US3071531A - Cathodic protection system for submerged installations - Google Patents

Cathodic protection system for submerged installations Download PDF

Info

Publication number
US3071531A
US3071531A US791917A US79191759A US3071531A US 3071531 A US3071531 A US 3071531A US 791917 A US791917 A US 791917A US 79191759 A US79191759 A US 79191759A US 3071531 A US3071531 A US 3071531A
Authority
US
United States
Prior art keywords
anodes
submerged
cathodic protection
protection system
platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US791917A
Inventor
Jr Harry W Hosford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US791917A priority Critical patent/US3071531A/en
Application granted granted Critical
Publication of US3071531A publication Critical patent/US3071531A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/20Conducting electric current to electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/18Means for supporting electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/31Immersed structures, e.g. submarine structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/0017Means for protecting offshore constructions
    • E02B17/0026Means for protecting offshore constructions against corrosion

Definitions

  • the first consists of any of the various well-known protective coatings, none of which, however, is of any great durability, while the second is cathodic protection utilizing electrically charged anodes spaced a proper distance from the piling or other metallic parts to be protected. It is interesting to note that it is usually expected that without the provision of an effective cathodic protection system as much as by weight of the submerged pier, for example, will corrode away in the first year.
  • Many different forms of installations have been tested with only indifferent results from a practical viewpoint, particularly with regard to installation cost and durability.
  • Still another method employed has been to place a string of anodes on the bottom adjacent the installation to be protected, the anodes being connected together by the insulated conductor so that but a single conductor line leads upwardly from the string to the current source.
  • Such single conductor has, however, normally still extended above at least one or more of the anodes and has thus still been subjected to chemical attack, with the additional disadvantage that when it eventually fails, the entire series of thus-connected anodes is rendered inoperative.
  • the anodes quickly silt over and the deleterious gases aforesaid tend to be trapped and to accumulate about such anodes, reducing their protective effectiveness and also causing the anodes themselves to be attacked much more rapidly than would otherwise be the case and so reducing the life of the anodes themselves.
  • FIG. 1 is a diagrammatic top plan view of a maritime structure equipped with a cathodic protection system in accordance with my invention
  • FIG. 2 is a vertical section taken on line 2-2 on FIG. 1;
  • FIG. 3 is an enlarged elevation of one of the electrodes and its supporting means with the electrode being shown on a larger scale than the supporting means and having parts broken away for clarity of illustration.
  • FIGS. 4 and 5 are detailed sectional views of alternative electrode supporting means
  • FIG. 6 is a fragmentary detail sectional view illustrating means of suspending one type of electrode.
  • FIGS. 1 and 2 there is shown a common platform 1 usually made of reinforced concrete resting on steel pilings 2 submerged in water. These steel pilings 2 are embedded in the bottom 8 and extend well below the mean low water level W. interspersed between the pilings 2 are a series of suspended anodes 3.
  • anodes are suspended from the platform or deck of the pier 1, for example, by means of strong impervious cords or cables 4 which may desirably be of a synthetic plastic material such as a resin obtained from the copoiymerization of vinylidene chloride and vinylchloride and known in the trade as Saran, such material having a very long life under conditions to which it is subjected in use and being quite strong and resilient so it is very seldom broken or damaged by floating debris.
  • the insulated electrical conductors 5 leading from the current source pass downwardly through a vertically extending galvanized steel pipe 6, the lower end of which may desirably be at a level approximating that of the lower ends of the anodes 3 which are preferably suspended so as to remain entirely submerged at low water level.
  • the individual insulated electrical conductors coming from the lower end of pipe 5 are connected to the lower ends of the suspended anodes 3 making a common insulated connection therewith.
  • the conducor 5 may comprise an electrically conductive cable such as copper covered with insulating material such as a high molecular weight polyethylene, and the joints, as those shown at 7, may be of any standard wrapped and moulded construction.
  • the conduit or pipe 6 extends upwardly to a housing 8 which contains the standard rectifier and relay units supplying a source of direct current. From this housing there extends downwardly another conduit or pipe 9 through which pass the insulated conductors 10 of the cathode or negative portion of the system. These conductors are connected to the steel pilings and other portions of the pier or submerged installation, ordinarily at points above water level.
  • FIG. 3 a sectional graphite anode has been used wherein the sections of the anode are provided with central bores for insertion of the cable or conductor.
  • anodes of carbon, high-silicon cast iron or other suitable material may also be used.
  • the upper section 11 of the anode 3 has been hollowed out as at 12 and a knot 13 has been tied in the Saran rope to secure the upper section of the anode thereon.
  • the lower section of the anode is attached thereto by means of a threaded connection member 14.
  • a suitable crimp connection is provided at 15 for the vertically extending conductor cable to secure it to the anode in electrical contact therewith and a resin base cement is injected at 16 to provide a firm bond and seal both the joints of the conductor cable and the Saran rope against entry of moisture.
  • a cast iron box 17 In connecting the Saran rope to the reinforced concrete deck of the pier, a cast iron box 17 is provided which seats on a beveled recessed portion of opening 18. To this box is attached an eye-bolt 19 from which is suspended the Saran rope 4.
  • FIG. 4 illustrates a modified form of support for the Saran rope wherein a galvanized steel plate 29 is employed seating in a recessed portion in the opening 18 in the deck.
  • FIG. illustrates a lining or reinforcing member 2 1 which can be inserted in the opening in the reinforced concrete deck to provide a more secure seat for such plate 20.
  • FIG. 6 illustrates a modified form of connection between the anode and the Saran rope.
  • the anode employed in this modification is an anode having a blind section i.e., a section without a complete central bore. The end of the section is provided with a short central passage 22 and a lateral opening 23 which is somewhat enlarged.
  • the rope 4 is merely drawn through the passage.
  • a knot 13 is tied in the end thereof and is drawn through the lateral opening 23 until it is caught by the shoulder of the smaller passage 22.
  • a cathodic protection system for a maritime installation having a platform supported on submerged corrodible metal piling, a series of vertically extending anodes suspended from the platform and spaced from the piling, said anodes being submerged between the low water line and the bottom beneath the installation, said anodes each having a conductor connecting the anodes to a source of 4 direct current, said conductors extending generally horizontally beneath the level of the anodes and being connected thereto solely through the lowermost points there- 2.
  • a cathodic protection system for maritime installations having a platform supported on submerged corrodible metal piling, a series of vertically extending anodes arranged in a submerged position between the low water line and the bottom beneath the installation, said anodes each having a conductor connecting the anodes to a source of direct current, said conductors running generally parallel to the bottom and extending beneath the anodes and being connected thereto solely through the lowermost points thereof.
  • a cathodic protection system for a maritime installation having a platform supported on submerged corrodible metal piling, anodes suspended from the platform in a submerged position and spaced from the metal piling, conductors connecting the anodes to the positive side of a direct current source, said anodes being suspended by inert plastic ropes connected to metal plates seated in recessed openings in the platform whereby the anodes may readily be removed through such openings from their submerged position for inspection or replacement as desired, said conductors being solely connected at the lower ends of said anodes and disposed substantially horizontal in the region of the anodes.
  • a cathodic protection device for a maritime structure comprising a platform, an opening in said platform, a. recessed shoulder in said opening, a support element rest ing on said shoulder, an inert plastic cable suspended from said support element and extending to the upper end of an electrode, an insulated conductor connected solely to and leading laterally from the lower end of the electrode to a vertically extending conduit and extending horizontal in the region of the electrode, said conductor connecting said electrode to a source of direct current.
  • a cathodic protection system for a maritime installation having a platform supported on submerged corrodible metal piling, a plurality of vertically extending elongated anodes suspended by means of inert plastic ropes from such platform and spaced from the piling between the low water line and the bottom beneath the installation, and electrical conductor means connecting solely the lower end of each anode to a source of direct current, said conductor means extending substantially horizontal and laterally away from the lower end of each anode in the region near the latter.

