Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3113623 A
Tipo de publicaciónConcesión
Fecha de publicación10 Dic 1963
Fecha de presentación20 Jul 1959
Fecha de prioridad20 Jul 1959
Número de publicaciónUS 3113623 A, US 3113623A, US-A-3113623, US3113623 A, US3113623A
InventoresKrueger Roland F
Cesionario originalUnion Oil Co
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Apparatus for underground retorting
US 3113623 A
Imágenes(2)
Previous page
Next page
Descripción  (El texto procesado por OCR puede contener errores)

Dec. 10, 1963 RF. K RUEGER APPARATUS FOR UNDERGROUND RETORTING 2 Sheets-Sheet l Filed July 20, 1959 INVENTOR. @OLA/'VD AT K/EUEGE/Q Eifer 2 Dec. 10, 1963 R. F. KRUEGER APPARATUS FOR UNDERGROUND RETORTING' 2 sheets-snaai 2 Filed July 20, 1959 .FIG-,5

23? (ffm ATTORNEY UnitedStates Patent O 3,113,623 APPARATUS FOR UNDERGR RETORTING Roland F. Krueger, Placentia, Calif., assignor to Union @il Company of California, Los Angeles, Calif., a corporation of California Filed July 20, 1959, Ser. No. 828,106 3 Claims. (Cl. 166-59) This invention relates to a novel method and apparatus for uniformly heating an elongated region of mineral deposits located beneath the earths surface, and more particularly concerns a method Iand apparatus for the thermal recovery of hydhocarbon values from subterranean deposits comprising the same.

A number of processes have been proposed whereby heat is employed to facilitate the recovery of hydrocarbon values from subterranean deposits such as bituminous sands, oil shale, bituminous and sub-bituminous coals, oil-soaked diatomite, heavy petroleum deposits, etc. ln most of said processes at least part of the heat is supplied from a burner positioned in a bore hole drilled into the deposit. For example, according to one process which has been `applied to the treatment of tar sand deposits, a plurality of relatively closely-spaced holes is drilled into the deposit, and heat is generated in a selected number of these holes by combustion of gas or other fuel in la suitably positioned burner device. The surrounding sand is thereby heated and the volatile petroleum fractions are driven towards a production bore hole from which they are recovered. .'Ilhe heavier ends which fail to vol-atilize are pyrolyzed by continued heating. As previously practiced, a single burner has been positioned at the base of the formation or at a point along the combustion tube. This technique results in localized heating, which is useful with shallow formations but not readily `applicable where the formation is vertically extended. Attempts to use this localized heating to transmit heat to an elongated zone within subterranean deposits have employed ow reversal methods, alone, or with packed annular zones of coarse inert material around the burner zone, or with `an annular fluidized bed of iinely divided inert solids. In the flow reversal method of heating, a combustion tube is concentrically placed Within the bore hole and extended nearly to the base of the hole. Combustible gases and air are mixed in the tube and ignited at a selected point. The flame front is prevented from rising to the top of the burner by flame arrestors positioned Within the burner upstream from the llame. The combustion gases pass down the extended burner tube to the base of the hole Where they reverse their direction and ilow upwardly through the annulus between the burner Itube and bore casing. lI-t has been found that `a high temperature zone within the shale deposit exists immediately adjacent the burner flame, and that the temperature of the shale at points vertically removed from this high 'temperature zone are substantially less. This type of operation is not entirely satisfactory because the heat is not eicicntly distributed and because the localized thigh temperature zone causes thermal failure of the burner tube. While use of a lfluidized bed of solids within the annulus between the burner and casing improves heat transfer to the shale, it does not completely eliminate the uneven heating along the bore hole and is disadvantageous in that it causes a high erosion rate of the metal surf-aces.

lt is a purpose of `this invention to provide an improved method for subterranean heating. It is also a purpose of the invention to provide a unique burner construction which achieves uniform heating over an extended length and has a long service life.

