US3117002A - Aluminum bronze alloy having improved wear resistance by the addition of cobalt, chromium, and manganese - Google Patents

Aluminum bronze alloy having improved wear resistance by the addition of cobalt, chromium, and manganese Download PDF

Info

Publication number
US3117002A
US3117002A US8941A US894160A US3117002A US 3117002 A US3117002 A US 3117002A US 8941 A US8941 A US 8941A US 894160 A US894160 A US 894160A US 3117002 A US3117002 A US 3117002A
Authority
US
United States
Prior art keywords
alloy
chromium
cobalt
manganese
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US8941A
Inventor
John F Klement
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ampco Metal Inc
Original Assignee
Ampco Metal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ampco Metal Inc filed Critical Ampco Metal Inc
Priority to US8941A priority Critical patent/US3117002A/en
Application granted granted Critical
Publication of US3117002A publication Critical patent/US3117002A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent

Definitions

  • Aluminum bronze alloys have for years been used as dies for forming and drawing operations for a large group of sheet and plate alloys, such as stainless steel, aluminum, nicl-cel, titanium, mild steel and some copper base alloys.
  • Aluminum bronze alloys used in die applications possess the properties of good corrosion resistance, wear resistance and non-galling against many wrought materials.
  • the aluminum bronze alloys which in the past have shown the optimum properties for deep drawing dies are those that contain approximately 14% aluminum, a small amount of iron and the balance copper.
  • An alloy of this type has good corrosion resistance and non-galling properties.
  • it wears undesirably fast so that close dimensional tolerances cannot be maintained because of the wear that occurs on the die surface.
  • the present invention is directed to an aluminum bronze alloy which has the non-galling properties characteristic of alumium bronze alloys and has improved corrosion resistance, toughness and wear resistance as well as having a high uniform hardness. This is accomplished by the additional of small amounts of cobalt, manganese and chromium to the alloy which completely iiminates the tendency of the alloy to form the eutectoid. The addition of cobalt, manganese and chromium in controlled amounts also makes the alloy more homogeneous in the distribution of the alloy phases and intermetallic compounds formed during solidification and heat treatment and also promotes uniform controlled gnain size.
  • the alloy of the invention has the following general composition by Weight:
  • the iron should be present in the weight ratio of 0.2 to 1.0 part of iron per 3 parts of aluminum, and the combined total of cobalt, chromium and manganese should be present in the weight ratio of l to 2 parts per 3 parts of aluminum. In addition, the combined total of cobalt and chromium should be present in the weight ratio of 1 part; of the total of cobalt and chromium to 1 to 2 parts of manganese.
  • the alloy having the above range of chemistry has a tensile strength of about 65,000 to 105,000 p.s.i., a yield strength of 65,000 to 80,000 psi, an elongation in two inches up to 3.0% and a Rockwell C hardness in the range of to 55.
  • composition of the alloy falling within the above range are as follows in weight percent:
  • the above alloy compositions can be cast eight statically or centrifugally to produce a fine grained tough structure.
  • the alloy of the invention has greatly improved wear resistance over that of an ordinary aluminum bronze alloy and this increase in wear resistance is unexpected since the hardness of the alloy is substantially the same as the hardness of an aluminum bronze alloy having similar proportions of aluminum and iron, but not containing the cobalt, manganese and chromium.
  • the addition of chromium aids in increasing the corrosion resistance of the alloy.
  • the machineability, at the lower chromium contents, is substantially increased over that of the ordinary aluminum bronze alloy not containing the cobalt, manganese and chromium additions.
  • the metallographic structure of the alloy consists essentially of gamma two phase which is uniformly distributed in a matrix of beta.
  • Intermetallic compounds composed of iron, aluminum, copper, cobalt, manganese and chromium exists in small particles of uniform size and shape. Because of the method of casting and the inoculant used, the intermetallic compounds are uniformly distributed throughout the cast section. It is believed that these intermetallic compounds Which are dispersed throughout the metall'ographic structure are primarily responsible for the improved wear resistance of the alloy.
  • the metals used for the alloy should be of high quality. Electrolytic or wrought fire refined copper, high purity aluminum, low carbon iron and high purity cobalt, manganese and chromium are preferred to be used. It has also been found that the best method of obtaining the desired uniformity in the alloy is by using a double melting procedure whereby a pre-alloy is made. One of the most satisfactory prealloys has approximately 40% aluminum, 15% copper, 15% iron, 10% chromium, 10% manganese and 10% cobalt.
  • the melting procedure employed in making the prealloy is such that some copper, along with the iron, chromium, maganese and cobalt, is placed into the crucible and melting begun.
  • the copper starts to melt, the iron and other additives are slowly dissolved into the copper during that period when aluminum is added to form an exothermic reaction which helps to dissolve the higher melting point cobalt and chromium additions.
  • This pre-alloy is then cast into ingot form and is ready to use for the final alloy.