Description

Jan. 1, 1963 H. w. HQSFORD, JR 3,071,531
CATHODIC PROTECTION SYSTEM FOR SUBMERGED INSTALLATIONS Filed Feb. 9, 1959 2 Sheets-Shet 1 INVENTOR' HARRY W. HOSFORD JR.
f DWI/41% ATTORNEYS Jan. 1, 1963 H. w. HOSFORD, JR 3,071,531
CATHODIC PROTECTION SYSTEM FOR SUBMERGED INSTALLATIONS Filed Feb. 9, 1959 2 Sheets-Sheet 2 Q INVENTOR.
' HARRY w. HOSFORD JR.
AT TORNEYS United States Patent Ofifice Patented Jan. 1, 1963 35371531 CATHGIDEC PRQTEYCTHQN YSTEM FER SUEMERGED ENSTALLATIONS Harry W. He eford, in, 2565 Stratford Road, Cleveland Heights, (this Filed Feb. 9, 1959, Ser- No. 791,917 9 Qiaims. (Cl. 204-196) This invention relates as indicated to the cathodic protection of submerged installations and more particularly to the protection of steel piling, piers, bulkheads, drilling platforms and the like.
The problem of corrosion of metal installations such as piers, especially in salt water, is, of course, an extremely serious one and many efforts have been made to overcome or at least mitigate this problem, with two forms of protection now being quite generally employed. The first consists of any of the various well-known protective coatings, none of which, however, is of any great durability, while the second is cathodic protection utilizing electrically charged anodes spaced a proper distance from the piling or other metallic parts to be protected. It is interesting to note that it is usually expected that without the provision of an effective cathodic protection system as much as by weight of the submerged pier, for example, will corrode away in the first year. Many different forms of installations have been tested with only indifferent results from a practical viewpoint, particularly with regard to installation cost and durability. Thus, anodes have been suspended in the water alongside and beneath piers and docks by means of the insulated cables utilized to conduct the electric current thereto. It has been found, however, that such installations are frequently damaged by debris floating in the water, and also, that the gases such as hydrogen, oxygen, chlorine and compounds derived therefrom rising from the submerged anodes tend to attack the insulation of the supporting conductor, thus exposing the conductor proper to attack and preventing transmission of the electric current to the anode which is thereupon rendered useless for its intended purpose.
Still another method employed has been to place a string of anodes on the bottom adjacent the installation to be protected, the anodes being connected together by the insulated conductor so that but a single conductor line leads upwardly from the string to the current source. Such single conductor has, however, normally still extended above at least one or more of the anodes and has thus still been subjected to chemical attack, with the additional disadvantage that when it eventually fails, the entire series of thus-connected anodes is rendered inoperative. Furthermore, the anodes quickly silt over and the deleterious gases aforesaid tend to be trapped and to accumulate about such anodes, reducing their protective effectiveness and also causing the anodes themselves to be attacked much more rapidly than would otherwise be the case and so reducing the life of the anodes themselves.
In view of the foregoing, it is a principal object of my invention to provide a system of cathodic protection for submerged steel installations such as piers and the like which will be both sturdy in use and reasonably invulnerable to damage from floating debris, and also in which electrical connections to the anodes are so disposed that they are not subjected to deleterious chemical attack.
It is a further object of my invention to supply 21 cathodic protection system for submerged steel installations which can be quickly and easily installed and can be readily serviced when the occasion demands.
Other objects of the invention will appear as the description proceeds.
To the accomplishment of the foregoing and related ends, said invention then comprises the features hereinafter fully described and particularly pointed out in the claims, the following description and the annexed drawing setting forth in detail certain illustrative embodiments of the invention, these being indicative, however, of but a few of the various ways in which the principle of the invention may be employed.
In said annexed drawing:
FIG. 1 is a diagrammatic top plan view of a maritime structure equipped with a cathodic protection system in accordance with my invention;
FIG. 2 is a vertical section taken on line 2-2 on FIG. 1;
FIG. 3 is an enlarged elevation of one of the electrodes and its supporting means with the electrode being shown on a larger scale than the supporting means and having parts broken away for clarity of illustration.
FIGS. 4 and 5 are detailed sectional views of alternative electrode supporting means;
FIG. 6 is a fragmentary detail sectional view illustrating means of suspending one type of electrode.