These purposes are achieved by providing a continuous elongated combustion zone extending the length of an ice elongated portion of the mineral deposits. The elongated combustion zone is achieved by use of a porous metallic, glass or ceramic combustion tube and Will be described by reference to the drawings which form a part of this application.

In the drawings, FIGURES l, 2 5 and 6 shovw the placement of the novel burner construction in the mineral deposits. FIGURES 3 and 4 show alternative features of construction of `the burner tubes. Although FIGURES 1, Zand 5 show a vertical disposition of the burner tubes, it is apparent -that a horizontal or inclined placement could also be employed, if desired.

Referring norw to FIGURE l, a mineral deposit, B, is shown located beneath an upper layer, A, which may comprise gravel, earth or stone or `an unheated portion of the mineral deposit. In accordance with this invention, a hole is bored through the 'earths surtiace and into the mineral deposit. A metal casing 1 is positioned Within `the bore hole in the conventional manner. Disposed within casing 1 are concentric tubes 2 and 3. Casing l, land tubes Z and 3 are closed at their upper ends. Conduit 4 connects with casing 1 to provide for removal of flue gases, conduit '5 communicates Iwith tube 2 for the introduction of `air or gas, and conduit 6 cornmunicates with inner tube =3, also for the entrance of air or gas. The unique construction of this invention is in the use of a gas-permeable tube 7 connected to the lower portion of central tube 3. Permeable tube 7 is sealed at its lower end by plate `fi which may be permeable, but is preferably impermeable to gas llow. Any suitable connection between permeable tube 7 and metal tube 3 may be employed, such as by cementing, threading or by use of a collar joint.

In operation, natural gas or other gaseous fuel is introduced Athrough conduit 6 into central tube 3. rllhe gas flows down into tube 7 `and passes through the Walls thereof into a flowing air stream which is introduced into tube 2 through conduit 5. The llow of gas through tube 7 into the air stream is lachieved by maintaining a higher pressure on the gas stream than on the air stream. Combustion is initiated in a conventional manner in the annular zone between tubes 2 and 7, and takes place along the entire length of tube 7, thereby providing an elongated combustion zone which may be of any suitable length corresponding to the ylength chosen for the permeable tube -7. y'Ille flue gases are discharged from the lower open end of tube 2 and reverse their direction of flow to pass upwardly through the annular zone between casing l and tube 2, and are removed through conduit yt. Heat is transmitted from the combustion zone by radiation to this upwardly flowing stre-am of flue gases and to lthe mineral deposits in zone B throughout the entire length of the burning zone, and heat is transmitted by convection from the flue gases to the mineral deposits. By this method a combustion zone with -a uniform temperature is maintained along the length of the mineral deposit. Although casing yl is shown to extend the length of the bore hole, it may be considerably shorter where the mineral matrix is suiciently consolidated so as not to tall into the hole. Suitable consolidation may occur naturally or be achieved by coking the hydrocarbons in the deposit immediately adjacent the bore hole.y This coking may be 'accomplished by introducing high temperature combustion gases into the hole.

Conventional ignition techniques presently employed to ignite gas burners in oil Wells lean be employed in the annulus surrounding fthe burner to ignite the burners of my invention. These techniques themselves constitute no inventive step in my system; they merely serve for the ignition `of the gas stream after it passes through the porous Wall and enters the annular combustion zone surrounding the porous burner. Among the suitable ignition techniques which are employed in the annular zone surrounding the porous burners are the following:

Dynamite and percussion caps;

Electrically actuated -heating coils and spark plugs which are positioned within the annular combustion zone and which are initiated by a supply of electrical energy from above ground; and

Chemical ignition techniques wherein a capsule of sodium or potassium is dropped into the well bore and followed by injection of water. The sodium or potassium is then released by mechanical breaking or dissolution of the capsule to react with Water and release heat to ignite the gas.

