Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3073311 A
Tipo de publicaciónConcesión
Fecha de publicación15 Ene 1963
Fecha de presentación2 Nov 1959
Fecha de prioridad7 Nov 1958
Número de publicaciónUS 3073311 A, US 3073311A, US-A-3073311, US3073311 A, US3073311A
InventoresGeorge Leslie William, John Tibbs David
Cesionario originalNat Res Dev
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Sewing device
US 3073311 A
Resumen  disponible en
Imágenes(2)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

Jan. 15, 1963 1:..1. mass ETAL 3,073,311

SEWING DEVICE Filed Nov. 2. 1959 2 Shqets-Sheet 1 Br. 551 w Jan. 15, 1963 D. J. was Em, 3,073,311

SEWING DEVICE Filed Nov. 2. 1959 2 Sheets-Sheet 2 United States Patent Office 3,673,311 Patented Jan. 15, 1963 3,073,311 SEWING DEVICE David John Tibbs, Fenham, Newcastle-on-Tyne, and William George Leslie, Gosforth, Newcastle-on-Tyne, England, assignors to National Research Development Corporation, London, England, a corporation of Great Britain Filed Nov. 2, 1959, Ser. No. 850,321 Claims priority, application Great Britain Nov. 7, 1958 Claims. (Cl. 128-340) This invention relates to apparatus for holding needles when sewing and particularly but not exclusively for holding needles when making stitches for joining together the adjacent edges of a cut in the tissue of a body.

An object of the present invention in its broadest aspect is to provide needle holding apparatus which can be mechanically or manually operated to carry out the sequence of operations involved in normal hand stitching without the need for handling the needle.

According to the invention there is provided needle holding apparatus comprising two gripping devices capable of gripping a needle at two locations spaced along its length, means for moving the first gripping device into an advanced gripping position, means for operating the first gripping device to grip the needle, means for moving the second gripping device into an advanced gripping position, means for operating the second gripping device to grip the needle, means for releasing and retracting the first gripping device, means for moving the first gripping device back into an advanced gripping position, means for operating the first gripping device again to grip the needle and means for releasing and retracting the second gripping device.

According to a further feature of the invention there is also included means for causing movement of a pressing member back and forth along a path extended from a position beyond the point of the needle to a position between the two ends of a needle gripped in at least one of the gripping devices.

The pressing member may also serve to steady the needle at a position between the gripping positions when the grip is being transferred from one gripping device to the other.

When stitches are required to be inserted in cuts-made in the body of an animal, during a surgical operation for instance, it may be difficult or awkward to maintain a secure hold on the needle. This is especially the case when stitches are required near the base of a'deep incision.

In order to facilitate the manipulation of a small needle in some operating techniques, it is necessary to use a pair of special forceps to hold the needle and a second pair of forceps for picking it up so that both hands are occupied. This can be extremely difficult in a confined position and in any case one hand could be used to great advantage in performing some other function, while the other hand performed the stitching.

The embodiments of the invention described below are those developed for surgical use, but it will be appreciated that the invention can also be applied to the stitching of,

various materials, such as cloth, when a reproduction of the effect of hand stitching will be obtained.

The invention will be more readily understood by the,

following description of certain embodiments, by way of example, in conjunction with the accompanying drawings in which:

FIGURE 1 is a plan View of one embodiment of the invention with part of the outer'casing removed;

FIGURE 2 is a side elevation in the direction of the arrow A in FIGURE l with part of theouter casing removed;

B in FIGURE 4;

FIGURE 6 is a of the invention;

FIGURE 7 is a modified form of the gripping device illustrated in FIGURE 4;

FIGURE 8 is a plan view of a further embodiment of the invention with part of the casing removed;

FIGURE 9 is a side elevation in the direction of the arrow C in FIGURE 8 with part of the outer casing removed;

FIGURE 10 is a side view of a part of FIGURE 9 on an enlarged scale showing one of the gripping devices and FIGURE 11 is a front view of a detail of FIGURE 2 in an enlarged scale in the direction of thearrow D.

The apparatus as illustrated in FIGURES 1 and 2 is for use in holding curved needles, as are generally used insurgical sewing. Such needles are generally flattened on the inner and outer aspects at the curve to prevent rotation of the-needle inthe gripping devices. A tubular casing 1, 'part of which is shown cut away for clarity, has a handle 2 fixed at one end. Theother end of the casing is closed by an end piece 3 fastened into the end of the casing by any convenient means, preferably so'that it can" be dismantled for cleaning or repair etc. Projecting from the end piece 3 and fastened rigidly thereto is "a support member 4. Two slides 5 and 6 project through and are supported in the end piece into the interior of the casing I, slide 5 being supported also in a cross member'=7- fastened inside the casing. Slide 6 is also supportedin partial side elevation of a modification cross member 7 and also in a further 'cross member 8,

both slides being free to slide axially within the casing 1." The slide 5 is urged in a direction towards the handle '2' by a spring 9, the spring abutting against the end piece 3' and a pin 23 securely fastened in the slide. Slide 6is' urged in a direction 'awayfrom the handle by a spring 10, the spring abutting against'cross member 7 and a pin 11 securely'fastened in the slide. Spring 10 is arranged to be stronger than spring 9 and in its final actionsufficiently strong to give an adequate grip upon the needle; Formed on the slide 6 in a position intermediate the two cross members 7 and 8 is a bracket 12. The

1 gagement by the fingers of the operator and a tongue 16 projecting upwards inside the casing 1. The end of the tongue 16 engages that end of the slide 5 which is within the casing. When the trigger is pulled rearwards,- as the spring 10 is stronger than spring 9, slide 6 will initially remain stationary, the trigger turning on pin 13 and the tongue 16 urging slide 5 forwards in a direction away from the handle.

When the slide 5 has reached its most forward positioncontinued movement of the trigger rearwards will cause the trigger to pivot on the end of the slide 5 and slide 6 will be urged rearwards, in a direction towards the handle. Release of the trigger will first of all allow slide 6 to return to its original position under the action ofthe spring 1%. When the slide 6 has reached its original position, then slide 5 will return toits original position under the action of the spring 9.