Referring now to such drawing and more particularly to FIGS. 1 and 2 thereof, there is shown a common platform 1 usually made of reinforced concrete resting on steel pilings 2 submerged in water. These steel pilings 2 are embedded in the bottom 8 and extend well below the mean low water level W. interspersed between the pilings 2 are a series of suspended anodes 3. These anodes are suspended from the platform or deck of the pier 1, for example, by means of strong impervious cords or cables 4 which may desirably be of a synthetic plastic material such as a resin obtained from the copoiymerization of vinylidene chloride and vinylchloride and known in the trade as Saran, such material having a very long life under conditions to which it is subjected in use and being quite strong and resilient so it is very seldom broken or damaged by floating debris. The insulated electrical conductors 5 leading from the current source pass downwardly through a vertically extending galvanized steel pipe 6, the lower end of which may desirably be at a level approximating that of the lower ends of the anodes 3 which are preferably suspended so as to remain entirely submerged at low water level. The individual insulated electrical conductors coming from the lower end of pipe 5 are connected to the lower ends of the suspended anodes 3 making a common insulated connection therewith.
It will readily be seen from the foregoing that the conductors which extend at a level beneath the anodes rather than extending upwardly above the latter are so located as to avoid the deleterious action of the gases and chemicals which arise from the submerged anodes. Furthermore, the vertically extending metal pipe 6 through which the conductors pass is itself protected from corrosion through the action of the cathodic protection system in the same manner as other metal parts of the structure.
The conducor 5 may comprise an electrically conductive cable such as copper covered with insulating material such as a high molecular weight polyethylene, and the joints, as those shown at 7, may be of any standard wrapped and moulded construction.
The conduit or pipe 6 extends upwardly to a housing 8 which contains the standard rectifier and relay units supplying a source of direct current. From this housing there extends downwardly another conduit or pipe 9 through which pass the insulated conductors 10 of the cathode or negative portion of the system. These conductors are connected to the steel pilings and other portions of the pier or submerged installation, ordinarily at points above water level.
In suspending the anode by the Saran rope or cable the use of metal eye-bolts or other similar hardware has been found unsuitable since they themselves tend to be subjected to undesirable chemical attack. As shown in FIG. 3, a sectional graphite anode has been used wherein the sections of the anode are provided with central bores for insertion of the cable or conductor. However, anodes of carbon, high-silicon cast iron or other suitable material may also be used. The upper section 11 of the anode 3 has been hollowed out as at 12 and a knot 13 has been tied in the Saran rope to secure the upper section of the anode thereon. The lower section of the anode is attached thereto by means of a threaded connection member 14. A suitable crimp connection is provided at 15 for the vertically extending conductor cable to secure it to the anode in electrical contact therewith and a resin base cement is injected at 16 to provide a firm bond and seal both the joints of the conductor cable and the Saran rope against entry of moisture.
In connecting the Saran rope to the reinforced concrete deck of the pier, a cast iron box 17 is provided which seats on a beveled recessed portion of opening 18. To this box is attached an eye-bolt 19 from which is suspended the Saran rope 4.
FIG. 4 illustrates a modified form of support for the Saran rope wherein a galvanized steel plate 29 is employed seating in a recessed portion in the opening 18 in the deck.
FIG. illustrates a lining or reinforcing member 2 1 which can be inserted in the opening in the reinforced concrete deck to provide a more secure seat for such plate 20.
FIG. 6 illustrates a modified form of connection between the anode and the Saran rope. The anode employed in this modification is an anode having a blind section i.e., a section without a complete central bore. The end of the section is provided with a short central passage 22 and a lateral opening 23 which is somewhat enlarged. In securing the anode shown in FIG. 6, the rope 4 is merely drawn through the passage. A knot 13 is tied in the end thereof and is drawn through the lateral opening 23 until it is caught by the shoulder of the smaller passage 22. These openings in the anodes can readily be formed by drilling. I have found it important that the suspension cables enter the upper end of the anode centrally and axially rather than to be offset in any way as otherwise the anodes tend to revolve or twist in use with consequent damage to the system. It will be noted that in the openings provided in the anode in FIG. 6, a suitable sealant can also be inserted in the same manner as shown at 16 in FIG. 3, if desired.