Referring now to FIGURE 2, a modified form of the invention is shown. In this embodiment, a single tube 16 is concentrically disposed within casing 9. The gas and air are introduced into tube 1h via inlets 11 and 12, respectively, and the gas-air mixture flows downwardly through tube into permeable tube 13 which is shown to be connected to the lower end of -tube 10 by a collar joint. The gas and air stream diuses through tube 13 into [the combustion zone which surrounds the same. The gas is ignited by any of the aforedescribed techniques and the resultant combustion occurs on the outside of this ltube and is prevented from backing into the permeable tube 13 by proper adjustment of the gas and air flow rates. lIf desired, central tube 1G may be extended downwardly as indicated so as to insure that the gases from the combustion zone flow to the base of the formation before reversal into an upwardly directed ilow to the flue gas outlet conduit 14.

FIGURE 3 shows an alternative method of construction for the gas permeable tube, and can be used to obtain a burner of greater strength than is possible with glass or ceramic tubes, alone. This construction comprises a central metal tube 15 which is perforated at suitable intervals by holes 16 and is sealed at its lower end by cap 20. A sleeve 17, constructed of a permeable ceramic or sintered glass material, surrounds lthe perforated portion of tube 15. The diameters of tube 15 and gas-permeable sleeve 17 are so chosen to insure a tight iit. The permeable sleeve extends a substantial distance, D, above the perforated portion of tube 15 to prevent gas llow from bypassing the permeable sleeve and flowing between the sleeve rand the tube. A Suitable sealing material 18 is placed above and below the permeable sleeve 17 to insure a gas-tight't, and is suitably held in place by coupling 19. If desired, the perforated portion of tube 15 can be on a separate piece of pipe and thereby permit connection to any suitable length of pipe to position fthe burning zone at any depth in the mineral deposit. Also if desired, several of these burning zones may be provided on a single string of vpipe separated by an impermeable portion of pipe, thereby permitting simultaneous `heating of multiple zones of mineral deposits. The thickness, W, of permeable sleeve 17 is selected to maintain suflicient thermal insulation between the `outer burning zone and metal tube 15. This is to eliminate any difficulties encountered due to the differences in thermal expansion of the dissimilar ceramic sleeve and the tube.

FIGURE 4 shows another embodiment of the permeable tube burner. This construction comprises a central tube 21 which is perforated similarly to tube 15 of FIGURE 3, and is similarly closed` at its lower end. Surrounding the perforated portion of tube 21 is a second concentric rtube 22 which is supported by rings 23. Tube 22 Ais also provided with a plurality of perforations. Between tubes 22 and 21 is packed an annular bed of unconsolidated silica, sand or quartz grains, which is permeable to gas ow. These grains fare prevented from falling through 4the perforations in tubes 21 and 22 by outer screen 24 and inner screen 25. Again, these burning zones may be constructed on separate pieces of pipe and connected to any desired length of pipe to permit the proper location within the mineral deposit.

FIGURE 5 illustrates an alternative type of construction. The gas permeable burner 26 in this embodiment is constructed of a gas permeable metal and is connected to a supply of air and `combustible gas. The gas and air ow into this permeable burner and diffuse into the annular lzone between the burner and the casing wall. The gas is ignited by any of the -aforedescribed techniques and the resultant combustion occurs in this annular zone along the entire length of the permeable lburner 26. A second concentric tube 27 may surround the permeable burner to insure that the combustion gases will flow to the base of the formation before reversal to the point of removal above the ground. Use of a permeable metal tube simplies construction and provides a burner which is somewhat easier to install than a glass or ceramic burner.