Attached to the forward end ofthe support member 4- are two gripping devices 17 and 18. The gripping devices are mounted so that they will grip the curved needle at two places on its arc approximately apart, and'areoperated by rods 19 and 20 respectively. Rod 19 is connected to the slide by a forked joint 21 and the rod 20 is connected to the slide 6 by a similar forked joint 22. The to and fro movements of the slides 5 and 6 and rods 19 and 20 operate the jaws of the gripping devices by means of toggle mechanisms. It will be seen that the gripping device 18 is normally in its advanced gripping position under the action of the spring 10.

The action and construction of the gripping devices will be more easily understood by reference to FIGURES 4 and 5 which illustrate one of the gripping devices on an enlarged scale. The scale device comprises two jaws 30 and 31, jaw 30 being formed with two extensions 32 and 33, projecting approximately at right angles to the jaw and parallel to each other, the ends of which are pivoted at 34 on an extension 35 formed on the support member 4. Jaw 31 is pivotally mounted at 36 between the extensions 32, 33, and has an extension 37 projecting rearwards. A link 38 is also pivotally mounted at one end on the extension 35 of the support member 4, the other end of the link being pivotally connected at 39 to the end of the extension 37 of the jaw 31. A fork member 40 formed on the end of the rod 19 is also pivotally connected at the connection 39 of the link and the jaw extension. The construction thus acts as a toggle mechanism in that forward movement of the rod 19 towards the jaws causes pivot point 39 to move forward, this also causing the jaws to move forward. As they do so jaw 30 pivots about 34 in one direction and jaw 31 pivots about 36 in the other direction, the jaws gripping any article which is between them. Reverse movement of the rod 19 opens the jaws.

In order to ensure that the needle, when being used, is free of obstruction before transferring the grip from gripping device 18 to gripping device 17, and also to steady the needle while the transfer of grip is taking place, a pressing member 41 may be provided. The pressing member is rotatably supported on the support member 4 by bearings 42 and 43 and also in the end piece 3, and cross members 7 and 8. On the rearward end of the pressing member there is fixed a bevel gear 44 which engages with a further bevel gear 45 supported on a shaft 46 supported at right angles to the pressing member in the casing 1. The pressing member is operated by a secoind trigger 47 which causes a slide 48 to slide axially inside the casing 1. The slide 48 is urged forward in a direction away from the handle 2 by a spring 49. At the rearward end of the slide 48 there is pivoted one end of a cranked rod 50 the other end of which engages a slot 51 in lever 52 rigidly connected to the bevel gear 45. When the trigger 47 is pulled back by the operator, slide 48 is pushed back so that the cranked rod 50 rotates the lever 52 and thus the bevel gear 45 about the shaft 46. Rotation of the bevel gear 45 rotates the bevel gear 44 and also the pressing member 41. The pressing member has a short portion 53 bent at right angles. Rotation of the pressing member causes the bent portion to sweep round and press down any obstructing tissue etc. on the needle.

As an aid to inserting a needle before using the apparatus, a spring loaded button 54 is located on the casing 1. Pressing the button inwards causes the end 55 of the shaft of the button to enter a hole 56 in the slide 5 and thus lock it stationary. Operation of the trigger will then cause movement of the slide 6 only, which will open the gripping device 18 for the initial insertion of a needle.

The apparatus operates as follows. A threaded needle is inserted in gripping device 18, the gripping device holding the needle adjacent to the eye end and the point curving round towards the other gripping device. Gripping device 18, as stated before, is normally in the closed or gripping position under the action of the spring 10, slide 6 and rod while device 17 is normally in the open and retracted position. The needle is pushed through the tissue until the gripping device 18 prevents further move ment. Trigger 47 is pulled back and the pressing member 41 rotates causing the portion 53 to press down any tissue adhering to the point of the needle. With the trigger 47 retained in its rearward position the trigger 15 is pulled back. During the initial movement backwards of the trigger 15 it turns about pivot 13 and the tongue 16 pushes the slide 5 forward together with the rod 19. This forward movement of the rod causes the gripping device 17 to move forward into its gripping position, the two jaws cooperating to grip the needle at a position adjacent to the point, the portion 53 of the pressing member steadying the needle. When the jaws of the gripper device 17 are gripping the needle, the rod 19 and thus the slide 5 cannot move any further forward so that further movement of the trigger 15 backward will cause it to pivot on the end of the slide 5 and pull the slide 6 backwards together with red 20. The movement of the rod 20 backwards will cause the jaws of the gripping device 18 to release the needle, the gripping device moving: backwards and thus allowing the needle to be pulled right through the tissue and draw away therefrom to tighten the stitch. In readiness for a further stitch the reverse of the above procedure is followed. The trigger is slowly released, gripper device 18 moving forward and gripping the eye end of the needle, which is steadied by the pressing member, the gripping member 17 then releasing the point end of the needle and retracting clear. Finally the pressing member rotates back when the trigger 47 is released.

In an alternative construction the pressing member has the end of the portion 53 formed into a suitable shape such as a loop which may surround or partially surround the needle when it is moved into its operating position.

The operating slide 48 of the pressing member 41 could be coupled to the trigger 15 so that the initial movement of the trigger operated the slide 48 and rotating the pressing member, further movement operating the gripping devices as previously described. This alternative is shown in FIGURE 6. In this figure the same items are given the same reference numbers as in the previous example. The tongue 16 of the trigger 15 is extended so as to engage slide 48 through spring 60 and the brackets 61 formed on either side of the slide 48. A clearance is provided between the tongue 16 and the end of the slide 5. Initial movement of the trigger will cause the slide 48 to move forward against the action of the return spring 63, rotating the bevel gear 45 by means of the lever 52 and cranked pin 50. This will cause rotation of the pressing member 41. Boss 62 on the slide 48 will then engage with cross member 8 and prevent further movement of the slide. As the trigger is pulled further back the tongue 16 will engage the end of the slide 5 and the operation of the gripping devices will be as previously described. The spring 60 allows for the further movement of the tongue 16 after the boss 62 engages the cross member.