It will be readily appreciated from the foregoing that the equipment is itself of minimum cost and is also very simple to install. As will be noted from the showing of FIGS. 3, 4 and S, the connection between the rope and the floor or deck of the pier permits easy and ready removal of the anodes from the Water through the openings in the deck for inspection or replacement as desired.
While the present invention is particularly useful in protecting docks or piers having steel pilings it will be understood that this use of the invention is by way of illustration only and that the invention may be employed to advantage for the protection of any metal member submerged in a body of liquid or moist earth wherein the deleterious effects of the gases from the anode will affect the conductors therefor.
Other modes of applying the principles of the invention maybe employed, change being made as regards the details described, provided the features stated in any of the following claims or the equivalent of such be em ployed.
I therefore particularly point out and distinctly claim as my invention:
1. In a cathodic protection system for a maritime installation having a platform supported on submerged corrodible metal piling, a series of vertically extending anodes suspended from the platform and spaced from the piling, said anodes being submerged between the low water line and the bottom beneath the installation, said anodes each having a conductor connecting the anodes to a source of 4 direct current, said conductors extending generally horizontally beneath the level of the anodes and being connected thereto solely through the lowermost points there- 2. A cathodic protection system for maritime installations having a platform supported on submerged corrodible metal piling, a series of vertically extending anodes arranged in a submerged position between the low water line and the bottom beneath the installation, said anodes each having a conductor connecting the anodes to a source of direct current, said conductors running generally parallel to the bottom and extending beneath the anodes and being connected thereto solely through the lowermost points thereof.
3. The cathodic protection system set forth in claim 2, wherein the anodes are supported by inert plastic ropes suspended from the installation platform.
4. The cathodic protection system set forth in claim 3, wherein the rope is made of a resin formed by the copolymerization of vinylidene chloride and vinyl chloride.
5. The cathodic protection system set forth in claim 3, wherein the anodes are fixed centrally and axially to the suspended ropes.
6. The cathodic protection system set forth in claim 2, wherein the conductors are received in a metal conduit for transmission to the current source, said conduit extending beneath the platform to approximately the same level as the lowermost point of the anodes so that said conductors will be enclosed therein above the level of said anodes.
7. A cathodic protection system for a maritime installation having a platform supported on submerged corrodible metal piling, anodes suspended from the platform in a submerged position and spaced from the metal piling, conductors connecting the anodes to the positive side of a direct current source, said anodes being suspended by inert plastic ropes connected to metal plates seated in recessed openings in the platform whereby the anodes may readily be removed through such openings from their submerged position for inspection or replacement as desired, said conductors being solely connected at the lower ends of said anodes and disposed substantially horizontal in the region of the anodes.
8. A cathodic protection device for a maritime structure comprising a platform, an opening in said platform, a. recessed shoulder in said opening, a support element rest ing on said shoulder, an inert plastic cable suspended from said support element and extending to the upper end of an electrode, an insulated conductor connected solely to and leading laterally from the lower end of the electrode to a vertically extending conduit and extending horizontal in the region of the electrode, said conductor connecting said electrode to a source of direct current.
9. A cathodic protection system for a maritime installation having a platform supported on submerged corrodible metal piling, a plurality of vertically extending elongated anodes suspended by means of inert plastic ropes from such platform and spaced from the piling between the low water line and the bottom beneath the installation, and electrical conductor means connecting solely the lower end of each anode to a source of direct current, said conductor means extending substantially horizontal and laterally away from the lower end of each anode in the region near the latter.
References Cited in the file of this patent UNITED STATES PATENTS 84,671 Baker et al Dec. 8, 1868 1,874,759 Kirkaldy Aug. 30, 1932 2,700,649 Hosford Ian. 25, 1955 2,838,453 Randall June 10, 1958 2,851,413 Hosford Sept. 9, 1958 2,870,079 McCall Ian. 20, 1959 2,876,190 Oliver Mar. 3, 1959 2,926,128 Flower Feb. 23, 1960