Another embodiment of the invention is illustrated by FIGURE 6. In this embodiment, a single tube 28 is concentrically positioned within casing 29. A ceramic rod 30, which is of a length corresponding to the depth of the mineral deposit, is supported within inner tube 28. lInlet 32 for the introduction of a combustible gas mixture, and outlet 3l for the removal of ue gas, communicate with tube 28 and casing 29, respectively. Gas and air ilow downwardly (through tube 28 and are Withdrawn through conduit 31. Combustion is initiated by igniting the gas stream flowing out of tube 31. However, any other conventional ignition technique is suitable. This combustion is permitted to back up into the burner until the flame front exists at the lower end of tube 28. The ceramic rod 30 is lowered so that its lower end is within the combustion zone at the base of tube 28. The ceramic rod slowly heats up by conduction, and a red-hot zone progresses up the length of rod 30. As this zone moves up the ceramic rod, the combustion zone follows it until a combustion zone exists within tube 2S along the entire length of the 4ceramic rod. An annular ring 33 may be placed within tube 2S above the ceramic rod to momentarily increase the combustible gas flow rate and thereby prevent the combustion zone from moving up tube 28 to the gas inlets or, if desired, tube 28 may be of a reduced diameter at its upper end to serve the same purpose. Other llame arrestors, such as screens or grids, may also be employed. The ceramic rod 30 is shown to be movable in a vertical direction. However, to simplify construction, particularly where the depth of the mineral formation is known, the ceramic rod may be rigidly supported within tube 28.

Suitable ceramic material for constructing the aforementioned gas-permeable elements may comprise permeable ceramics of alumina, zirconia, sandstone, and aluminum silicates such as sillimanite, or clays. These gas-permeable ceramics are commercially available in a wide rang of permeabilities and in a variety of shapes, including tubular elements.

Gas-permeable glass suitable for use in this invention is made by sintering of glass powders to obtain a shatterproof porous glass permeable to gas flow. This type of glass is also commercially available.

Suitable gas-permeable vmetals for construction of the burners of this invention are made by sintering of metal powders. able in bronze and a wide range of stainless steel alloys, such as 304, 309, 316, 347, nickel, Monel, etc. The permeabilities of these metals may range from a value of cubic feet of air per minute per square foot at 0.01 psi. pressure drop for a one-sixteenth inch thick stock of a highly permeable material to a permeability of 27 cubic feet of air per minute at l0 psi. pressure drop for a oneeighth inch stock of low permeability material.

A typical `example of this Yinvention is as follows: The apparatus shown by FIGURE 5 is employed to supply heat to a tar sand deposit 50 feet below the earths surface. The deposit is 30 feet rthick, and it is desired to supply 31,00() B.t.u.s per hour to the sand. A two and one-half inch bore is drilled -into the deposit and a gaspermeable stainless steel burner made from one-eighth These sintered metals are commercially avail- A one-fourth inch pipe is connected to the top of the metal burner tto supply 310 cubic feet per hour of a combined gas and air stream. In order to insure even diffusion of the combustible mixture into the annulus surrounding the burner, it is necessary to maintain a high pressure drop through the burner walls relative to the gas fiow pressure drop down the porous metal tube. A stainless steel of relatively low permeability is chosen to provide a diffusion pressure drop which is l() to 830 times as great as the gas flow pressure drop within the permeable metal burner. The actual diffusion pressure drop through the tube is 4.15 inches of water. As a result, even distribution of the gas-air mixture is obtained and ya combustion zone surrounds the permeable tube over the entire thickness of the deposit. This example is by way of illustration only and is not to be construed as limiting the scope of the invention which is directed to providing an elongated combustion zone throughout the entire depth of thick mineral deposits.

I claim:

1. A burner in combination with a well bore which penetrates an oil sand interval to be heated, a combustible gas and an air supply conduit connected to the upper end of a tubing string, said tubing string extending into said well bore and connected therein to said burner, a casing within the upper extremity of said well bore and -a conduit communicating with said oasing for the removal of ue gases therefrom; said burner comprising an elongated metal tube perforated along its length and connected to said tubing string, a second perforated metal tube concentric with and surrounding said first tube, said second tube being7 of lesser diameter than said well bore to form an annulus therebetween, a first ring laterally positioned between the non-perforated ends of said first and second tubes, and a second ring laterally positioned between the opposite non-perforated ends of said tubes, a cap over the lower end of said first tube, a first metal screen around the outer periphery of said first tube extending from said first ring to said second ring, a second metal screen around the inner periphery of said second tube extending from said first ring to said second ring, and an annular bed of unconsolidated granular material packed between said first and second screens and said first and second rings.

