US3123523A - Certificate of correction - Google Patents

Certificate of correction Download PDF

Info

Publication number
US3123523A
US3123523A US3123523DA US3123523A US 3123523 A US3123523 A US 3123523A US 3123523D A US3123523D A US 3123523DA US 3123523 A US3123523 A US 3123523A
Authority
US
United States
Prior art keywords
fungi
compounds
compound
active ingredient
formulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Publication date
Application granted granted Critical
Publication of US3123523A publication Critical patent/US3123523A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/305Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond)

Definitions

  • An object of this invention is to provide new fungicidal compositions. Still another object is to provide a new means for combating fungi. A further object is to provide new fungicidal compositions comprising conditioning agents and certain organochromium compounds as described herein.
  • chromium derivatives i.e., where M in the above formula is chromium.
  • Compounds of this type can be prepared by the general method of Nicholls et al., Proc. Chem. Soc. (1958 ⁇ , 152.
  • the compound is benzene chromium tricarbonyl. This compound is preferred since it is highly effective against foliar fungicides.
  • the compounds are the halobenzene tricarbonyls of the metals of group VIB.
  • the chloro and bromo compounds are preferred because they are more readily available than the other compounds of this class.
  • the most preferred compound is chlorobenzene chromium tricarbonyl
  • the compounds are hydrocarbon substituted benzene metal tricarbonyls.
  • This class of compounds is represented by the chromium tricarbonyls of toluene,-
  • the compounds are the chromium tricarbonyls of aniline, N,N-dimethylaniline, acetanilide, acetophenone, benzyl alcohol, methylbenzoate, and the like.
  • the preferred compounds of this class are acetophenone chromium tricarbonyl, methylbenzoate chromium tricarbonyl, aniline chromium tricarbonyl and N,N-dimethylaniline chromium tricarbonyl.
  • Aniline chromium tricarbonyl is the most preferred compound because of its high foliar fungicidal activity.
  • a most preferred embodiment of this invention is the use of my fungicidal compounds to destroy and control fungi which grow in jet fuels.
  • My fungicidal compounds are especially efficacious in this regard since they not only control the fungi, but beneficially alter the burning characteristics of the fuel.
  • Such compounds as described above are useful in combating fungi when they are applied to the locus of the fungi. Such treatment, therefore, constitutes one aspect of the invention. It has been found that the above materials are useful in controlling and eliminating fungi which infest vegetables, animals and man.
  • a facet of this invention is a novel method of combating and controlling fungi. Accordingly, one embodiment of this invention is the method of combating fungi which comprises contacting the fungus with a fungitoxic amount of a compound having the formula given above.
  • Another aspect of this invention is the provision of a method for controlling fungi which comprises treating matter susceptible to fungal infestation with the compound of the above formula.
  • the active ingredient of the present invention admixed in fungicidally effective amount with a conditioning agent of the type commonly referred to as a pest controlled adiuvant or modifier.
  • a conditioning agent of the type commonly referred to as a pest controlled adiuvant or modifier.
  • adjuvants have been referred to by names such as conditioning agent, dispersing agent, surface active agent, and surface active dispersing agent.
  • Their purpose is to extend the active ingredient to assure its efficacious penetration of, or application to, the locus being treated and to adapt the active ingredients for ready and etlicient application by using conventional equipment.
  • Formulations of the fungicidally active ingredient with a suitable conditioning agent comprise both liquid and solid types as well as the aerosol type of formulation.
  • the liquid type of formulation can have water, an organicsolvent, or an oil-water emulsion and the like as the conditioning agent.
  • conditioning agent include solid carriers such as talc, Attaclay, kieselguhr,
  • Such industrial materials act as'a diluent, dispersant, wetting agent, and extender for the active in-
  • the formulations of this invention therefore, comprise the above defined fungicidally active ingredient in a suitable material as a dispersant or conditioning agent. It is not intended that this invention be limited to any specific proportions of active ingredient and conditioning agent.
  • the important feature of the invention is to provide a formulation of such concentration that is appropriate for the desired application.
  • the conditioning agent will be present to provide the proper type of contact with the material being protected.
  • fungicidally active ingredient in the presence of only a compound or product or material known as a conditioning agent.
  • a conditioning agent a compound or product or material known as a conditioning agent.
  • other additives are useful in the preparation of the fungicidal preparations.