In some cases it will not be necessary to have a pressing member to clear obstructions from the needle and it can then be omitted. It may then be advisable to provide some other means of ensuring that the needle is correctly positioned, and steadied, when the grip is transferred from one gripping device to the other. A simple addition for doing this is shown in FIGURE 7. A hook shaped member 65 is pivotally supported at one end on a support 66 rigidly attached to the extension 35 so that its hooked end is adjacent to the ends of the jaws 30 and 31. A slot 67 is formed in the main part of the member 65, a pin 68 rigidly attached to the extension 32 engaging in the slot 67 and forming a further pivot. In operation, as the rod 19 moves forward to actuate the gripping device by moving the jaws 30 and 31 forward, the pin 68 slides forward in the slot 67 causing the hooked member 65 to pivot at its end and about the pin. The hooked part 69 swings downward and steadies the needle in the correct position before the jaws finally grip it.

FIGURES 8 and 9 illustrate an embodiment of the inmam vention which is a modified form of the apparatus shown in FIGURES 1 and 2. A large part of the apparatus is unchanged and similar reference numbers have been used for those items which are common to both embodiments.

As before, a casing 1 has a handle 2, and contains within it two slides 5 and 6. Two springs 9 and 10 are similarly provided and operate in a similar manner as described above. A trigger 14 is also provided, again operating in the same manner as described above. The main points of difference in the present embodiment are in the mounting and operating of the gripping devices. The end piece 3 carries a support member 70, the support member having two extensions 71 and 72 extending sideways at its end, the extensions being drilled, parallel to the support member, to provide two support bearings. Supported in the support bearings are two support rods 73 and 74, and attached to the ends of the support rods, remote from the casing 1, are gripping devices 75 and 76, one gripping device on the end of each rod. Thus the gripping devices are mounted on movable supports instead of being mounted on a rigid support member, this being one of the main points of difference. The form of the gripping devices can be more readily seen in FIGURE 10 which is a side view of the gripping device 76 on an enlarged scale, with the jaws in the open, or released, position. The gripping device comprises one jaw 81) which is formed on the support rod 74, and a further jaw 81, pivotally mounted on the support rod and actuated by an operating rod 82. The jaw 81 is of hooked formation, the hooked end 83 forming the jaw portion and the shank 84 being slit for the insertion of a tongue 85 formed on th end of the operating rod 74, the tongue being pivotally connected to the jaw 81 by a pin 86. The support rod is grooved on each side behind the jaw 80 to provide a thin portion 87 which also fits in the slit shank 84 of the jaw 81. The shank is pivotally connected to the thin portion 87 by a pin 88. The end face 89 of the jaw 89 and the inner face 90 of the jaw portion 83 are shaped so that when the operating rod is moved forward the faces 89 and 9t} will cooperate to grip the needle. The faces 89 and 90 may be fiat or may have cooperating ridges and grooves or other formations formed on them to increase the efliciency of the grip. The gripping device 75 is similar in form and is actuated by an operating rod 91. The operating rods 82 and 91 are connected to the slides 6 and 5 respectively. These operating rods are similar to the rods 19 and 21} in FIGURE 1 but are each in two pieces joined by connecting means 92 by which the rods 82 and 91 can be rotated through an angle relative to the slides. The purpose of this connection will be explained below. At the outer end of each of the slides 5 and 6 are formed lugs 93 and 94, the lugs extending downwards each having a forward facing spigot 95, 9'6 which are in line with the inner ends of the relative support rod. Formed on each rod, near their inner ends are collars 97 and 98 which form abutments for springs 99 and 190 which fit over the ends of the support rods and over the spigots 95 and 96, being held between the lugs 93 and 94 and the collars 97 and 98, to form a lost motion device.

The lost motion device forms the other main point of difference between the present embodiment and the one described above. In the previously described embodiment, the jaws of the gripping devices were moving all the time the gripping devices were being advanced or retracted. This arrangement did not always provide a perfect gripping action as movement of the gripping device occurred, relative to the needle, as the jaws gripped the needle. In the present arrangement the gripping devices are moved forward to their final gripping position before the jaws are operated. the apparatus acting as follows. Starting from the position shown in FIGURES 8 and 9 in which the gripping device 76 is in the engaged position, the portion of the trigger 14 is pulled backwards pivoting about the pivot 13. With the initial movement of the trigger, the slide 5 is pushed forward and both the support rod 73 and the operating rod 91 move forward until the gripping device 75 is in the correct forward gripping position. This position is controlled by the collar 97 on the support rod 73. When the collar engages the end face of the extension 71 of the support member 79, further forward movement of the support rod is prevented. Further movement of the slide 5 forward compresses the spring 99 held between the lug 93 and the collar 97 the operating rod 77 moving forward and closing the jaws of the gripping device 75. No further forward movement of the slide 5 can occur, so that on continued pulling back of the trigger portion 15 the trigger will pivot on the end of the slide 5 and will pull back the slide 6. On initial movement of the slide 6, the support rod 74 will remain in the forward position under the action of the spring 100 between the collar 98 on the support rod and the lug 94 on the slide 6, the spring expanding as the slide moves back, the operating rod also moving rearwards and opening the gripping device 76. When the jaws of the gripping device are fully open further movement of the operating rod relative to the supporting rod cannot occur and the support rod is pulled rearwards, the gripping device moving out of engagement with the needle. The grip has thus been transferred from one end of the needle to the other.

Reverse operation of the trigger portion 15, reverses the operation sequence described above. The slide 6 together with the support rod 74 and the operating rod 78 move forward into the gripping position, when the collar 98 on the support rod 74 engages the end face of the extension 72. The operating rod then moves further forward closing the gripping device 76, the spring 109 between the lug 94 and collar 98 being compressed. Slide 6 cannot move further forward so that the trigger pivots on the end of the slide 6, slide 5 moving rearwards. This movement of the slide 5 first moves the operating rod 77 rearward, the support rod 73 being held in the forward position by the spring 99 between the collar 97 on the support rod 73 and the lug 93, the jaws of the gripping device 75 opening. When the jaws of the gripping device 75 are fully open, further movement of the operating rod 77 relative to the support rod 73 and the support rod is pulled rearwards the gripping device moving rearwards out of engagement with the needle.

In the embodiment shown in FIGURES 8 and 9, the

pressing member 53 in FIGURE 1, with its operating mechanism, has been omitted. However, it will be seen that such a member and operating mechanism can easily be fitted.

Instead of a spring loaded button as shown at 54 in FIGURE 1, a spring lever as shown at in FIGURE 8 may be provided, for assisting in the initial insertion of the needle.