2. The combination of claim 1 wherein said well bore penetrates a plurality of oil sand inten/als to be heated and wherein a plurality of said burners are attached to said tubing string so as to extend substantially the depth of its respective oil sand interval. i

3. The combina/tion of a Well bore penetrating a subterranean oil sand interval which comprises a first tubing string and a second tubing string concentrically disposed within said first tubing string, said first and second tubing strings extending into said well bore, a conduit communieating with the upper end of said well bore for removal of iue gas therefrom, said second tubing string extending to the upper level of said oil sand interval, said first tubing string extending to the lower level of said oil sand interval, a gas permeable tube concentrically disposed within said first tubing string and connected to the lower end of said second tubing string, said gas permeable tube being closed at its lower end and terminating at the lower level of said oil sand interval, said gas permeable tube having an uninterrupted wall of uniform permeability to gases so as to permit diffusion of a gas therethrough, a combustible gas supply conduit connected to the upper end of said second tubing string, an oxidizing gas supply conduit connected to the upper end of said first tubing string, a combustible gas supply means connected to said combustible gas supply conduit and an oxidizing gas supply means connected to said oxidizing supply conduit, said combustible gas supply means being adapted to supply combustible gas lat a pressure greater than the pressure of oxidizing gas supplied by said oxidizing gas supply means so as to cause said combustible gas to diffuse through said gas permeable tube and admix with said oxidizing gas within said first tubing string.

References Cited in the file ot' this patent UNITED STATES PATENTS 71,144 Dean Nov. 19, 1867 444,85() Reed Jan. 20, 1891 1,678,592 Garner et ral. July 24, 1928 2,161,865 Hobstetter et al. June 13, 1939 2,890,754 Hoifstrom et al June 16, 1959 2,913,050 lCrawford Nov. 17, 1959 2,981,332 Miller et al Apr. 25, 1961 3,010,516 Schleicher Nov. 28, 1961 3,050,116 Crawford Aug. 21, 1962 FOREIGN PATENTS 123,137 Sweden Nov. 9, 1948