  • Other materials found useful are classified as spreading agents and adhesives.
  • Spreading agents tend to increase the area covered by a spray liquid. Many chemicals act as both wetting and spreading agents. Dried blood (blood albumin), sulfite lye, both in the liquid and dehydrated forms, and petroleum emulsions belong to this group.
  • Adhesives increase the adherence of the active agent to the treated surface to augment resistance to wear and mechanical action. Bentonite and other clays, gelatin and glue, are examples of adhesives.
  • the fungicidal preparations are in the form of either liquid or dry or aerosol formulations.
  • Liquid compositions either solutions or dispersions, frequently also contain a surface active dispersing agent in amounts sufficient to render the composition readily useful in aqueous spray application.
  • the surface active dispersing agents referred to herein are sometimes known as wetting, dispersing or penetrating agents. They are agents which cause the formulations to be easily dispersed in water.
  • They can be of the anionic, cationic, or nonionic type and include salts of long chain fatty acids, sulfonated oils, both vegetable and animal, petroleum oils, sulfates of long chain alcohols, phosphates of long chain alcohols, various polyethylene oxides, condensation products of ethylene oxide with alcohol and phenols, quaternary ammonium salts, and the like.
  • the surface active agent will usually be present to the extent of 0.1 to 5 percent of the formulation. Typical of the liquid formulations is the water solution or dispersion of the active ingredients.
  • Example 1 below, is an example for the preparation of an aqueous suspension of a typical active ingredient described in this invention.
  • the active ingredients can also be dispersed or suspended in various organic solvents such as alcohols, ketones, hydrocarbons, and petroleum fractions such as kerosene, dimethylformamide, and the like.
  • organic solvents such as alcohols, ketones, hydrocarbons, and petroleum fractions such as kerosene, dimethylformamide, and the like.
  • a surface active dispersing agent is usually present to provide ready dispersability with water.
  • the solubility of the active ingredients of this invention in organic solvents is such that they can be applied advantageously in the form of a solution in this type of solvent.
  • this type of vehicle is preferred, for example, in treating cloth, leather, or other fibrous articles.
  • a solution may be the most practical vehicle for applying the protective film. Brushing, spraying, or dipping may be the application method of choice.
  • an adherant or sticking agent such as vegetable oils
  • humectants can be employed in the formulations.
  • the formulations can be employed in admixture with other pesticidal materials or other biocides such as insecticides,
  • two or more of the active ingredients may be formulated together in a single composition, thus achieving control of a broader spectrum of fungi.
  • Fungicides can be applied in dry media as well as in liquid suspensions or solutions. In fact, early practice in the art used dust formulations almost exclusively. It
  • a dust formulation which is prepared generally by milling the active ingredients in ball mill within the presence of a dry material, for example, fullers earth. After milling, the mixture is screened and the fraction passing through a Very fine sieve is collected. Thereafter, a further dilution is made by repeating the above procedure with an additional very large amount of a compound such as fullers earth.
  • Example IV exemplifies a dust formulation.
  • a preferred formulation of the compounds comprises a wettable powder.
  • a wettable powder In preparing wettable powders, several formulation procedures are possible (see Example V for one type of procedure). It is one intention of this invention to provide compositions comprising the active ingredient defined herein in combination with a minor amount of surface active agent.
  • Such surface active agents can be chosen for example from those previously mentioned in connection with the aqueous dispersion. Still other surface active agents can be employed, the above merely showing a representative list of the more common material.
  • Such formulations can be readily admixed with a solid carrier. Formulations thus formed then comprise the active ingredient of this invention, an inert carrier, and a surface active agent.
  • inert carriers which can be employed in preparing wettable powders are soya bean flour, tobacco flour, walnut shell flour, gypsum, mica, talc, apatite, pumice and the like.
  • in preparing concentrated wettable powders it is preferred to employ between 0.01 and 5 percent of the surface active agent, based upon the amount of active ingredient, and up to 85 percent of the inert carrier based upon the total amount of the formulation.
  • Such concentrated formulations provide the advantage of permitting economical storage and transportation of the fungicide and permit further dilution by simple admixture with water at the time of application.
  • a colloidal formulation is prepared by passing a mixture of the active ingredient, a hydrocarbon solvent and a large amount of water through a colloid mill until homogenation of the oil and water is achieved.