In the description of the embodiment illustrated in FIGURES 8 and 9, reference was made to the operating rods 82 and 91 each being in two pieces joined by connecting means 92. FIGURE 12 shows a front view of one of these connecting means. It comprises a plate 101 segmental in shape, which is rigidly attached at its narrow end 102 to that piece of the operating rod which is connected to the slide and has two drilled and tapped holes 103 at the wide end, the two holes being equally spaced on either side of the center axis. An arm 104 is rigidly attached at one end to the other piece of the operating rod, and is drilled at its other end so that a screw 105 can be passed through the hole and be screwed into one or other of the two holes in the plate 101. By assembling the support rods and operating rods so that the center axis of each plate 191 is vertical and with the gripping devices at the same angles as the arms 104 on the operating rods, the angle of the gripping devices can be either so that they grip a curved needle with its center of curvature above the gripping devices or below with the handle downwards. The apparatus can then readily be used for sewing from right to left with the handle and trigger downwards and the center of curvature of the needle above the gripping devices or for sewing from left to right with the handle and trigger upwards and the center of curvature of the needle still downwards (but now on the other side of the gripping devices).

It can also be arranged that the gripping devices themselves move to perform the sewing action. This can be done by rotating the support member together with the gripping devices, whilst the casing is kept stationary, the provision of suitable joints at the ends of the rods 19 and 2t) and 82 and 91, allowing this rotation without materially affecting the action of the gripping devices. Alternatively the casing 1, together with the slides, gripping devices, etc. could be enclosed within a second casing and be capable of rotation within this second casing. In this case the handle 2, provided, would be fastened to the second casing.

Where straight needles are used a similar construction can be adopted, but with the gripping devices mounted on the support member parallel to each other so that they will grip the needle at positions spaced apart along its length. The distance apart of the gripping devices can be made to suit the length of the needle to be held. Suitable joints at each end of the rods will enable them to operate the gripping devices satisfactorily even if the slides and their rods were not in exact alignment.

As indicated above the invention is applicable to the reproduction of the effect of hand stitching by mechanical means when sewing material such as cloth. In an apparatus designed for this application the needle holding assembly is held in, or forms part of, a machine so that at least the support member and the needle gripping devices can be moved to insert the needle into the material and withdraw it therefrom. The material to be sewn is passed over a table or support, material holding means and advancing means being provided as in a conventional sewing machine. A slot is provided in the table or support so that as the needle holding assembly, or the support member with the gripping devices, is manipulated to insert the needle, the latter will pass into the material and emerge therefrom at a position spaced from the entry position as in hand sewing. The slides etc. are then caused to operate the gripping devices so that the gripping position on the needle is transferred from the eye end to the point end, the needle holding assembly being then pulled away from the starting point to withdraw the needle from the material. Reverse operation of the slides etc. will then cause the grips on the needle to be transferred back to the eye end, and the needle holding assembly to be moved to the starting position, ready for a further stitch. Some arrangement should preferably be made to pull up or tighten the slack thread behind the needle.

The above embodiments of the invention have been described in relation to the use of a needle with the eye at the end remote from the point. It should be noted that and the pressing member 41 where 8 the apparatus can also be used with a needle of which the eye is at the pointed end.

We claim:

1. Apparatus for holding needles comprising a casing, a first and a second sliding member mounted for axial movement in said casing, an operating member pivotally mounted on the first of said sliding members and operatively connected to the second of said sliding members, two devices for gripping needles operable to close and open and supported by said casing, two linking means one each operatively linking one of said gripping devices to one of said sliding members, and biassing means tending to close one of said gripping devices and open the other of said gripping devices, said biassing means interconnecting said sliding members so that actuation of said operating device serves to operate selectively one of said sliding members and ultimately to alternatively actuate one of said gripping devices.

2. Apparatus according to claim 1 wherein each of said gripping devices comprises a pair of pivoted jaws.

3. Apparatus according to claim 1 in which said operating member is a trigger, said trigger being pivoted on one of said sliding members and moving the other of said sliding members, and said linking means including two axially movable parallel operating rods, each of said rods being connected to one of said gripping devices at one end and to one of said sliding members at the other.

4. Apparatus according to claim 1 wherein said linking means includes two axially movable operating rods lying parallel to one another, each of said rods being connected to one each of said gripping devices and operably associated with said operating member by means of said sliding members, each of said gripping devices being mounted to move with its associated said operating rod so that operation of said gripping device by said operating memher through said sliding member moves said operating rod associated with said gripping device away from said casing as said gripping device closes and towards said casing as said gripping device opens.

5. Apparatus according to claim 4 including a lost motion device in said linking means of each of said gripping devices to said operating member, said lost motion device constituting means providing first movement of one of said gripping devices and its associated said operating rod away from said casing without said gripping device operating upon actuation of said operating member to close said one gripping device.

References Cited in the file of this patent UNITED STATES PATENTS 1,131,163 Saunders et al Mar. 9, 1915 1,155,378 Steedman Oct. 5, 1915 2,601,564 Smith June 24, 1952 FOREIGN PATENTS 337,579 France Feb. 24, 1904