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US71144 *19 Nov 1867 louis
US444850 *16 Jun 189020 Ene 1891 Burner for natural gas
US1678592 *3 Feb 192324 Jul 1928Standard Oil Dev CoArt of treating oil wells
US2161865 *29 May 193613 Jun 1939Wheeling Steel CorpBurner construction
US2890754 *4 Ene 195416 Jun 1959Husky Oil CompanyApparatus for recovering combustible substances from subterraneous deposits in situ
US2913050 *12 May 195517 Nov 1959Phillips Petroleum CoPreventing explosions in bore holes during underground combustion operations for oil recovery
US2981332 *1 Feb 195725 Abr 1961Kumler William LWell screening method and device therefor
US3010516 *18 Nov 195728 Nov 1961Phillips Petroleum CoBurner and process for in situ combustion
US3050116 *26 May 195821 Ago 1962Phillips Petroleum CoMultiple zone production by in situ combustion
SE123137A * Título no disponible
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3181613 *23 Abr 19634 May 1965Union Oil CoMethod and apparatus for subterranean heating
US3244231 *9 Abr 19635 Abr 1966Pan American Petroleum CorpMethod for catalytically heating oil bearing formations
US3376932 *4 Mar 19669 Abr 1968Pan American Petroleum CorpCatalytic heater
US3420300 *27 Oct 19667 Ene 1969Sinclair Research IncMethod and apparatus for heating a subsurface formation
US3497000 *19 Ago 196824 Feb 1970Pan American Petroleum CorpBottom hole catalytic heater
US3680635 *30 Dic 19691 Ago 1972Sun Oil Co DelawareMethod and apparatus for igniting well heaters
US3680636 *30 Dic 19691 Ago 1972Sun Oil CoMethod and apparatus for ignition and heating of earth formations
US3804163 *11 Abr 197316 Abr 1974Sun Oil CoCatalytic wellbore heater
US4446917 *12 Mar 19798 May 1984Todd John CMethod and apparatus for producing viscous or waxy crude oils
US4640352 *24 Sep 19853 Feb 1987Shell Oil CompanyIn-situ steam drive oil recovery process
US4886118 *17 Feb 198812 Dic 1989Shell Oil CompanyPyrolysis; enhanced oil recovery
US5070533 *7 Nov 19903 Dic 1991Uentech CorporationRobust electrical heating systems for mineral wells
US5082055 *2 Ene 199121 Ene 1992Indugas, Inc.Gas fired radiant tube heater
US5224542 *6 Ene 19926 Jul 1993Indugas, Inc.Gas fired radiant tube heater
US5297626 *12 Jun 199229 Mar 1994Shell Oil CompanyOil recovery process
US5392854 *20 Dic 199328 Feb 1995Shell Oil CompanyOil recovery process
US5404952 *20 Dic 199311 Abr 1995Shell Oil CompanyHeat injection process and apparatus
US5862858 *26 Dic 199626 Ene 1999Shell Oil CompanyFlameless combustor
US658168424 Abr 200124 Jun 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US658850424 Abr 20018 Jul 2003Shell Oil CompanyConversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground coal formations; pyrolysis
US659190624 Abr 200115 Jul 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US659190724 Abr 200115 Jul 2003Shell Oil CompanyPyrolysis
US660703324 Abr 200119 Ago 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US660957024 Abr 200126 Ago 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US668494815 Ene 20023 Feb 2004Marshall T. SavageApparatus and method for heating subterranean formations using fuel cells
US668838724 Abr 200110 Feb 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US669851524 Abr 20012 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US670201624 Abr 20019 Mar 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US670875824 Abr 200123 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US671213524 Abr 200130 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US671213624 Abr 200130 Mar 2004Shell Oil CompanyProviding heat to the formation; controlling the heat from the heat source such that an average temperature within at least a majority of the selected section of the formation is less than about 375 degrees c.
US671213724 Abr 200130 Mar 2004Shell Oil CompanyHeat exchanging to superimpose heat
US671554624 Abr 20016 Abr 2004Shell Oil CompanyChemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed
US671554724 Abr 20016 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US671554824 Abr 20016 Abr 2004Shell Oil CompanyElectrical heaters may be used to heat the subterranean formation by radiation and/or conduction
US671554924 Abr 20016 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US671904724 Abr 200113 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US672242924 Abr 200120 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US672243024 Abr 200120 Abr 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US672243124 Abr 200120 Abr 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US672592024 Abr 200127 Abr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US672592124 Abr 200127 Abr 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US672592824 Abr 200127 Abr 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US672939524 Abr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US672939624 Abr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US672939724 Abr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US672940124 Abr 20014 May 2004Shell Oil CompanySynthesis gas may be produced from the formation. synthesis gas may be used as a feed stream in an ammonia synthesis process. ammonia may be used as a feed stream in a urea synthesis process.
US673279424 Abr 200111 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US673279524 Abr 200111 May 2004Shell Oil CompanyProviding heat from one or more heat sources to at least one portion of formation; allowing heat to transfer from the one or more heat sources to a selected section of the formation; controlling the heat; producing a mixture from the formation
US673279624 Abr 200111 May 2004Shell Oil CompanyHeating section of formation with heat sources to temperature allowing generation of synthesis gas, providing synthesis gas generating fluid to section, removing synthesis gas generated, repeating for second section, blending for desired ratio