  • the final alloy is made by intermixing a predetermined percentage of the pre-alloy and copper plus what other elements are needed to satisfy the desired chemical range.
  • a dcoxidizer is added to this alloy in the molten state in the furnace to reduce the oxides and purge the metal of soluble gases.
  • deoxidizers can include the compounds of boron, phosphorus, magnesium and lithium. Deoxidizers of the gas type can also be used.
  • the dry type deoxidizers are added in quantities of approximately 4 ounces per 100 pounds of metal, and the gas type deoxidizers are passed either through or over the molten metal for a period of five minutes. Removal of the oxide particles is of particular importance because of their abrasive and adverse eifect on the wear resistant properties of the alloy.
  • the chromium, manganese and cobalt metals or alloys can be added directly to a molten aluminum-iron-copper alloy.
  • the alloy is heat treated at an elevated temperature in the temperature range of 1050 F. to 1400 F., such as about 1150 F. Small castings of simple shapes of this alloy can be placed directly into the heat treating furnace at temperature. Large massive castings or intricate shapes are preheated in the furnace at about 400 F. until the section reaches uniform temperature and then are heated directly to the elevated temperature. The castings are held at a temperature in the range of 1050" F. to 1400 F. for one hour plus one-half hour per inch of section thickness greater than one inch, up to a maximum of two and one-half hours at temperature.
  • the alloy After the required soaking time at the elevated temperature, the alloy is cooled at a rate faster than about 20 F. per hour per one inch of section thickness. This rate is conveniently obtained by fan air cooling.
  • the alloy of the invention can be stress relieved within the temperature range of 650 F. to 1050 F. without embrittlement due to the eutectoid structure.
  • An optimum stress relief temperature for the present alloy based on the severity of the internal stresses and geometry of the article, can be selected in the range of 650 F. to 1050 F. to obtain a reasonable holding time in the furnace, such as one to two hours per 2 inches of section, and to prevent distortions and micro stresses during cooling. The article is then cooled slowly to room temperature.
  • the alloy can be used to produce articles for wear resistant applications in drawing and forming operations.
  • the articles may take the form of deep drawing dies, hold down dies, wear guides, forming rolls, skids, slides, etc.
  • the alloy can also be extruded into Weldrods or weld wire.
  • the alloy in the form of coated or uncoated weldrod can be overlaid on a base metal by metal spraying or other welding methods, such as heli-arc, metalarc, carbon-arc, etc., to obtain a corrosion resistant wear surface.
  • the metal overlay can be given a stress relief treatment at temperatures in the range of 650 F. to 1150 F. and cooled slowly to room temperature.
  • An aluminum bronze alloy consisting essentially of 14.25% to 20.0% aluminum, from 1.0% to 7.0% iron, from 2.3% to 8.8% manganese, from 0.475% to 6.0% cobalt, from 0.475% to 6.0% chromium and the balance being substantially copper, said alloy being characterized by having excellent corrosion resistance and having improved toughness and wear resistance.
  • An aluminum bronze alloy having improved wear resistance, toughness and machineability, consisting essen* tially of from 14.25% to 20.0% aluminum, 1.0% to 7.0% iron, from 2.3% to 8.8% manganese, 0.474% to 6.0% cobalt, 0.475% to 6.0% chromium and the balance sub stantially copper, said alloy being characterized by a tensile strength in the range of 65,000 to 165,000 p.s.1., a yield strength in the range of 65,000 to 80,000 p.s.i., an elongation in two inches of up to 2.5%, and a hardness in the range of 25 to 55 Rockwell C.
  • An aluminum bronze alloy having improved toughness and wear resistance consisting essentially of 14.75% aluminum, 4.5% iron, 25% manganese, 2.0% cobalt, 0.5% chromium and 75.75% copper.
  • An aluminum bronze alloy having improved tough- Iiess and wear resistance consisting essentially of 14.25% to 20% aluminum, from 1.0% to 7.0% iron, from 2.3% to 8.8% manganese, from 0.475% to 6.0% cobalt, from 0.475% to 6.0% chromium, and the balance being sub stantially copper, said iron being present in the weight ratio of 0.2 to 1.0 part of iron per 3 parts of aluminum, the combined total of said cobalt, chromium and manga nese being present in the weight ratio of 1 to 2 parts 0t said combined total per 3 parts of aluminum and the combined total of said cobalt and chromium being present in the weight ratio of 1 part of the total efcobalt a chromium to 1 to 2 parts of manganese.
  • a drawing die characterized by having excellent cor-f rosion resistance, a hardness in the range of 25 to 55 Rockwell C and improved wear resistance, said die being fabricated from an aluminum bronze alloy consistiiig es sentially of 14.25% to 20% aluminum, from 1.0% to 7.0% iron, from 2.3% to 8.8% manganese, from 0.475% to 6.0% cobalt, from 0.475% to 6.0% chromium, and the balance being substantially copper, said iron being pres-f ent in the weight ratio of 0.2 to 1.0 part of iron per 3 parts of aluminum, the combined total of said cobalt, chromium and manganese being present in the weight? ratio of 1 to 2 parts of said combined total per 3 parts of aluminum and the combined total of said cobalt arid chromium being present in the weight ratio of 1 part of the total of cobalt and chromium to 1 to 2 parts of manganese.
  • An aluminum bronze welding electrode consisting essentially of 14.25% to 20% aluminum, from 1.0% to 7.0% iron, from 2.3% to 8.8% manganese, from 0.475 to 6.0% cobalt, from 0.475 to 6.0% chromium, and the balance being substantially copper.