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US1131163 *30 Jun 19139 Mar 1915Edward W SaundersSurgical needle-holder.
US1155378 *6 Feb 19155 Oct 1915Edwin H SteedmanNeedle-holder.
US2601564 *8 Jul 195024 Jun 1952Smith David PSuturing device
FR337579A * Título no disponible
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US4621640 *9 Ene 198411 Nov 1986Mulhollan James SMechanical needle carrier and method for its use
US5571090 *7 Oct 19945 Nov 1996United States Surgical CorporationVascular suturing apparatus
US5728113 *12 Jun 199617 Mar 1998United States Surgical CorporationEndoscopic vascular suturing apparatus
US5746751 *6 Jun 19955 May 1998United States Surgical CorporationVascular suturing apparatus
US5908428 *19 Sep 19971 Jun 1999United States Surgical CorporationStitching devices for heart valve replacement surgery
US5938668 *4 Oct 199617 Ago 1999United States SurgicalSurgical suturing apparatus
US698423722 May 200210 Ene 2006Orthopaedic Biosystems Ltd., Inc.Suture passing surgical instrument
US770873519 Jul 20054 May 2010Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US77226078 Nov 200625 May 2010Covidien AgIn-line vessel sealer and divider
US77714256 Feb 200610 Ago 2010Covidien AgVessel sealer and divider having a variable jaw clamping mechanism
US777603613 Mar 200317 Ago 2010Covidien AgBipolar concentric electrode assembly for soft tissue fusion
US77760377 Jul 200617 Ago 2010Covidien AgSystem and method for controlling electrode gap during tissue sealing
US778987829 Sep 20067 Sep 2010Covidien AgIn-line vessel sealer and divider
US779902613 Nov 200321 Sep 2010Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US779902826 Sep 200821 Sep 2010Covidien AgArticulating bipolar electrosurgical instrument
US78112838 Oct 200412 Oct 2010Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US782879827 Mar 20089 Nov 2010Covidien AgLaparoscopic bipolar electrosurgical instrument
US784616129 Sep 20067 Dic 2010Covidien AgInsulating boot for electrosurgical forceps
US785781218 Dic 200628 Dic 2010Covidien AgVessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US78790358 Nov 20061 Feb 2011Covidien AgInsulating boot for electrosurgical forceps
US788753619 Ago 200915 Feb 2011Covidien AgVessel sealing instrument
US789687812 Mar 20091 Mar 2011Coviden AgVessel sealing instrument
US790982317 Ene 200622 Mar 2011Covidien AgOpen vessel sealing instrument
US792271812 Oct 200612 Abr 2011Covidien AgOpen vessel sealing instrument with cutting mechanism
US792295328 Sep 200612 Abr 2011Covidien AgMethod for manufacturing an end effector assembly
US793164914 Feb 200726 Abr 2011Tyco Healthcare Group LpVessel sealing instrument with electrical cutting mechanism
US793505214 Feb 20073 May 2011Covidien AgForceps with spring loaded end effector assembly
US794704119 Ago 200924 May 2011Covidien AgVessel sealing instrument
US795115022 Feb 201031 May 2011Covidien AgVessel sealer and divider with rotating sealer and cutter
US795533221 Sep 20057 Jun 2011Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US796396510 May 200721 Jun 2011Covidien AgBipolar electrosurgical instrument for sealing vessels
US80168279 Oct 200813 Sep 2011Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US807074625 May 20076 Dic 2011Tyco Healthcare Group LpRadiofrequency fusion of cardiac tissue
US812374329 Jul 200828 Feb 2012Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US81424733 Oct 200827 Mar 2012Tyco Healthcare Group LpMethod of transferring rotational motion in an articulating surgical instrument
US814748917 Feb 20113 Abr 2012Covidien AgOpen vessel sealing instrument
US81629405 Sep 200724 Abr 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US816297315 Ago 200824 Abr 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US81777945 Oct 200715 May 2012Tyco Healthcare Group LpFlexible endoscopic stitching devices
US819243321 Ago 20075 Jun 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US819747910 Dic 200812 Jun 2012Tyco Healthcare Group LpVessel sealer and divider
US819763315 Mar 201112 Jun 2012Covidien AgMethod for manufacturing an end effector assembly
US82111057 May 20073 Jul 2012Covidien AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US822141612 Sep 200817 Jul 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with thermoplastic clevis
US823599223 Sep 20087 Ago 2012Tyco Healthcare Group LpInsulating boot with mechanical reinforcement for electrosurgical forceps
US823599324 Sep 20087 Ago 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with exohinged structure
US823602523 Sep 20087 Ago 2012Tyco Healthcare Group LpSilicone insulated electrosurgical forceps
US82412825 Sep 200814 Ago 2012Tyco Healthcare Group LpVessel sealing cutting assemblies
US824128317 Sep 200814 Ago 2012Tyco Healthcare Group LpDual durometer insulating boot for electrosurgical forceps
US82412845 Ene 200914 Ago 2012Covidien AgVessel sealer and divider with non-conductive stop members
US82466375 Oct 200721 Ago 2012Tyco Healthcare Group LpFlexible endoscopic stitching devices
US825199623 Sep 200828 Ago 2012Tyco Healthcare Group LpInsulating sheath for electrosurgical forceps
US82573527 Sep 20104 Sep 2012Covidien AgBipolar forceps having monopolar extension
US825738715 Ago 20084 Sep 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US82679354 Abr 200718 Sep 2012Tyco Healthcare Group LpElectrosurgical instrument reducing current densities at an insulator conductor junction
US826793623 Sep 200818 Sep 2012Tyco Healthcare Group LpInsulating mechanically-interfaced adhesive for electrosurgical forceps
US82929055 Oct 200723 Oct 2012Tyco Healthcare Group LpFlexible endoscopic stitching devices
US82929065 Oct 200723 Oct 2012Tyco Healthcare Group LpFlexible endoscopic stitching devices
US829822816 Sep 200830 Oct 2012Coviden AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US829823224 Mar 200930 Oct 2012Tyco Healthcare Group LpEndoscopic vessel sealer and divider for large tissue structures