  • Example VI gives an example of the prepa ration of a colloidal formulation.
  • the compounds also find effective use when formulated in aerosol formulations, i.e., when mixed with a liquid of low boiling point that changes to a gas when released from a confined space.
  • Example-s of diluent used in these formulations are fluorinated hydrocarbons such as tetrafluoromethane, and hexafiuoroethane.
  • Fluorinated hydrocarbons such as tetrafluoromethane, and hexafiuoroethane.
  • Mixed halogenated compounds containing fluorine and chlorine such as difluorodichloromethane and pentafiuorochloroethane and the like can also be used as the liquid having the necessary low boiling point.
  • Other materials such as carbon dioxide, sulfur dioxide, hydrogen sulfide, and ammonia can be used, and of these, carbon dioxide generally is preferred.
  • One method of preparing such aerosol formulations comprises introducing my new compounds into a pressure cylinder and later introducing the liquifying diluent under pressure followed by mixing the cylinder to obtain uniform solution. If desired, smaller containers can then be filled from the cylinder in which the formulation is prepared. In many cases it is desirable to add a seco'ndsolvent to the low boiling material of the type described above so as to more readily dissolve my compounds. Examples of such co-solvents are benzene, acetone, carbon tetrachloride and the like.
  • Example VII is an example of the preparation of an aerosol type formulation of my active ingredient.
  • My compounds are also effective when formulated in an ointment for topical application to the epidermis of animals and manQ
  • a typical ointment formulation is given in Example VIII below.
  • EXAMPLE I (WATER SUSPENSION) A formulation of compound I is prepared by adding, with vigorous agitation, parts of material to 1,000 parts of water containing 1 part of Tween-80. This concentrated dispersion is further diluted 1,000 times by the addition of Water to obtain a formulation of suitable 1 concentration for application. Thus, the resulting dispersion contains 10 parts per million of my fungicide in the water dispersion.
  • EXAMPLE II (ORGANIC SOLUTION) A solution consisting of 5 parts of compound II in 250 parts of cyclohexanoue is prepared by stirring the two constituents for a period of two minutes at a temperature of about 25 C. This concentrated solution suit able for storage or transportation is further diluted with 99,750 parts of kerosene to form a final dilution of 50 ppm. suitable for application.
  • EXAMPLE III (OIL I-N WATER EMULSION) An oil and water emulsion is prepared by dissolving 10 parts of compound III in 1,000 parts of kerosene. This solution is dispersed with vigorous agitation in 99,- 000 parts of water containing one par-t of Triton X-100 to provide a dispersion containing 100 ppm. of active ingredient.
  • EXAMPLE IV (DUST FORMULATION) A dust formulation of the fungicide is prepared by adding one part of compound IV to 100 parts of fullers earth in a ball mill. The mixture is milled for a period of one hour, screened to collect a fraction passing a 100 mesh sieve. This one percent formulation can be applied directly or further diluted. Further dilution is made by repeating the above procedure with an additional 9,900 parts of fullers earth.
  • EXAMPLE V WETTABLE POWDER
  • a mixture of 100 parts of compound V, 1,000 parts of Attaclay and 0.01 part of Nacconol is intimately mixed in an L-shaped blender.
  • the 10 percent wettable powder thus prepared produces a satisfactory water suspension when 1 1 parts are stirred into 10,000 parts of Water, producing a suspension containing 100 ppm. active ingredient.
  • EXAMPLE VI (COLLOIDAL FORMULATION) A colloidal formulation is prepared by passing a mixture of 10 parts of compound VI, 100 parts of kerosene, 1000 parts of water and 1 part of mannitan monooleate throughthe colloid mill until homogenation of the oil in Water is achieved.
  • EXAMPLE VIII 2000 parts of compound VIII is ground in a ball mill until it is no longer gritty and then passed through a fine mesh sieve. The powder is then transferred to a suitable mixing vessel and 10,000 parts of white petrolatum, U.S.P., is added. The mixture is mixed until all powder is suspended within the petrolaturn in the form of a fine paste. Then the remainder of 998,000 parts of White petrolatum is added and the mixture again thoroughly mixed until a homogeneous product is obtained.
  • white petrolatum U.S.P.
  • the fungicidal effectiveness of my compounds was demonstrated by one or more of the following tests.