Claims (1)

1. IN A CATHODIC PROTECTION SYSTEM FOR A MARITIME INSTALLATION HAVING A PLATFORM SUPPORTED ON SUBMERGED CORRODIBLE METAL PILING, A SERIES OF VERTICALLY EXTENDING ANODES SUSPENDED FROM THE PLATFORM AND SPACED FROM THE PILING, SAID ANODES BEING SUBMERGED BETWEEN THE LOW WATER LINE AND THE BOTTOM BENEATH THE INSTALLATION, SAID ANODES EACH HAVING A CONDUCTOR CONNECTING THE ANODES TO A SOURCE OF DIRECT CURRENT, SAID CONDUCTORS EXTENDING GENERALLY HORIZONTALLY BENEATH THE LEVEL OF THE ANODES AND BEING CONNECTED THERETO SOLELY THROUGH THE LOWERMOST POINTS THEREOF.
US791917A 1959-02-09 1959-02-09 Cathodic protection system for submerged installations Expired - Lifetime US3071531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US791917A US3071531A (en) 1959-02-09 1959-02-09 Cathodic protection system for submerged installations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US791917A US3071531A (en) 1959-02-09 1959-02-09 Cathodic protection system for submerged installations

Publications (1)

Publication Number Publication Date
US3071531A true US3071531A (en) 1963-01-01

Family

ID=25155206

Family Applications (1)

Application Number Title Priority Date Filing Date
US791917A Expired - Lifetime US3071531A (en) 1959-02-09 1959-02-09 Cathodic protection system for submerged installations

Country Status (1)