US830358215 Sep 20086 Nov 2012Tyco Healthcare Group LpElectrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US830358610 Feb 20096 Nov 2012Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US831778728 Ago 200827 Nov 2012Covidien LpTissue fusion jaw angle improvement
US83337654 Jun 201218 Dic 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US83375155 Oct 200725 Dic 2012Covidien LpFlexible endoscopic stitching devices
US834894829 Jul 20108 Ene 2013Covidien AgVessel sealing system using capacitive RF dielectric heating
US836107128 Ago 200829 Ene 2013Covidien AgVessel sealing forceps with disposable electrodes
US836107219 Nov 201029 Ene 2013Covidien AgInsulating boot for electrosurgical forceps
US836670927 Dic 20115 Feb 2013Covidien AgArticulating bipolar electrosurgical instrument
US838275426 Ene 200926 Feb 2013Covidien AgElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US839409512 Ene 201112 Mar 2013Covidien AgInsulating boot for electrosurgical forceps
US839409611 Abr 201112 Mar 2013Covidien AgOpen vessel sealing instrument with cutting mechanism
US842550430 Nov 201123 Abr 2013Covidien LpRadiofrequency fusion of cardiac tissue
US84546024 May 20124 Jun 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US84546319 Jul 20124 Jun 2013Covidien LpAxial stitching devices
US84602755 Oct 200711 Jun 2013Covidien LpFlexible endoscopic stitching devices
US846995621 Jul 200825 Jun 2013Covidien LpVariable resistor jaw
US84699577 Oct 200825 Jun 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US84754535 Mar 20102 Jul 2013Covidien LpEndoscopic vessel sealer and divider having a flexible articulating shaft
US848610720 Oct 200816 Jul 2013Covidien LpMethod of sealing tissue using radiofrequency energy
US84907131 Oct 201023 Jul 2013Covidien LpHandle assembly for endoscopic suturing device
US849665616 Ene 200930 Jul 2013Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US84966745 Oct 200730 Jul 2013Covidien LpFlexible endoscopic stitching devices
US85065817 Ene 201313 Ago 2013Covidien LpFlexible endoscopic stitching devices
US852389810 Ago 20123 Sep 2013Covidien LpEndoscopic electrosurgical jaws with offset knife
US853531225 Sep 200817 Sep 2013Covidien LpApparatus, system and method for performing an electrosurgical procedure
US855109130 Mar 20118 Oct 2013Covidien AgVessel sealing instrument with electrical cutting mechanism
US85684447 Mar 201229 Oct 2013Covidien LpMethod of transferring rotational motion in an articulating surgical instrument
US859150616 Oct 201226 Nov 2013Covidien AgVessel sealing system
US859729631 Ago 20123 Dic 2013Covidien AgBipolar forceps having monopolar extension
US859729729 Ago 20063 Dic 2013Covidien AgVessel sealing instrument with multiple electrode configurations
US862301723 Jul 20097 Ene 2014Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and overratchet safety
US86232769 Feb 20097 Ene 2014Covidien LpMethod and system for sterilizing an electrosurgical instrument
US862854510 Jun 200914 Ene 2014Covidien LpEndoscopic stitching devices
US863675223 Abr 201228 Ene 2014Covidien LpFlexible endoscopic stitching devices
US86367619 Oct 200828 Ene 2014Covidien LpApparatus, system, and method for performing an endoscopic electrosurgical procedure
US864171315 Sep 20104 Feb 2014Covidien AgFlexible endoscopic catheter with ligasure
US864734127 Oct 200611 Feb 2014Covidien AgVessel sealer and divider for use with small trocars and cannulas
US866868919 Abr 201011 Mar 2014Covidien AgIn-line vessel sealer and divider
US867911423 Abr 201025 Mar 2014Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US869089824 Jun 20058 Abr 2014Smith & Nephew, Inc.Suture passing surgical instrument
US86966679 Ago 201215 Abr 2014Covidien LpDual durometer insulating boot for electrosurgical forceps
US87216405 Oct 200713 May 2014Covidien LpEndoscopic vessel sealer and divider having a flexible articulating shaft
US873444319 Sep 200827 May 2014Covidien LpVessel sealer and divider for large tissue structures
US874090120 Ene 20103 Jun 2014Covidien AgVessel sealing instrument with electrical cutting mechanism
US87474245 Oct 201210 Jun 2014Covidien LpFlexible endoscopic stitching devices
US876474828 Ene 20091 Jul 2014Covidien LpEnd effector assembly for electrosurgical device and method for making the same
US878441728 Ago 200822 Jul 2014Covidien LpTissue fusion jaw angle improvement
US879527428 Ago 20085 Ago 2014Covidien LpTissue fusion jaw angle improvement
US87953254 Oct 20075 Ago 2014Covidien LpHandle assembly for articulated endoscopic instruments
US88522288 Feb 20127 Oct 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US88585544 Jun 201314 Oct 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US886477631 Mar 200921 Oct 2014Covidien LpDeployment system for surgical suture
US888276624 Ene 200611 Nov 2014Covidien AgMethod and system for controlling delivery of energy to divide tissue
US889888826 Ene 20122 Dic 2014Covidien LpSystem for manufacturing electrosurgical seal plates
US894512510 Sep 20103 Feb 2015Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US896831425 Sep 20083 Mar 2015Covidien LpApparatus, system and method for performing an electrosurgical procedure
US89683402 Feb 20123 Mar 2015Covidien LpSingle actuating jaw flexible endolumenal stitching device
US896834229 Jul 20133 Mar 2015Covidien LpFlexible endoscopic stitching devices
US902304323 Sep 20085 May 2015Covidien LpInsulating mechanically-interfaced boot and jaws for electrosurgical forceps
US90284938 Mar 201212 May 2015Covidien LpIn vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US909534718 Sep 20084 Ago 2015Covidien AgElectrically conductive/insulative over shoe for tissue fusion
US910767219 Jul 200618 Ago 2015Covidien AgVessel sealing forceps with disposable electrodes
US911386018 Dic 201225 Ago 2015Covidien LpFlexible endoscopic stitching devices