  • test fungi I by the agar-plate technique against five fungi representing groups of economic importance.
  • the test fungi and their occurrences are as follows:
  • the method wa the agar-plate technique, USDA Circular No. 198, pages 12 and 14, 19311.
  • the medium employed was Sabouraud dextrose agar. This medium is used for carrying the stock cultures as well as for the test itself.
  • the agar is put into solution and then cooled to 4245 C. To this is added a saline spore suspension of the test organism.
  • the inoculated agar is then poured into sterile Petri dishes and all-owed to harden. A suitable amount of the compound tested was placed on a one square centimeter area in the center of the agar. If the compound was solid, the compound was sprinkled upon this area of the plate.
  • the compound When the compound was a liquid, a depression was cut out in the center of the agar by means of a cork borer having a diameter of 1.5 mm. Four drops of the liquid compound were placed in this depression. The agar plates were incubated for days at C. If the compound is inhibitory, a zone of clear agar will be noted around the area of inoculation. The size of this Zone is measured, and is an indication of the inhibitory value of the compound tested. The diffusibility of the compound will alfeet the area of inhibition. If the compound tested has no antifungicidal activity, there will be no area of inhibition, and insome cases, growth will appear under the compound tested.
  • the sample was tested for activity against the same five fungi utilized in the agar plate technique.
  • the fungi for all tests were grown in a Bacto Sabouraud liquid medium, pH of 5.7.
  • the sample was dissolved in a minimal quantity of ethanol and diluted with sterile water thereafter to give an original concentration of 512 p.p.m.
  • the test cultures were grown upon the Bacto Sabouraud dextrose agar for 10 days.
  • a heavy spore suspension was prepared in buffered distilled Water.
  • the inoculum for each tube was one drop of the heavy spore suspension.
  • the test cultures were incubated at C. for 10 days.
  • An effective concentration of 250 parts per million (p.p.m.) is generally accepted as the concentration at which a chemical can be considered for use as an agricultural fungicide.
  • test fungi used in this case were T richophyron interdigitale, Trichophyton rubrum, T richophyzon schoenleinii, Microsporum audouini, Epidermophyton floccosum, Microsporum gypseum. These fungi were grown in Difcos Sabourauds liquid medium, pH 4.7. Sample preparation consisted of dissolving al iquots of each compound in 10 mls. of ethanol and diluting to 512 p.p.m. concentrations with distilled water.
  • FOLIAR FUNGICIDE SCREENING Cereal l af rust wheat is grown'in soil in paper pots with 20-30 plants per pot. When the plants are 6-8 inches tall, they are sprayed with the test solution (300- p.p.m. and p.p.m. concentration) with three pots used for each treatment applied. After the spray treatments have dried thoroughly, the plants are sprayed with a suspension of spores of wheat leaf rust disease, Puccinia rubigovera, reared on live wheat leaf culture. After one week to ten days, disease symptoms are observed and percent control obtained by comparison of the sample with inoculated controls and manzate-treated positive controls.
  • Tomato late blight.-Susceptible species tomato plants are treated from seed and transplanted into soil in individual paper pots. When they are 6 to 8 inches high, they are sprayed with the test solutions (300 p.p.m. and 75 p.p.m. concentration) with three plants used for each treatment applied. After the spray treatments have dried thoroughly, the plants are sprayed with a suspension of spores of the tomato late blight fungus, Phytophthora infestans, which is reared on lima bean agar culture. After a few days to one week disease symptoms are observed and percent control obtained by comparison of the sample with inoculated controls and 'manzate-treated positive controls.
  • Powdery mildew of cucumb rs-Susceptible species cucumbers are grown in soil in paper pots with 2-3 plants per pot. When the first leaf has reached a size of about 3 inches in diameter, they are sprayed with the test solutions (300 p.p.m and 75 p.p.m. concentration) with 3 pots used for each treatment applied. After the spray treatments have dried thoroughly, the plants are dusted with spores of powdery mildew fungus, Erysiphe cz'choracearum, reared on live cucumber leaf culture. After one Week to ten days, disease symptoms are observed and percent control obtained by comparison of the sample with inolculated controls and Karathane-treated positive contro s.
  • Agar Plate Serial Dilution effective concentratron in p.pJn. 250 p.p.m. or less considered good activity
  • Zone of inhibition in millimeters p-CH CuH4-OCH3CI(CO)3 r( p-CHa-CsH4-CE3Cr(CO)3.