Description

United States Patent ALUMINUM BRQNZE ALLOY HAVWG IMPROVED WEAR REdltTANCE BY TEE DHIQN OF COBALT, CHRGMIUM, AND MANGANESE John F. Element, Milwaukee, Wis., assignor to Arnpco Metal, Inc, Milwaukee, Wis a corporation of Wisconsin No Drawing. Filed Feb. 16, 1960, Ser. No. 8,941 6 Claims. (Cl. 75-162) This invention relates to an aluminum bronze alloy and more particularly to an aluminum bronze alloy hav ing improved toughness and wear resistance.
Aluminum bronze alloys have for years been used as dies for forming and drawing operations for a large group of sheet and plate alloys, such as stainless steel, aluminum, nicl-cel, titanium, mild steel and some copper base alloys. Aluminum bronze alloys used in die applications possess the properties of good corrosion resistance, wear resistance and non-galling against many wrought materials.
The aluminum bronze alloys which in the past have shown the optimum properties for deep drawing dies are those that contain approximately 14% aluminum, a small amount of iron and the balance copper. An alloy of this type has good corrosion resistance and non-galling properties. However, under heavy use in die applications, it wears undesirably fast so that close dimensional tolerances cannot be maintained because of the wear that occurs on the die surface.
The present invention is directed to an aluminum bronze alloy which has the non-galling properties characteristic of alumium bronze alloys and has improved corrosion resistance, toughness and wear resistance as well as having a high uniform hardness. This is accomplished by the additional of small amounts of cobalt, manganese and chromium to the alloy which completely iiminates the tendency of the alloy to form the eutectoid. The addition of cobalt, manganese and chromium in controlled amounts also makes the alloy more homogeneous in the distribution of the alloy phases and intermetallic compounds formed during solidification and heat treatment and also promotes uniform controlled gnain size.
The alloy of the invention has the following general composition by Weight:
Percent Aluminum 14.25-200 Iron 1.0-7.0 Cobalt 0.475-6.0 Manganese 2.3-8.8 Chromium O.4756.0 Copper Balance To provide the most desirable metallurgical structure, the iron should be present in the weight ratio of 0.2 to 1.0 part of iron per 3 parts of aluminum, and the combined total of cobalt, chromium and manganese should be present in the weight ratio of l to 2 parts per 3 parts of aluminum. In addition, the combined total of cobalt and chromium should be present in the weight ratio of 1 part; of the total of cobalt and chromium to 1 to 2 parts of manganese.
The alloy having the above range of chemistry has a tensile strength of about 65,000 to 105,000 p.s.i., a yield strength of 65,000 to 80,000 psi, an elongation in two inches up to 3.0% and a Rockwell C hardness in the range of to 55.
Specific illustrations of the composition of the alloy falling within the above range are as follows in weight percent:
The above alloy compositions can be cast eight statically or centrifugally to produce a fine grained tough structure.
The alloy of the invention has greatly improved wear resistance over that of an ordinary aluminum bronze alloy and this increase in wear resistance is unexpected since the hardness of the alloy is substantially the same as the hardness of an aluminum bronze alloy having similar proportions of aluminum and iron, but not containing the cobalt, manganese and chromium. In addition to the greatly improved wear resistance, the addition of chromium aids in increasing the corrosion resistance of the alloy. The machineability, at the lower chromium contents, is substantially increased over that of the ordinary aluminum bronze alloy not containing the cobalt, manganese and chromium additions.
The metallographic structure of the alloy consists essentially of gamma two phase which is uniformly distributed in a matrix of beta. Intermetallic compounds composed of iron, aluminum, copper, cobalt, manganese and chromium exists in small particles of uniform size and shape. Because of the method of casting and the inoculant used, the intermetallic compounds are uniformly distributed throughout the cast section. It is believed that these intermetallic compounds Which are dispersed throughout the metall'ographic structure are primarily responsible for the improved wear resistance of the alloy.