US91138989 Sep 201125 Ago 2015Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US911390329 Oct 201225 Ago 2015Covidien LpEndoscopic vessel sealer and divider for large tissue structures
US911390520 Jun 201325 Ago 2015Covidien LpVariable resistor jaw
US911394022 Feb 201225 Ago 2015Covidien LpTrigger lockout and kickback mechanism for surgical instruments
US914932325 Ene 20106 Oct 2015Covidien AgMethod of fusing biomaterials with radiofrequency energy
US920492411 Jun 20138 Dic 2015Covidien LpEndoscopic vessel sealer and divider having a flexible articulating shaft
US924798821 Jul 20152 Feb 2016Covidien LpVariable resistor jaw
US927172330 May 20131 Mar 2016Covidien LpFlexible endoscopic stitching devices
US934553514 Oct 201424 May 2016Covidien LpApparatus, system and method for performing an electrosurgical procedure
US936424716 Ago 201314 Jun 2016Covidien LpEndoscopic electrosurgical jaws with offset knife
US937525425 Sep 200828 Jun 2016Covidien LpSeal and separate algorithm
US93752705 Nov 201328 Jun 2016Covidien AgVessel sealing system
US93752715 Nov 201328 Jun 2016Covidien AgVessel sealing system
US94630675 Nov 201311 Oct 2016Covidien AgVessel sealing system
US94684347 Oct 201418 Oct 2016Covidien LpStitching end effector
US949222511 Feb 201415 Nov 2016Covidien AgVessel sealer and divider for use with small trocars and cannulas
US95390539 May 201410 Ene 2017Covidien LpVessel sealer and divider for large tissue structures
US954977511 Mar 201424 Ene 2017Covidien AgIn-line vessel sealer and divider
US955484110 Abr 201431 Ene 2017Covidien LpDual durometer insulating boot for electrosurgical forceps
US95791454 Feb 201428 Feb 2017Covidien AgFlexible endoscopic catheter with ligasure
US95857163 Jun 20147 Mar 2017Covidien AgVessel sealing instrument with electrical cutting mechanism
US960365221 Ago 200828 Mar 2017Covidien LpElectrosurgical instrument including a sensor
US961582410 Jul 201311 Abr 2017Covidien LpHandle assembly for endoscopic suturing device
US963610318 Feb 20152 May 2017Covidien LpSurgical suturing instrument
US96556741 Oct 201423 May 2017Covidien LpApparatus, system and method for performing an electrosurgical procedure
US20030220658 *22 May 200227 Nov 2003Hatch Laird L.Suture passing surgical instrument
US20040143263 *13 Nov 200322 Jul 2004Schechter David A.Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US20050154387 *8 Oct 200414 Jul 2005Moses Michael C.Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US20050234479 *24 Jun 200520 Oct 2005Orthopaedic Biosystems Ltd., Inc. A Delaware CorporationSuture passing surgical instrument
US20060020273 *8 Ago 200526 Ene 2006Orthopaedic Biosystems Ltd., Inc., A Delaware CorporationSuture passing surgical instrument
US20060052778 *19 Jul 20059 Mar 2006Chapman Troy JIncorporating rapid cooling in tissue fusion heating processes
US20060079891 *21 Sep 200513 Abr 2006Arts Gene HMechanism for dividing tissue in a hemostat-style instrument
US20060129146 *6 Feb 200615 Jun 2006Sherwood Services AgVessel sealer and divider having a variable jaw clamping mechanism
US20060167452 *17 Ene 200627 Jul 2006Moses Michael COpen vessel sealing instrument
US20060259036 *19 Jul 200616 Nov 2006Tetzlaff Philip MVessel sealing forceps with disposable electrodes
US20070078456 *29 Sep 20065 Abr 2007Dumbauld Patrick LIn-line vessel sealer and divider
US20070088356 *12 Oct 200619 Abr 2007Moses Michael COpen vessel sealing instrument with cutting mechanism
US20070255279 *7 May 20071 Nov 2007Buysse Steven PElectrosurgical instrument which reduces collateral damage to adjacent tissue
US20080009860 *7 Jul 200610 Ene 2008Sherwood Services AgSystem and method for controlling electrode gap during tissue sealing
US20080039835 *5 Sep 200714 Feb 2008Johnson Kristin DVessel sealing instrument with electrical cutting mechanism
US20080045947 *21 Ago 200721 Feb 2008Johnson Kristin DVessel sealing instrument with electrical cutting mechanism
US20080058802 *29 Ago 20066 Mar 2008Sherwood Services AgVessel sealing instrument with multiple electrode configurations
US20080249527 *4 Abr 20079 Oct 2008Tyco Healthcare Group LpElectrosurgical instrument reducing current densities at an insulator conductor junction
US20080312653 *29 Jul 200818 Dic 2008Arts Gene HMechanism for Dividing Tissue in a Hemostat-Style Instrument
US20080319442 *5 Sep 200825 Dic 2008Tyco Healthcare Group LpVessel Sealing Cutting Assemblies
US20090012520 *19 Sep 20088 Ene 2009Tyco Healthcare Group LpVessel Sealer and Divider for Large Tissue Structures
US20090043304 *28 Ago 200812 Feb 2009Tetzlaff Philip MVessel Sealing Forceps With Disposable Electrodes
US20090062794 *16 Sep 20085 Mar 2009Buysse Steven PElectrosurgical Instrument Which Reduces Collateral Damage to Adjacent Tissue
US20090082766 *19 Sep 200826 Mar 2009Tyco Healthcare Group LpTissue Sealer and End Effector Assembly and Method of Manufacturing Same
US20090088738 *17 Sep 20082 Abr 2009Tyco Healthcare Group LpDual Durometer Insulating Boot for Electrosurgical Forceps
US20090088739 *23 Sep 20082 Abr 2009Tyco Healthcare Group LpInsulating Mechanically-Interfaced Adhesive for Electrosurgical Forceps
US20090088740 *23 Sep 20082 Abr 2009Tyco Healthcare Group LpInsulating Boot with Mechanical Reinforcement for Electrosurgical Forceps
US20090088741 *23 Sep 20082 Abr 2009Tyco Healthcare Group LpSilicone Insulated Electrosurgical Forceps
US20090088744 *12 Sep 20082 Abr 2009Tyco Healthcare Group LpInsulating Boot for Electrosurgical Forceps With Thermoplastic Clevis
US20090088745 *22 Sep 20082 Abr 2009Tyco Healthcare Group LpTapered Insulating Boot for Electrosurgical Forceps
US20090088746 *23 Sep 20082 Abr 2009Tyco Healthcare Group LpInsulating Mechanically-Interfaced Boot and Jaws for Electrosurgical Forceps
US20090088747 *23 Sep 20082 Abr 2009Tyco Healthcare Group LpInsulating Sheath for Electrosurgical Forceps