  • Method of combating fungi comprising treating the locus of the fungi with a fungitoxic amount of a compound having the formula Yb e Yb wherein M is chromium, X is a halogen; a is an integer having the value 0 to 1; Y is selected from the class consisting of NR R OR and Yf wherein M is chromium, X is halogen; ais an integer having the value 0 to 1; Y is selected from the class consisting of NR1R2, -OR1,
  • Method of combating fungi comprising treating the locus of the fungi with mesitylene chromium tricarbonyl.
  • a fungicidal composition comprising (1) as a principal active ingredient, mesitylene chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
  • Method of combating fungi comprising treating the locus of the fungi with aniline chromium tricarbonyl.
  • a fungicidal composition comprising (1) as a principal active ingredient, aniline chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
  • Method of combating fungi comprising treating the locus of the fungi with toluene chromium tricarbonyl.
  • a fungicidal composition comprising (1) as a principal active ingredient, toluene chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
  • Method of combating fungi comprising treating the locus of the fungi with o-Xylene chromium tricarbonyl.
  • a fungicidal composition comprising (1) as a principal active ingredient, o-xylene chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
  • Method of combating fungi comprising treating the locus of the fungi with chlorobenzene chromium tricarbonyl.
  • a fungicidal composition comprising (1) as a principal active ingredient, chlorobenzene chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
  • Method of combating fungi comprising treating the locus of the fungi with o-toluidine chromium tricarbonyl.
  • a fungicidal composition comprising (1) as a principal active ingredient, o-toluidine chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
  • Method of combating fungi comprising treating the locus of the fungi with p-Xylene chromium tricarbonyl.
  • a fungicidal composition comprising (1) as a principal active ingredient, p-xylene chromium tricarbonyl and (2) a surface, active agent as a dispersant therefor.
  • Method of combating fungi comprising treating the locus of the fungi with m-xylene chromium tricarbonyl.
  • a fungicidal composition comprising (1) as a principal active ingredient, m-Xylene chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
  • Method of combating fungi comprising treating the locus of the fungi with methylbenzoate chromium tricarbonyl.
  • a fungicidal composition comprising (1) as a principal active ingredient, methylbenzoate chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
  • Method of combating fungi comprising treating the locus of the fungi with benzene chromium tricarbonyl.
  • a fungicidal composition comprising (1) as a prin cipal active ingredient, benzene chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.

Description

United States Patent ()fiice 3,123,523 Patented Mar. 3, 1964 3,123,523 FUNGHJKDAL (IOMPOSHIONS William E. Burt, Reyal Oak, Mich, assignor to Ethyl Corporation, New York, N.Y., a corporation of Virginia No Drawin Filed Dec. 22, 1961, Ser. No. 161,367 22 Claims. (Cl. 167-30) This invention relates to fungicidal compositions, and more particularly, to fungicidally potent organochromium compounds and their use in combating fungi.
An object of this invention is to provide new fungicidal compositions. Still another object is to provide a new means for combating fungi. A further object is to provide new fungicidal compositions comprising conditioning agents and certain organochromium compounds as described herein.
The above and other objects are accomplished by the present invention which resides in providing fungicidal compositions comprising a conditioning agent and as a prinicpal active ingredient, a compound having the general formula:
Yb e
3 wherein M is a metal of group VIB of the periodic table, X is a halogen; a is an integer having the value of O to 1; Y is selected from the class comprising NR R -OR (IL, R1 CN, CH OH, fi NH-CCH3 t C0 R1 wherein R and R are alike or different and selected from the class consisting of hydrogen and alkyl groups having one to about 4 carbon atoms; b is an integer having the value 0 to l; R is selected from the class consisting of hydrogen and alkyl groups having one to about 4 carbon atoms, and c is an integer having the value 0 to 3, such that when c=3, a=0 and 12:0. Of these compounds we prefer the chromium derivatives, i.e., where M in the above formula is chromium. Compounds of this type can be prepared by the general method of Nicholls et al., Proc. Chem. Soc. (1958}, 152.
When the subscripts a, b, and c in the above formula are equal to zero, the compound is benzene chromium tricarbonyl. This compound is preferred since it is highly effective against foliar fungicides.