In order to obtain optimum properties, the metals used for the alloy should be of high quality. Electrolytic or wrought fire refined copper, high purity aluminum, low carbon iron and high purity cobalt, manganese and chromium are preferred to be used. It has also been found that the best method of obtaining the desired uniformity in the alloy is by using a double melting procedure whereby a pre-alloy is made. One of the most satisfactory prealloys has approximately 40% aluminum, 15% copper, 15% iron, 10% chromium, 10% manganese and 10% cobalt.
The melting procedure employed in making the prealloy is such that some copper, along with the iron, chromium, maganese and cobalt, is placed into the crucible and melting begun. When the copper starts to melt, the iron and other additives are slowly dissolved into the copper during that period when aluminum is added to form an exothermic reaction which helps to dissolve the higher melting point cobalt and chromium additions. This pre-alloy is then cast into ingot form and is ready to use for the final alloy.
The final alloy is made by intermixing a predetermined percentage of the pre-alloy and copper plus what other elements are needed to satisfy the desired chemical range. A dcoxidizer is added to this alloy in the molten state in the furnace to reduce the oxides and purge the metal of soluble gases. These deoxidizers can include the compounds of boron, phosphorus, magnesium and lithium. Deoxidizers of the gas type can also be used.
This can include volatile chlorides or any of the inert gases. The dry type deoxidizers are added in quantities of approximately 4 ounces per 100 pounds of metal, and the gas type deoxidizers are passed either through or over the molten metal for a period of five minutes. Removal of the oxide particles is of particular importance because of their abrasive and adverse eifect on the wear resistant properties of the alloy.
Alternately, instead of employing a pre-alloy, the chromium, manganese and cobalt metals or alloys can be added directly to a molten aluminum-iron-copper alloy. To establish complete uniformity of the microstructure and hardness, the alloy is heat treated at an elevated temperature in the temperature range of 1050 F. to 1400 F., such as about 1150 F. Small castings of simple shapes of this alloy can be placed directly into the heat treating furnace at temperature. Large massive castings or intricate shapes are preheated in the furnace at about 400 F. until the section reaches uniform temperature and then are heated directly to the elevated temperature. The castings are held at a temperature in the range of 1050" F. to 1400 F. for one hour plus one-half hour per inch of section thickness greater than one inch, up to a maximum of two and one-half hours at temperature.
After the required soaking time at the elevated temperature, the alloy is cooled at a rate faster than about 20 F. per hour per one inch of section thickness. This rate is conveniently obtained by fan air cooling.
Internal stresses created within castings during machining or other finishing operations, during weldments or from metal overlays on base metals, are usually re moved depending on the future application of the part. These stresses are removed by a stress relief heat treatment. The usual commercial aluminum bronze alloys cannot generally be stress relieved at a temperature in the range of 650 F. to 1050" F. due to eutectoid forma= tion that occurs at this temperature range. Furthermore, a stress relief at temperatures above 1050 F. frequently causes distortions and further stresses in the usual commercial aluminum bronze alloy during the rapid cooling to room temperature. Stress relief at temperatures lower than 650 F. takes considerable time and often the most severe stresses remain.
In contrast to this, the alloy of the invention can be stress relieved within the temperature range of 650 F. to 1050 F. without embrittlement due to the eutectoid structure. An optimum stress relief temperature for the present alloy, based on the severity of the internal stresses and geometry of the article, can be selected in the range of 650 F. to 1050 F. to obtain a reasonable holding time in the furnace, such as one to two hours per 2 inches of section, and to prevent distortions and micro stresses during cooling. The article is then cooled slowly to room temperature.
The alloy can be used to produce articles for wear resistant applications in drawing and forming operations. The articles may take the form of deep drawing dies, hold down dies, wear guides, forming rolls, skids, slides, etc.
