosyl carbonyl; hydrides, such as antimony" hydride, tin hydride; metal alkyls, and halides such as chromyl chloride; and carbonyl halogens, for example,
osmium carbonyl bromide, ruthenium carbonyl chloride, and the like.
Each material from which a metal may be released has a temperature at which decomposition is complete. However, decomposition may take place slowly at a lower temperature or while the vapors are being raised in temperature through some particular range. Where the temperature at which the gaseous metal compound employed decomposes at tempratures below about 400 F. the tank is provided with a heat-insulating jacket, such as may be made of glass wool. The tank thus heat insulated is prevented from becoming over-heated and such as to .cause premature decomposition of the gaseous metal compound.
As the olefin gas to be mixed with the heat-decomposable gaseous metal compound there are preferably employed the alkenes, for example ethylene, propylene and the like, which are gases at ordinary temperatures or substantially at room temperature, and may be stored at relatively high temperatures and pressures The following table shows the melting point and boil-- ing point of the alkenes which are useful for the purpose of this invention.
As will be seen from the table, the physical constants of the alkenes, which are used to blend with the gaseous metal compounds have relatively low boiling points and. can be burned when mixed with oxygen or carbon mom-- oxide.
Hydrocarbons such as olefins as employed upon combustion provide many free radical reactions. The oxidation of hydrocarbons in the vapor phase is different than that which takes place in the presence of catalysts. With the use of a catalyst as is employed by the present invention, the hydrocarbons may be oxidized at somewhat lower temperatures so that the combustion can be readily maintained. Methane, for example, is oxidized at rather high temperature above 500 C. in the absence-of catalyst. With the catalyst it can be oxidized at lower temperatures;
The reactions involved upon oxidizing methane, for example, are illustrated below:
TABLE III As will be seen from the oxidation of methane free radicals (OH) are liberated and which unite with further gas to complete the oxidation.
Similarly ethane is oxidized as illustrated below:
TABLE IV CH CH CH (II-I 0 +OH CH CH O X (free radical CH CH +XH e. g. OH, CHO) Propane is oxidized at about 300 C. at atmospheric pressure. Butane is oxidized at about 350 C. Oxidation of the vapor phase hydrocarbon is a very complex reaction and depends upon the time, temperature and pressure to which the hydrocarbon is subjected. When the hydrocarbon is admixed with oxygen to provide a mixture concentration of approximately 5 to 35% oxygen, the same can be burned rapidly to produce high temperature gases. The concentration of the gases of the metal carbonyl, olefin and oxygen is preferably maintained at a ratio of metal carbonyl to olefin of approximately -l.:2 by volume and the oxygen is introduced in the proportion of approximately one-third by volume of the mixture of metal carbonyl, nitrogen and olefin gases. Nitrogen gas is added in an amount to admix with approximately 30% by volume of the mixture of gaseous metal carbonyl and gaseous olefin. The fuel tanks are adapted to maintain a gas pressure of 500 to 1000 p.s.i., the fuel gases being preferably compressed to approximately 400 p.s.i. gauge pressure.
Further, the following table shows the heat of combustion and cubic feet of oxygen required per cubic foot of a number of gaseous hydrocarbons for combustion of the same As will be noted from the above table, as the number of carbon-hydrogen radicals increase the heat of com.- bustion increases and as Well as the oxygen required for burning the same.
In the burning of hydrocarbons with oxygen the total heat given off in burning G l-i is approximately 1500 calories. This may be represented by the equation:
2C H +O CH O+l2CO Where 24 calories represents the heat released by the C and H of the benzene molecule. Thus fuels rich in H will produce high jet velocities and which is further enhanced by the presence of colloidal catalytic metal particles.
The concentration of the gaseous fuel mixture will be varied depending upon the temperature of operation desired and may be maintained either below or above explosive limits. In the practice of the invention it is desired to maintain the gases below their explosive limits since concentration of gases above these limits results in heat release so great and so rapid that reasonable temperatures cannot be maintained in the combustion chamber and may result in damage to the space vehicle or missile being propelled.