US20090088748 *24 Sep 20082 Abr 2009Tyco Healthcare Group LpInsulating Mesh-like Boot for Electrosurgical Forceps
US20090088749 *24 Sep 20082 Abr 2009Tyco Heathcare Group LpInsulating Boot for Electrosurgical Forceps with Exohinged Structure
US20090112206 *6 Ene 200930 Abr 2009Dumbauld Patrick LBipolar Forceps Having Monopolar Extension
US20090131934 *26 Ene 200921 May 2009Covidion AgElectrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue
US20090149853 *16 Ene 200911 Jun 2009Chelsea ShieldsTissue Sealer with Non-Conductive Variable Stop Members and Method of Sealing Tissue
US20090149854 *10 Feb 200911 Jun 2009Sherwood Services AgSpring Loaded Reciprocating Tissue Cutting Mechanism in a Forceps-Style Electrosurgical Instrument
US20090187188 *5 Mar 200923 Jul 2009Sherwood Services AgCombined energy level button
US20090198233 *28 Ene 20096 Ago 2009Tyco Healthcare Group LpEnd Effector Assembly for Electrosurgical Device and Method for Making the Same
US20090204114 *16 Abr 200913 Ago 2009Covidien AgElectrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue
US20090209957 *9 Feb 200920 Ago 2009Tyco Healthcare Group LpMethod and System for Sterilizing an Electrosurgical Instrument
US20090259233 *31 Mar 200915 Oct 2009Michael BogartDeployment System For Surgical Suture
US20090306660 *19 Ago 200910 Dic 2009Johnson Kristin DVessel Sealing Instrument
US20090312773 *10 Jun 200917 Dic 2009Ramiro CabreraEndoscopic stitching devices
US20100010512 *5 Oct 200714 Ene 2010Taylor Eric JFlexible endoscopic stitching devices
US20100016857 *21 Jul 200821 Ene 2010Mckenna NicoleVariable Resistor Jaw
US20100042100 *19 Ago 200918 Feb 2010Tetzlaff Philip MVessel Sealing Instrument
US20100042140 *15 Ago 200818 Feb 2010Cunningham James SMethod of Transferring Pressure in an Articulating Surgical Instrument
US20100042143 *15 Ago 200818 Feb 2010Cunningham James SMethod of Transferring Pressure in an Articulating Surgical Instrument
US20100049187 *21 Ago 200825 Feb 2010Carlton John DElectrosurgical Instrument Including a Sensor
US20100057081 *28 Ago 20084 Mar 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US20100057083 *28 Ago 20084 Mar 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US20100057084 *28 Ago 20084 Mar 2010TYCO Healthcare Group L.PTissue Fusion Jaw Angle Improvement
US20100069903 *18 Sep 200818 Mar 2010Tyco Healthcare Group LpVessel Sealing Instrument With Cutting Mechanism
US20100069904 *15 Sep 200818 Mar 2010Tyco Healthcare Group LpElectrosurgical Instrument Having a Coated Electrode Utilizing an Atomic Layer Deposition Technique
US20100076260 *4 Oct 200725 Mar 2010Taylor Eric JHandle Assembly for Articulated Endoscopic Instruments
US20100076427 *25 Sep 200825 Mar 2010Tyco Healthcare Group LpSeal and Separate Algorithm
US20100076430 *24 Sep 200825 Mar 2010Tyco Healthcare Group LpElectrosurgical Instrument Having a Thumb Lever and Related System and Method of Use
US20100076431 *25 Sep 200825 Mar 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US20100076432 *25 Sep 200825 Mar 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US20100076460 *5 Oct 200725 Mar 2010Taylor Eric JFlexible endoscopic stitching devices
US20100076461 *5 Oct 200725 Mar 2010Frank ViolaFlexible endoscopic stitching devices
US20100087816 *7 Oct 20088 Abr 2010Roy Jeffrey MApparatus, system, and method for performing an electrosurgical procedure
US20100087818 *3 Oct 20088 Abr 2010Tyco Healthcare Group LpMethod of Transferring Rotational Motion in an Articulating Surgical Instrument
US20100094286 *9 Oct 200815 Abr 2010Tyco Healthcare Group LpApparatus, System, and Method for Performing an Electrosurgical Procedure
US20100094289 *5 Oct 200715 Abr 2010Taylor Eric JEndoscopic Vessel Sealer and Divider Having a Flexible Articulating Shaft
US20100100122 *20 Oct 200822 Abr 2010Tyco Healthcare Group LpMethod of Sealing Tissue Using Radiofrequency Energy
US20100130971 *25 Ene 201027 May 2010Covidien AgMethod of Fusing Biomaterials With Radiofrequency Energy
US20100145334 *10 Dic 200810 Jun 2010Tyco Healthcare Group LpVessel Sealer and Divider
US20100204697 *19 Abr 201012 Ago 2010Dumbauld Patrick LIn-Line Vessel Sealer and Divider
US20100217282 *5 Oct 200726 Ago 2010Tyco Healthcare Group LpFlexible endoscopic stitching devices
US20100331839 *10 Sep 201030 Dic 2010Schechter David ACompressible Jaw Configuration with Bipolar RF Output Electrodes for Soft Tissue Fusion
US20110004209 *7 Sep 20106 Ene 2011Kate LawesBipolar Forceps having Monopolar Extension
US20110018164 *6 Oct 201027 Ene 2011Sartor Joe DMolded Insulating Hinge for Bipolar Instruments
US20110040308 *1 Oct 201017 Feb 2011Ramiro CabreraEndoscopic Stitching Devices
US20110082476 *1 Oct 20107 Abr 2011Tyco Healthcare Group LpHandle Assembly for Endoscopic Suturing Device
US20110106079 *12 Ene 20115 May 2011Covidien AgInsulating Boot for Electrosurgical Forceps
US20110196368 *17 Feb 201111 Ago 2011Covidien AgOpen Vessel Sealing Instrument
US20110238067 *11 Abr 201129 Sep 2011Moses Michael COpen vessel sealing instrument with cutting mechanism
USD64924915 Feb 200722 Nov 2011Tyco Healthcare Group LpEnd effectors of an elongated dissecting and dividing instrument
USD68022012 Ene 201216 Abr 2013Coviden IPSlider handle for laparoscopic device
USD7087468 Abr 20138 Jul 2014Covidien LpHandle for surgical device
USRE448347 Dic 20128 Abr 2014Covidien AgInsulating boot for electrosurgical forceps
EP0705569A1 *27 Sep 199510 Abr 1996United States Surgical CorporationEndoscopic vascular suturing apparatus
EP0836832B1 *16 Sep 199710 Dic 2003United States Surgical CorporationSurgical suturing apparatus
EP1304081A3 *27 Sep 199511 Feb 2004United States Surgical CorporationEndoscopic vascular suturing apparatus
Clasificaciones
Clasificación de EE.UU.606/145
Clasificación internacionalA61B17/04
Clasificación cooperativaA61B17/0469
Clasificación europeaA61B17/04E