The alloy can also be extruded into Weldrods or weld wire. The alloy in the form of coated or uncoated weldrod can be overlaid on a base metal by metal spraying or other welding methods, such as heli-arc, metalarc, carbon-arc, etc., to obtain a corrosion resistant wear surface. The metal overlay can be given a stress relief treatment at temperatures in the range of 650 F. to 1150 F. and cooled slowly to room temperature.
It has been found that the addition of cobalt, manga nese and chromium in controlled ratios to each other and in controlled ratios to aluminum greatly improves the toughness, corrosion resistance and wear resistance of the aluminum bronze alloy and eliminates the tendency for eutectoid embrittlement. As the alloy of the invention will not form the embrittling eutectoid structure, more alloying elements can be incorporated in the alloy for a given hardness to thereby obtain increased wear resistance.
Various modes of carrying out the invention are contemplated as being within the scope of the following claims particularly pointing out and distinctly claiming the subiect matter which is regarded as the invention.
I claim:
1. An aluminum bronze alloy, consisting essentially of 14.25% to 20.0% aluminum, from 1.0% to 7.0% iron, from 2.3% to 8.8% manganese, from 0.475% to 6.0% cobalt, from 0.475% to 6.0% chromium and the balance being substantially copper, said alloy being characterized by having excellent corrosion resistance and having improved toughness and wear resistance.
2. An aluminum bronze alloy having improved wear resistance, toughness and machineability, consisting essen* tially of from 14.25% to 20.0% aluminum, 1.0% to 7.0% iron, from 2.3% to 8.8% manganese, 0.474% to 6.0% cobalt, 0.475% to 6.0% chromium and the balance sub stantially copper, said alloy being characterized by a tensile strength in the range of 65,000 to 165,000 p.s.1., a yield strength in the range of 65,000 to 80,000 p.s.i., an elongation in two inches of up to 2.5%, and a hardness in the range of 25 to 55 Rockwell C.
3. An aluminum bronze alloy having improved toughness and wear resistance, consisting essentially of 14.75% aluminum, 4.5% iron, 25% manganese, 2.0% cobalt, 0.5% chromium and 75.75% copper.
4. An aluminum bronze alloy having improved tough- Iiess and wear resistance, consisting essentially of 14.25% to 20% aluminum, from 1.0% to 7.0% iron, from 2.3% to 8.8% manganese, from 0.475% to 6.0% cobalt, from 0.475% to 6.0% chromium, and the balance being sub stantially copper, said iron being present in the weight ratio of 0.2 to 1.0 part of iron per 3 parts of aluminum, the combined total of said cobalt, chromium and manga nese being present in the weight ratio of 1 to 2 parts 0t said combined total per 3 parts of aluminum and the combined total of said cobalt and chromium being present in the weight ratio of 1 part of the total efcobalt a chromium to 1 to 2 parts of manganese.
5. A drawing die characterized by having excellent cor-f rosion resistance, a hardness in the range of 25 to 55 Rockwell C and improved wear resistance, said die being fabricated from an aluminum bronze alloy consistiiig es sentially of 14.25% to 20% aluminum, from 1.0% to 7.0% iron, from 2.3% to 8.8% manganese, from 0.475% to 6.0% cobalt, from 0.475% to 6.0% chromium, and the balance being substantially copper, said iron being pres-f ent in the weight ratio of 0.2 to 1.0 part of iron per 3 parts of aluminum, the combined total of said cobalt, chromium and manganese being present in the weight? ratio of 1 to 2 parts of said combined total per 3 parts of aluminum and the combined total of said cobalt arid chromium being present in the weight ratio of 1 part of the total of cobalt and chromium to 1 to 2 parts of manganese.
6. An aluminum bronze welding electrode consisting essentially of 14.25% to 20% aluminum, from 1.0% to 7.0% iron, from 2.3% to 8.8% manganese, from 0.475 to 6.0% cobalt, from 0.475 to 6.0% chromium, and the balance being substantially copper.
References Cited in the file of this patent UNITED STATES PATENTS 2,007,430 Maas July 9, 1935 2,979,397 Klement Apr. 11, 1961 FOREIGN PATENTS I 537,404 Great Britain June 20, 1941' 808,800 Great Britain June 21, 1 957 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent N00 3 l1T OO2 January 7 1964 John F Klement It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Column 1 line 35 for "additional" read addition column 2 line 11, for eight" read either column 4 read O475% -a line 20 for "O L74%" Signed and sealed this 9th day of June 1964! (SEAL) Attest:
EDWARD J. BRENNER ERNEST W. SWIDER Attesting Officer 7 Commissioner of Patents