It is important to preheat the gases so that the operation can be carried out at temperatures in the feed mixture of 350-700 C. In the second stage combustion chamber it is desired that within one-quarter to two seconds that the gaseous temperature be raised from the ignited feed mixture to 2000-3000 F.
The catalytic metal is released as a by-product by decomposition of the gaseous metal compounds of the metals such as nickel, aluminum, magnesium, platinum, chrominum, copper, zinc, tin or their oxides. Where desired, the oxides, phosphates and stearates of the light metals, e.g. aluminum, magnesium and tin may be introduced into the second stage combustion chamber as an optional constituent to increase the catalytic action. The metal particles are colloidal and form during heat decomposition of the gaseous metal compound and which can be gasified and heat-decomposed to release the metal.
To permit the missile to withstand the variations in temperature to which it is subjected in flight through the atmosphere, it is preferably gas plated with a high temperature resistant metal such as zirconium or tungsten, the latter having a melting point of 3380 C, whereas zirconium metal withstands a temperature approximating 2000 C. This gas plating deposits metal to form a thin, skinlike outer heat-resistant shell or coating.
Air temperatures at various heights above the earth to which missiles and space flight bodies are subjected are shown in the following table:
Table VI shows that while the temperature of the earths atmosphere is relatively low in the lower layers, it increases considerably in the higher ionosphere layer. This accounts, to some extent at least, for heat destruction or" meteorites and space satellites which enter the earths upper atmosphere at high velocities.
For the same reason it is, of course, necessary to fabricate the missile of materials which are suiliciently resistant to heat to withstand the range of temperatures to which it is subjected to during space fiight above the earth.
In the starting of the jet motor by the burning of the propellant gaseous mixture and when the same is cold a stream of oxygen is introduced into the second stage combustion chamber so as to initiate the burning of the gases. After starting of the jet motor, the supply of oxygen is then cut back to that required to maintain the optimum combustion of the gaseous mixture.
The pressures in the chambers of the gaseous constituents are preferably maintained during the operation of the propellant motor so that the same will lie between 300 and 600 p.s.i. and preferably about 400 p.s.i. gauge, as aforementioned.
It is manifest that a wide range of gaseous mixtures and pressures and temperatures may be employed in the operation of the fluid jet motor to supply the thrust for driving the space vehicle and missiles of applicants invention, and such modifications are contemplated to come within the spirit and scope of this invention.
What is claimed is:
l. A method of creating thrust by introducing and burning a fuel mixture in a combustion chamber of a reaction motor, said method consisting of admixing and igniting in said combustion chamber with oxygen a metal catalyzed mixture consisting by volume of propy1 ene gas mixed with gaseous metal carbonyl and nitrogen, said metal carbonyl being present in the propylene gas in the amount of 25 to 35% by volume, and said nitrogen being present in the amount of 20% to 30% by volume of the propylene gas mixture, and introducing into the resultant ignited mixture approximately one-third by volume of oxygen and burning the mixture, whereby a large volume of high temperature propellant gases are produced.
2. A method of creating thrust as set forth in claim 1, wherein the metal carbonyl is selected from the group consisting of the carbonyls of nickel, chromium, titanium, molybdenum and cobalt, and in place of propylene there 8 is substituted an alkene selected from the group consisting of ethylene, butene, and isobutylene.
References Cited in the file of this patent UNITED STATES PATENTS 2,620,625 Phaneuf Dec. 9, 1952 2,696,708 Kittredge Dec. 14, 1954 2,771,737 Scott et al Nov. 27, 1956 2,771,738 Scott et a1 Nov. 27, 1956 2,815,271 Zwicky et al. Dec. 3, 1957 2,818,417 Brown et al. Dec. 31, 1957 2,914,910 King Dec. 1, 1959 2,974,475 Kolfenback et a1 Mar. 14, 1961