When the subscript a is equal to one and b and c are both equal to zero, the compounds are the halobenzene tricarbonyls of the metals of group VIB. Of these halogen derivatives, the chloro and bromo compounds are preferred because they are more readily available than the other compounds of this class. The most preferred compound is chlorobenzene chromium tricarbonyl,
commercially available.
When a and b are equal to zero and c has a value from one to 3, the compounds are hydrocarbon substituted benzene metal tricarbonyls. This class of compounds is represented by the chromium tricarbonyls of toluene,-
since the aromatic portion of the molecule is the most When a and c are equal to zero and b is equal to one, the compounds are the chromium tricarbonyls of aniline, N,N-dimethylaniline, acetanilide, acetophenone, benzyl alcohol, methylbenzoate, and the like. The preferred compounds of this class are acetophenone chromium tricarbonyl, methylbenzoate chromium tricarbonyl, aniline chromium tricarbonyl and N,N-dimethylaniline chromium tricarbonyl. Aniline chromium tricarbonyl is the most preferred compound because of its high foliar fungicidal activity.
When more than one of the subscripts in the above formula is equal to one, compoundssuch as the chromium tricarbonyls of o-toluidine, p-methylanisole, m-chloroaniline, and the like are described. The o-toluidine and p-methylanisole compounds are preferred because of their commercial availability.
A most preferred embodiment of this invention is the use of my fungicidal compounds to destroy and control fungi which grow in jet fuels. My fungicidal compounds are especially efficacious in this regard since they not only control the fungi, but beneficially alter the burning characteristics of the fuel.
Such compounds as described above are useful in combating fungi when they are applied to the locus of the fungi. Such treatment, therefore, constitutes one aspect of the invention. It has been found that the above materials are useful in controlling and eliminating fungi which infest vegetables, animals and man. A facet of this invention is a novel method of combating and controlling fungi. Accordingly, one embodiment of this invention is the method of combating fungi which comprises contacting the fungus with a fungitoxic amount of a compound having the formula given above. Another aspect of this invention is the provision of a method for controlling fungi which comprises treating matter susceptible to fungal infestation with the compound of the above formula.
For maximum effectivenes, the active ingredient of the present invention admixed in fungicidally effective amount with a conditioning agent of the type commonly referred to as a pest controlled adiuvant or modifier. Such adjuvants have been referred to by names such as conditioning agent, dispersing agent, surface active agent, and surface active dispersing agent. Their purpose is to extend the active ingredient to assure its efficacious penetration of, or application to, the locus being treated and to adapt the active ingredients for ready and etlicient application by using conventional equipment.
An advantage of using these conditioning agents is that the fungicidally active compounds may be too effective or too potent when used alone to be of practical utility. Another advantage derived from the use of these adjuvants is to permit field application by methods readily employed and still obtain effectively complete coverage of the material being protected.
Formulations of the fungicidally active ingredient with a suitable conditioning agent comprise both liquid and solid types as well as the aerosol type of formulation. The liquid type of formulation can have water, an organicsolvent, or an oil-water emulsion and the like as the conditioning agent.
It is also intended that the term conditioning agent include solid carriers such as talc, Attaclay, kieselguhr,
chalk, diatomaceous earth, and the like, and variousgredient, thus, enhancing its fungicidal action.
Such industrial materials act as'a diluent, dispersant, wetting agent, and extender for the active in- The formulations of this invention, therefore, comprise the above defined fungicidally active ingredient in a suitable material as a dispersant or conditioning agent. It is not intended that this invention be limited to any specific proportions of active ingredient and conditioning agent. The important feature of the invention is to provide a formulation of such concentration that is appropriate for the desired application. The conditioning agent will be present to provide the proper type of contact with the material being protected.
Nor is it intended that the invention be limited to the use of a fungicidally active ingredient in the presence of only a compound or product or material known as a conditioning agent. It has been found that other additives are useful in the preparation of the fungicidal preparations. Other materials found useful are classified as spreading agents and adhesives. Spreading agents tend to increase the area covered by a spray liquid. Many chemicals act as both wetting and spreading agents. Dried blood (blood albumin), sulfite lye, both in the liquid and dehydrated forms, and petroleum emulsions belong to this group. Adhesives increase the adherence of the active agent to the treated surface to augment resistance to wear and mechanical action. Bentonite and other clays, gelatin and glue, are examples of adhesives.