US673621524 Abr 200118 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US673939324 Abr 200125 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US673939424 Abr 200125 May 2004Shell Oil CompanyProviding heat and a synthesis gas generating fluid to the section to generate synthesis gas
US674258724 Abr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US674258824 Abr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US674258924 Abr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US674259324 Abr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US674583124 Abr 20018 Jun 2004Shell Oil CompanyMixture of hydrocarbons, h2, and/or other formation fluids may be produced from the formation. heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature.
US674583224 Abr 20018 Jun 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US674583724 Abr 20018 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US674902124 Abr 200115 Jun 2004Shell Oil CompanyPyrolysis
US675221024 Abr 200122 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US675826824 Abr 20016 Jul 2004Shell Oil CompanyHeat exchanging, pyrolysis; monitoring temperature
US676121624 Abr 200113 Jul 2004Shell Oil CompanyPyrolysis temperature
US676388624 Abr 200120 Jul 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US676948324 Abr 20013 Ago 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US676948524 Abr 20013 Ago 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US678962524 Abr 200114 Sep 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US680519524 Abr 200119 Oct 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US682068824 Abr 200123 Nov 2004Shell Oil CompanyHeat exchanging after pyrolyzation to support synthesis gas generation
US686609724 Abr 200115 Mar 2005Shell Oil CompanySuperpositioning of heaters for pyrolysis to form mixture of hydrocarbons and hydrogen; controlling pressure; heat exchanging
US687170724 Abr 200129 Mar 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US687755424 Abr 200112 Abr 2005Shell Oil CompanyPyrolysis
US687755524 Abr 200212 Abr 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US688063324 Abr 200219 Abr 2005Shell Oil CompanyIncludes shutting-in an in situ treatment process in an oil shale formation may include terminating heating from heat sources providing heat to a portion of the formation; hydrocarbon vapor may be produced
US688063524 Abr 200119 Abr 2005Shell Oil CompanyMethods and systems for production of hydrocarbons, hydrogen, and/or other products from underground coal formations
US688976924 Abr 200110 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US689605324 Abr 200124 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US690200324 Abr 20017 Jun 2005Shell Oil CompanyAllowing heat to transfer from heaters to a formation selected for heating using a total organic matter weight percentage of > 5% and recirculating hydrogen
US690200424 Abr 20017 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US691053624 Abr 200128 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US691307824 Abr 20015 Jul 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US691585024 Abr 200212 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US691844224 Abr 200219 Jul 2005Shell Oil CompanyIn situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground oil shale formations
US691844324 Abr 200219 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US692325724 Abr 20022 Ago 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US692325812 Jun 20032 Ago 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US692906724 Abr 200216 Ago 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US693215524 Oct 200223 Ago 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US694856224 Abr 200227 Sep 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US694856324 Abr 200127 Sep 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US695124724 Abr 20024 Oct 2005Shell Oil CompanyControl the heat exchanging, pyrolyzing hydrocarbons, enhancing oil recovery
US695308724 Abr 200111 Oct 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US695976124 Abr 20011 Nov 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US696430024 Abr 200215 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US696637224 Abr 200122 Nov 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US696637424 Abr 200222 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US696912324 Oct 200229 Nov 2005Shell Oil CompanyUpgrading and mining of coal
US697396724 Abr 200113 Dic 2005Shell Oil Companyhydrocarbons within a coal formation are converted in situ within the formation to yield a mixture of relatively high quality hydrocarbon products, hydrogen, and other products; the coal is heated to to temperatures that allow pyrolysis
US698154824 Abr 20023 Ene 2006Shell Oil Companyheating and pyrolysis of heavy hydrocarbon sections in subterranean wells to produce light hydrocarbons; reduced viscosity improves movement; fluid removal in liquid and/or vapor phase
US699103124 Abr 200131 Ene 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US699103224 Abr 200231 Ene 2006Shell Oil CompanyHeat sources positioned within the formation in a selected pattern raise a temperature of a portion of the formation to a pyrolysis temperature.