Claims (1)

1. A METHOD OF CREATING THRUST BY INTRODUCING AND BURNING A FUEL MIXTURE IN A COMBUSTION CHAMBER OF A REACTION MOTOR, SIAD METHOD CONSISTING OF ADMIXING AND IGNITING IN SAID COMBUSTION CHAMBER WITH OXYGEN A
US735192A 1958-05-14 1958-05-14 Propulsion means and method for space vehicles Expired - Lifetime US3069840A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US735192A US3069840A (en) 1958-05-14 1958-05-14 Propulsion means and method for space vehicles
FR794115A FR1223817A (en) 1958-05-14 1959-05-06 Method and fuel for the propulsion of space vehicles
GB16518/59A GB863196A (en) 1958-05-14 1959-05-14 Propulsion means for space vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US735192A US3069840A (en) 1958-05-14 1958-05-14 Propulsion means and method for space vehicles

Publications (1)

Publication Number Publication Date
US3069840A true US3069840A (en) 1962-12-25

Family

ID=24954736

Family Applications (1)

Application Number Title Priority Date Filing Date
US735192A Expired - Lifetime US3069840A (en) 1958-05-14 1958-05-14 Propulsion means and method for space vehicles

Country Status (3)

Country Link
US (1) US3069840A (en)
FR (1) FR1223817A (en)
GB (1) GB863196A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007808A1 (en) * 1990-10-29 1992-05-14 Flynn Thomas M Cryogenic fuels
US5705771A (en) * 1990-10-29 1998-01-06 Flynn; Thomas M. Cryogenic propellants and method for producing cryogenic propellants
US20100175637A1 (en) * 2007-07-03 2010-07-15 Moeller Frederik Gundelach Catalytic heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107725216B (en) * 2017-08-30 2019-07-12 北京控制工程研究所 A kind of premix hydrogen-oxygen thruster

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2620625A (en) * 1947-05-16 1952-12-09 Edward A Phaneuf Jet engine having an air compressor driven solely by a fuel gas turbine
US2696708A (en) * 1953-05-25 1954-12-14 Phillips Petroleum Co Jet engine operation
US2771738A (en) * 1951-10-01 1956-11-27 Phillips Petroleum Co Morpholines as hypergolic fuels
US2771737A (en) * 1951-12-04 1956-11-27 Phillips Petroleum Co Piperidines as hypergolic fuels
US2815271A (en) * 1946-03-22 1957-12-03 Aerojet General Co Fuel containing nitromethane and nitroethane
US2818417A (en) * 1955-07-11 1957-12-31 Ethyl Corp Cyclomatic compounds
US2914910A (en) * 1954-10-11 1959-12-01 United Aircraft Corp Propyl nitrate monofuel and method of use with nickel salts
US2974475A (en) * 1955-04-06 1961-03-14 Exxon Research Engineering Co Method for operating a rocket motor or the like

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2815271A (en) * 1946-03-22 1957-12-03 Aerojet General Co Fuel containing nitromethane and nitroethane
US2620625A (en) * 1947-05-16 1952-12-09 Edward A Phaneuf Jet engine having an air compressor driven solely by a fuel gas turbine
US2771738A (en) * 1951-10-01 1956-11-27 Phillips Petroleum Co Morpholines as hypergolic fuels
US2771737A (en) * 1951-12-04 1956-11-27 Phillips Petroleum Co Piperidines as hypergolic fuels
US2696708A (en) * 1953-05-25 1954-12-14 Phillips Petroleum Co Jet engine operation
US2914910A (en) * 1954-10-11 1959-12-01 United Aircraft Corp Propyl nitrate monofuel and method of use with nickel salts
US2974475A (en) * 1955-04-06 1961-03-14 Exxon Research Engineering Co Method for operating a rocket motor or the like
US2818417A (en) * 1955-07-11 1957-12-31 Ethyl Corp Cyclomatic compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007808A1 (en) * 1990-10-29 1992-05-14 Flynn Thomas M Cryogenic fuels
US5705771A (en) * 1990-10-29 1998-01-06 Flynn; Thomas M. Cryogenic propellants and method for producing cryogenic propellants
US20100175637A1 (en) * 2007-07-03 2010-07-15 Moeller Frederik Gundelach Catalytic heater

Also Published As

Publication number Publication date
GB863196A (en) 1961-03-22
FR1223817A (en) 1960-06-20

Similar Documents

Publication Publication Date Title
US2791883A (en) Propellant system
US6779335B2 (en) Burning nitrous oxide and a fuel
US5582001A (en) Hybrid rocket combustion enhancement
US2987875A (en) Ramjet power plants for missiles
US6820412B2 (en) Hybrid rocket motor having a precombustion chamber
US8024918B2 (en) Rocket motor having a catalytic hydroxylammonium (HAN) decomposer and method for combusting the decomposed HAN-based propellant
JPS63120841A (en) Pusher and method of improving fuel device
US3136119A (en) Fluid-solid propulsion unit and method of producing gaseous propellant
US6849247B1 (en) Gas generating process for propulsion and hydrogen production
US3107485A (en) Propulsion means and method for space vehicles employing a volatile alkene and metalcarbonyl
US20130181168A1 (en) Portable Gas Generating Device
Jeong et al. Demonstration of ammonia borane-based hypergolic ignitor for hybrid rocket
CN111173647A (en) Two-component nitrous oxide engine
US3069840A (en) Propulsion means and method for space vehicles
CN111156101A (en) Nitrous oxide power system
Jung et al. Demonstration of ethanol-blended hydrogen peroxide gas generator for ramjet combustor flow simulation
JPS63113169A (en) Pusher, combustion apparatus liner and manufacture of liner for nozzle
US3336753A (en) Propulsion devices
JPS63120842A (en) Pusher
Božić et al. Program AHRES and its contribution to assess features and current limitations of hybrid rocket propulsion
US6739121B2 (en) Flame holder for a hybrid rocket motor
US3230701A (en) Two step reaction propulsion method
US2952122A (en) Fuel system for ducted rocket ramjet power plants
CN211819716U (en) Nitrous oxide power system
US2994191A (en) Operation of reaction motors