As mentioned previously, the fungicidal preparations are in the form of either liquid or dry or aerosol formulations. Liquid compositions, either solutions or dispersions, frequently also contain a surface active dispersing agent in amounts sufficient to render the composition readily useful in aqueous spray application. The surface active dispersing agents referred to herein are sometimes known as wetting, dispersing or penetrating agents. They are agents which cause the formulations to be easily dispersed in water. They can be of the anionic, cationic, or nonionic type and include salts of long chain fatty acids, sulfonated oils, both vegetable and animal, petroleum oils, sulfates of long chain alcohols, phosphates of long chain alcohols, various polyethylene oxides, condensation products of ethylene oxide with alcohol and phenols, quaternary ammonium salts, and the like. The surface active agent will usually be present to the extent of 0.1 to 5 percent of the formulation. Typical of the liquid formulations is the water solution or dispersion of the active ingredients. Example 1 below, is an example for the preparation of an aqueous suspension of a typical active ingredient described in this invention.
The active ingredients can also be dispersed or suspended in various organic solvents such as alcohols, ketones, hydrocarbons, and petroleum fractions such as kerosene, dimethylformamide, and the like. In these cases a surface active dispersing agent is usually present to provide ready dispersability with water.
The solubility of the active ingredients of this invention in organic solvents, furthermore, is such that they can be applied advantageously in the form of a solution in this type of solvent. In certain uses, this type of vehicle is preferred, for example, in treating cloth, leather, or other fibrous articles. In these applications, it is preferred to apply the pesticides dissolved in a volatile solvent. After application, the volatile solvent evaporates leaving the fungicide impregnated throughout the surface of the article and in the dispersed form which has been found to be most advantageous. Likewise, in applying the fungicides to smooth surfaces, as for example in treating wood, a solution may be the most practical vehicle for applying the protective film. Brushing, spraying, or dipping may be the application method of choice. The choice of an appropriate solvent is determined largely by the solubility of the active ingredients which it is desired to employ, by the volatility required in the solvent, by the spreading or flow characteristics thereof, and by the nature of the material being treated. Typi- 1 this solution with vigorous agitation in a large volume of water containing a minor amount of a surface active agent.
In addition to the adjuvants and other ingredients described above, it has been found that one can incorporate an adherant or sticking agent such as vegetable oils,
naturally occurring gums, and other adhesives in the active ingredient formulations. Likewise, humectants can be employed in the formulations. Furthermore, the formulations can be employed in admixture with other pesticidal materials or other biocides such as insecticides,
larvacides, bactericides, germicides, miticides or with other materials which it is desired to apply along With the fungicides. In like manner, two or more of the active ingredients may be formulated together in a single composition, thus achieving control of a broader spectrum of fungi.
Fungicides can be applied in dry media as well as in liquid suspensions or solutions. In fact, early practice in the art used dust formulations almost exclusively. It
1 was only the advent of the introduction of spray machinery that caused dust formulations to be considered with disfavor. However, it was soon realized that spraying was often not as convenient as dusting, particularly when large, comparatively inaccessible cultivated fields are to ;be treated or when the area of interest necessarily requires that it be treated with a dry agent. Dust formulations of my active compounds have a ready place in the art and indeed the use of these dry formulations should grow with time, since they are utilizable when treating large areas for fungicidal infestation by airplane dusting. Dusting is also extensively employed in treating man and animals for fungicidal infestations.
A measure of the utility of the dust formulation is the impressive amount of research which has been performed in this area. The particles shape, the size, density and hardness, and the nature of the dry diluent have been shown to be factors which are important as well as the absorption and absorption characteristics thereof. Therefore, another desired and efficacious formulation of the fungicidally active ingredient is a dust formulation which is prepared generally by milling the active ingredients in ball mill within the presence of a dry material, for example, fullers earth. After milling, the mixture is screened and the fraction passing through a Very fine sieve is collected. Thereafter, a further dilution is made by repeating the above procedure with an additional very large amount of a compound such as fullers earth. Example IV exemplifies a dust formulation. A preferred formulation of the compounds comprises a wettable powder. In preparing wettable powders, several formulation procedures are possible (see Example V for one type of procedure). It is one intention of this invention to provide compositions comprising the active ingredient defined herein in combination with a minor amount of surface active agent. Such surface active agents can be chosen for example from those previously mentioned in connection with the aqueous dispersion. Still other surface active agents can be employed, the above merely showing a representative list of the more common material. Such formulations can be readily admixed with a solid carrier. Formulations thus formed then comprise the active ingredient of this invention, an inert carrier, and a surface active agent. Among the inert carriers which can be employed in preparing wettable powders are soya bean flour, tobacco flour, walnut shell flour, gypsum, mica, talc, apatite, pumice and the like. In preparing concentrated wettable powders it is preferred to employ between 0.01 and 5 percent of the surface active agent, based upon the amount of active ingredient, and up to 85 percent of the inert carrier based upon the total amount of the formulation. Such concentrated formulations provide the advantage of permitting economical storage and transportation of the fungicide and permit further dilution by simple admixture with water at the time of application.