Claims (1)

1. AN ALUMINUM BRONZE ALLOY, CONSISTING ESSENTIALLY OF 14.25% TO 20.0% ALUMINUM, FROM 1.0% TO 7.0% IRON, FROM 2.3% TO 8.8% MANGANESE, FROM 0.475% TO 6.0% COBALT, FROM 0.475% TO 6.0% CHROMIUM AND THE BALANCE BEING SUBSTANTIALLY COPPER, SAID ALLOY BEING CHARACTERIZED BY HAVING EXCELLENT CORROSION RESISTANCE AND HAVING IMPROVED TOUGHNESS AND WEAR RESISTANCE.
US8941A 1960-02-16 1960-02-16 Aluminum bronze alloy having improved wear resistance by the addition of cobalt, chromium, and manganese Expired - Lifetime US3117002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US8941A US3117002A (en) 1960-02-16 1960-02-16 Aluminum bronze alloy having improved wear resistance by the addition of cobalt, chromium, and manganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8941A US3117002A (en) 1960-02-16 1960-02-16 Aluminum bronze alloy having improved wear resistance by the addition of cobalt, chromium, and manganese

Publications (1)

Publication Number Publication Date
US3117002A true US3117002A (en) 1964-01-07

Family

ID=21734607

Family Applications (1)

Application Number Title Priority Date Filing Date
US8941A Expired - Lifetime US3117002A (en) 1960-02-16 1960-02-16 Aluminum bronze alloy having improved wear resistance by the addition of cobalt, chromium, and manganese

Country Status (1)