Country Link
US (1) US3071531A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625852A (en) * 1969-06-27 1971-12-07 Engelhard Min & Chem Marine antifouling system
US4056446A (en) * 1977-01-03 1977-11-01 Continental Oil Company Diverless cathodic protection data acquisition
US4268371A (en) * 1980-03-13 1981-05-19 The Duriron Company, Inc. Cable guide for a tubular anode
US4504375A (en) * 1983-01-31 1985-03-12 Hommema Van 1825 B.V. Anode element for use in a cathodic protection system
USH1644H (en) * 1990-08-13 1997-05-06 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for providing continuous cathodic protection by solar power

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US84671A (en) * 1868-12-08 Eobeet breckinridge bakee and charles james adolphus diok
US1874759A (en) * 1930-05-03 1932-08-30 Electro Anti Corrosion Corp Electrolytic means for the protection of boilers
US2700649A (en) * 1951-07-14 1955-01-25 Jr Harry W Hosford Ice damage prevention
US2838453A (en) * 1954-11-18 1958-06-10 Hughes & Co Cathodic protection means
US2851413A (en) * 1957-07-02 1958-09-09 Jr Harry W Hosford Anode assembly for cathodic protection system
US2870079A (en) * 1954-11-16 1959-01-20 Texas Co Cathodic protection of metal structures
US2876190A (en) * 1955-04-18 1959-03-03 Union Carbide Corp Duct anode
US2926128A (en) * 1956-05-11 1960-02-23 Flower Archibald Thomas Anode connector for conductor wires

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US84671A (en) * 1868-12-08 Eobeet breckinridge bakee and charles james adolphus diok
US1874759A (en) * 1930-05-03 1932-08-30 Electro Anti Corrosion Corp Electrolytic means for the protection of boilers
US2700649A (en) * 1951-07-14 1955-01-25 Jr Harry W Hosford Ice damage prevention
US2870079A (en) * 1954-11-16 1959-01-20 Texas Co Cathodic protection of metal structures
US2838453A (en) * 1954-11-18 1958-06-10 Hughes & Co Cathodic protection means
US2876190A (en) * 1955-04-18 1959-03-03 Union Carbide Corp Duct anode
US2926128A (en) * 1956-05-11 1960-02-23 Flower Archibald Thomas Anode connector for conductor wires
US2851413A (en) * 1957-07-02 1958-09-09 Jr Harry W Hosford Anode assembly for cathodic protection system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625852A (en) * 1969-06-27 1971-12-07 Engelhard Min & Chem Marine antifouling system
US4056446A (en) * 1977-01-03 1977-11-01 Continental Oil Company Diverless cathodic protection data acquisition
US4268371A (en) * 1980-03-13 1981-05-19 The Duriron Company, Inc. Cable guide for a tubular anode
US4504375A (en) * 1983-01-31 1985-03-12 Hommema Van 1825 B.V. Anode element for use in a cathodic protection system
USH1644H (en) * 1990-08-13 1997-05-06 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for providing continuous cathodic protection by solar power

Similar Documents

Publication Publication Date Title
US4255241A (en) Cathodic protection apparatus and method for steel reinforced concrete structures
CA1123785A (en) Impressed current rope anodes
US7329336B2 (en) Stabilizer with cathodic protection
NO871091L (en) COMPOSITION DEVICE FOR CATHODIC PROTECTION OF SUBSTRATES IN CONNECTION WITH THIS, AND USE OF THE DEVICE.
US3071531A (en) Cathodic protection system for submerged installations
US2743227A (en) Protection of metallic structures
US2856342A (en) Anti-corrosion anode
GB672110A (en) Sacrificial anode system for protecting metals in seawater
US2882213A (en) Galvanic anode
US4484839A (en) Method and apparatus for installing anodes on steel platforms at offshore locations
US3196101A (en) Anode support for cathodic protection system
US4609307A (en) Anode pod system for offshore structures and method of installation
US2855358A (en) Galvanic anode
CN205473997U (en) From peaceful platform spud leg impressed current protection system with adjustable
US3718554A (en) Cathodic protection for water tanks
RU2320977C2 (en) Method of testing cryogenic tank
US3037926A (en) Galvanic protection system
CA1059948A (en) Ice free self-releasing water tank anode suspension system
US10287691B2 (en) Anode assembly for cathodic protection of offshore steel piles
US2775554A (en) Galvanic anode installation
Doremus et al. Cathodic protection of fourteen offshore drilling platforms
US3725225A (en) Cathodic protection method
KR100207606B1 (en) Method for electrolytic protecting of concrete pile reinforcing rods
JPH06173287A (en) Corrosion resistant structure for offshore steel structure
Horton Steel pile marine corrosion and cathodic protection