US699103324 Abr 200231 Ene 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US699103624 Abr 200231 Ene 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US699104524 Oct 200231 Ene 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US699416024 Abr 20017 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US699416124 Abr 20017 Feb 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6994168 *24 Abr 20017 Feb 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US699416924 Abr 20027 Feb 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US699725524 Abr 200114 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US699751824 Abr 200214 Feb 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US700424724 Abr 200228 Feb 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US700425124 Abr 200228 Feb 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US701115424 Oct 200214 Mar 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US701397224 Abr 200221 Mar 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US701766124 Abr 200128 Mar 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660 *24 Abr 200225 Abr 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US703658324 Sep 20012 May 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US704039824 Abr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US704039924 Abr 20029 May 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US704040024 Abr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US705180724 Abr 200230 May 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US705180824 Oct 200230 May 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US705181124 Abr 200230 May 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US705560024 Abr 20026 Jun 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US706314524 Oct 200220 Jun 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US706625424 Oct 200227 Jun 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US706625724 Oct 200227 Jun 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US707357824 Oct 200311 Jul 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US707719824 Oct 200218 Jul 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US707719924 Oct 200218 Jul 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US708646524 Oct 20028 Ago 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US708646824 Abr 20018 Ago 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US709001324 Oct 200215 Ago 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US709694124 Abr 200129 Ago 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US709694224 Abr 200229 Ago 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US709695324 Abr 200129 Ago 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US710099424 Oct 20025 Sep 2006Shell Oil Companyinjecting a heated fluid into the well bore, producing a second fluid from the formation, conducting an in situ conversion process in the selected section.
US710431924 Oct 200212 Sep 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US711456624 Oct 20023 Oct 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US712134223 Abr 200417 Oct 2006Shell Oil CompanyThermal processes for subsurface formations
US712815324 Oct 200231 Oct 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US715617624 Oct 20022 Ene 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US716561524 Oct 200223 Ene 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US718213215 Oct 200327 Feb 2007Independant Energy Partners, Inc.Linearly scalable geothermic fuel cells
US722586631 Ene 20065 Jun 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US732036422 Abr 200522 Ene 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US735387222 Abr 20058 Abr 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US735718022 Abr 200515 Abr 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US736058817 Oct 200622 Abr 2008Shell Oil CompanyThermal processes for subsurface formations
US737070422 Abr 200513 May 2008Shell Oil CompanyTriaxial temperature limited heater
US738387722 Abr 200510 Jun 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US742491522 Abr 200516 Sep 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US743107622 Abr 20057 Oct 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US743503721 Abr 200614 Oct 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US746169123 Ene 20079 Dic 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US748127422 Abr 200527 Ene 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US749066522 Abr 200517 Feb 2009Shell Oil CompanyVariable frequency temperature limited heaters
US750052821 Abr 200610 Mar 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7503761 *10 Jun 200517 Mar 2009Fina Technology Inc.Method for reducing the formation of nitrogen oxides in steam generation
US751000022 Abr 200531 Mar 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US757505221 Abr 200618 Ago 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US757505321 Abr 200618 Ago 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US759714720 Abr 20076 Oct 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7651331 *9 Mar 200626 Ene 2010Shell Oil CompanyMulti-tube heat transfer system for the combustion of a fuel and heating of a process fluid and the use thereof
US767378620 Abr 20079 Mar 2010Shell Oil CompanyWelding shield for coupling heaters
US7704070 *9 Mar 200627 Abr 2010Shell Oil CompanyHeat transfer system for the combustion of a fuel heating of a process fluid and a process that uses same
US779372220 Abr 200714 Sep 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US779822131 May 200721 Sep 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US80165899 Mar 200613 Sep 2011Shell Oil CompanyMethod of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid
US819268226 Abr 20105 Jun 2012Shell Oil CompanyHigh strength alloys
US860609120 Oct 200610 Dic 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US860824926 Abr 201017 Dic 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
USRE35696 *28 Sep 199523 Dic 1997Shell Oil CompanyHeat injection process
CN1756924B18 Dic 20039 Jun 2010弗纳技术股份有限公司Method for reducing the formation of nitrogen oxides in steam generation
WO2003036040A2 *24 Oct 20021 May 2003Shell Oil CoIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
WO2004059208A2 *18 Dic 200315 Jul 2004Fina TechnologyMethod for reducing the formation of nitrogen oxides in steam generation
Clasificaciones
Clasificación de EE.UU.166/59
Clasificación internacionalE21B36/00, E21B36/02
Clasificación cooperativaE21B36/02
Clasificación europeaE21B36/02