Country Link
US (1) US3117002A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0042455A2 (en) * 1980-06-23 1981-12-30 GebràœDer Sulzer Aktiengesellschaft Aluminium- and cobalt-containing copper alloys with high wear resistance; process for the manufacture of these alloys
US4365996A (en) * 1980-03-03 1982-12-28 Bbc Brown, Boveri & Company Limited Method of producing a memory alloy
US5468310A (en) * 1993-02-01 1995-11-21 Nissan Motor Co., Ltd. High temperature abrasion resistant copper alloy
US20040067644A1 (en) * 2002-10-04 2004-04-08 Malik Igor J. Non-contact etch annealing of strained layers
US20080038901A1 (en) * 1997-05-12 2008-02-14 Silicon Genesis Corporation Controlled Process and Resulting Device
US20080179547A1 (en) * 2006-09-08 2008-07-31 Silicon Genesis Corporation Method and structure for fabricating solar cells using a thick layer transfer process
US20080286945A1 (en) * 1997-05-12 2008-11-20 Silicon Genesis Corporation Controlled process and resulting device
US20090277314A1 (en) * 2008-05-07 2009-11-12 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region
US20100044595A1 (en) * 2008-08-25 2010-02-25 Silicon Genesis Corporation Race track configuration and method for wafering silicon solar substrates
US20100317140A1 (en) * 2009-05-13 2010-12-16 Silicon Genesis Corporation Techniques for forming thin films by implantation with reduced channeling
US8293619B2 (en) 2008-08-28 2012-10-23 Silicon Genesis Corporation Layer transfer of films utilizing controlled propagation
US8993410B2 (en) 2006-09-08 2015-03-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
EP2667996B1 (en) 2011-01-26 2017-12-13 voestalpine Stahl GmbH Roller for guiding and/or supporting a strand in a continuous casting installation having a layer produced by build-up welding ; process of producing such a roller and use of such roll

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007430A (en) * 1934-11-30 1935-07-09 Frederick J Maas Copper alloy
GB537404A (en) * 1939-09-19 1941-06-20 Maurice Cook Improvements in or relating to copper base alloys
GB808800A (en) * 1956-06-25 1959-02-11 Sigma Lutin Press tools made from a copper-aluminium-iron-manganesenickel alloy
US2979397A (en) * 1958-11-21 1961-04-11 Ampco Metal Inc Aluminum bronze alloy having improved wear resistance by the addition of cobalt and manganese

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007430A (en) * 1934-11-30 1935-07-09 Frederick J Maas Copper alloy
GB537404A (en) * 1939-09-19 1941-06-20 Maurice Cook Improvements in or relating to copper base alloys
GB808800A (en) * 1956-06-25 1959-02-11 Sigma Lutin Press tools made from a copper-aluminium-iron-manganesenickel alloy
US2979397A (en) * 1958-11-21 1961-04-11 Ampco Metal Inc Aluminum bronze alloy having improved wear resistance by the addition of cobalt and manganese

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4365996A (en) * 1980-03-03 1982-12-28 Bbc Brown, Boveri & Company Limited Method of producing a memory alloy
EP0042455A3 (en) * 1980-06-23 1982-01-13 Gebruder Sulzer Aktiengesellschaft Aluminium- and cobalt-containing copper alloys with high wear resistance; process for the manufacture of these alloys
EP0042455A2 (en) * 1980-06-23 1981-12-30 GebràœDer Sulzer Aktiengesellschaft Aluminium- and cobalt-containing copper alloys with high wear resistance; process for the manufacture of these alloys
US5468310A (en) * 1993-02-01 1995-11-21 Nissan Motor Co., Ltd. High temperature abrasion resistant copper alloy
US6037067A (en) * 1993-02-01 2000-03-14 Nissan Motor Co., Ltd. High temperature abrasion resistant copper alloy
US7776717B2 (en) 1997-05-12 2010-08-17 Silicon Genesis Corporation Controlled process and resulting device
US20080038901A1 (en) * 1997-05-12 2008-02-14 Silicon Genesis Corporation Controlled Process and Resulting Device
US20080286945A1 (en) * 1997-05-12 2008-11-20 Silicon Genesis Corporation Controlled process and resulting device
US7846818B2 (en) 1997-05-12 2010-12-07 Silicon Genesis Corporation Controlled process and resulting device
US20040067644A1 (en) * 2002-10-04 2004-04-08 Malik Igor J. Non-contact etch annealing of strained layers
US8187377B2 (en) 2002-10-04 2012-05-29 Silicon Genesis Corporation Non-contact etch annealing of strained layers
US7811900B2 (en) 2006-09-08 2010-10-12 Silicon Genesis Corporation Method and structure for fabricating solar cells using a thick layer transfer process
US8993410B2 (en) 2006-09-08 2015-03-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US9640711B2 (en) 2006-09-08 2017-05-02 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US9356181B2 (en) 2006-09-08 2016-05-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US20080179547A1 (en) * 2006-09-08 2008-07-31 Silicon Genesis Corporation Method and structure for fabricating solar cells using a thick layer transfer process
US9362439B2 (en) 2008-05-07 2016-06-07 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region
US20090277314A1 (en) * 2008-05-07 2009-11-12 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region
US11444221B2 (en) 2008-05-07 2022-09-13 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region
US8330126B2 (en) 2008-08-25 2012-12-11 Silicon Genesis Corporation Race track configuration and method for wafering silicon solar substrates
US20100044595A1 (en) * 2008-08-25 2010-02-25 Silicon Genesis Corporation Race track configuration and method for wafering silicon solar substrates
US8293619B2 (en) 2008-08-28 2012-10-23 Silicon Genesis Corporation Layer transfer of films utilizing controlled propagation
US8329557B2 (en) 2009-05-13 2012-12-11 Silicon Genesis Corporation Techniques for forming thin films by implantation with reduced channeling
US20100317140A1 (en) * 2009-05-13 2010-12-16 Silicon Genesis Corporation Techniques for forming thin films by implantation with reduced channeling
EP2667996B1 (en) 2011-01-26 2017-12-13 voestalpine Stahl GmbH Roller for guiding and/or supporting a strand in a continuous casting installation having a layer produced by build-up welding ; process of producing such a roller and use of such roll

Similar Documents

Publication Publication Date Title
US5792289A (en) Titanium alloy products and methods for their production
US3117002A (en) Aluminum bronze alloy having improved wear resistance by the addition of cobalt, chromium, and manganese
US3767385A (en) Cobalt-base alloys
CN110218917B (en) Alloy aluminum bar containing rare earth elements and preparation process thereof
US20120258809A1 (en) Copper-tin multicomponent bronze containing hard phases, production process and use
US3897618A (en) Powder metallurgy forging
CN112874058B (en) Copper-steel solid-liquid composite bimetallic material for buildings and preparation method thereof
US4060411A (en) Precipitation-hardenable, nitrided aluminum alloys and nitrided mother alloys therefor
US2979397A (en) Aluminum bronze alloy having improved wear resistance by the addition of cobalt and manganese
US2944890A (en) Aluminum bronze alloy having improved wear resistance by the addition of cobalt and chromium
US2937941A (en) Aluminum bronze alloy containing manganese and chromium and having improved wear resistance
US2874042A (en) Aluminum bronze alloy containing manganese and having improved wear resistance
US2944889A (en) Aluminum bronze alloy containing chromium and having improved wear resistance
US3025158A (en) Aluminum bronze alloy and method having improved wear resistance
Unnikrishnan et al. An investigation on the effects of Co, Ti and Si on microstructure, hardness and wear properties of AlCuNiFe based entropy alloys
USRE28552E (en) Cobalt-base alloys
US2129197A (en) Bronze alloy
US3948432A (en) Brazing preforms and method of brazing
CN109161767A (en) A kind of creep-resistant property magnesium alloy of the phase containing W and preparation method thereof
US3269825A (en) Method of producing homogeneous alloys containing refractory metals
US3837845A (en) Oxide coated ferrous metal powder
US3573110A (en) Process for obtaining high conductivity copper alloys
US2810643A (en) Titanium base alloys
US3156559A (en) Aluminum bronze alloy containing iron and cobalt and method of heat treating the same
CN112853150A (en) Copper-steel solid-liquid composite bimetallic material for chemical industry and preparation method thereof