The compounds described above are also active in colloidal formulations. A colloidal formulation is prepared by passing a mixture of the active ingredient, a hydrocarbon solvent and a large amount of water through a colloid mill until homogenation of the oil and water is achieved. Example VI gives an example of the prepa ration of a colloidal formulation.
The compounds also find effective use when formulated in aerosol formulations, i.e., when mixed with a liquid of low boiling point that changes to a gas when released from a confined space. Example-s of diluent used in these formulations are fluorinated hydrocarbons such as tetrafluoromethane, and hexafiuoroethane. Mixed halogenated compounds containing fluorine and chlorine such as difluorodichloromethane and pentafiuorochloroethane and the like can also be used as the liquid having the necessary low boiling point. Other materials such as carbon dioxide, sulfur dioxide, hydrogen sulfide, and ammonia can be used, and of these, carbon dioxide generally is preferred. One method of preparing such aerosol formulations comprises introducing my new compounds into a pressure cylinder and later introducing the liquifying diluent under pressure followed by mixing the cylinder to obtain uniform solution. If desired, smaller containers can then be filled from the cylinder in which the formulation is prepared. In many cases it is desirable to add a seco'ndsolvent to the low boiling material of the type described above so as to more readily dissolve my compounds. Examples of such co-solvents are benzene, acetone, carbon tetrachloride and the like. Example VII is an example of the preparation of an aerosol type formulation of my active ingredient.
My compounds are also effective when formulated in an ointment for topical application to the epidermis of animals and manQ A typical ointment formulation is given in Example VIII below.
It is not intended that the finished formulations of my fungicidally active compounds be limited to any particular concentration range. The concentration range desired in my invention is that range necessary to accomplish the desired end. A preferred range for agricultural application is between 0.1 and 2,000 parts per million. Formulations containing as high as 30 percent active ingredients are used in treating animals and man. Typical formulations of this invention are described in the following examples in which all parts are by weight. I
The compounds in the following examples will have the designations given below.
EXAMPLE I (WATER SUSPENSION) A formulation of compound I is prepared by adding, with vigorous agitation, parts of material to 1,000 parts of water containing 1 part of Tween-80. This concentrated dispersion is further diluted 1,000 times by the addition of Water to obtain a formulation of suitable 1 concentration for application. Thus, the resulting dispersion contains 10 parts per million of my fungicide in the water dispersion.
6 EXAMPLE II (ORGANIC SOLUTION) A solution consisting of 5 parts of compound II in 250 parts of cyclohexanoue is prepared by stirring the two constituents for a period of two minutes at a temperature of about 25 C. This concentrated solution suit able for storage or transportation is further diluted with 99,750 parts of kerosene to form a final dilution of 50 ppm. suitable for application.
EXAMPLE III (OIL I-N WATER EMULSION) An oil and water emulsion is prepared by dissolving 10 parts of compound III in 1,000 parts of kerosene. This solution is dispersed with vigorous agitation in 99,- 000 parts of water containing one par-t of Triton X-100 to provide a dispersion containing 100 ppm. of active ingredient.
EXAMPLE IV (DUST FORMULATION) A dust formulation of the fungicide is prepared by adding one part of compound IV to 100 parts of fullers earth in a ball mill. The mixture is milled for a period of one hour, screened to collect a fraction passing a 100 mesh sieve. This one percent formulation can be applied directly or further diluted. Further dilution is made by repeating the above procedure with an additional 9,900 parts of fullers earth.
EXAMPLE V (WETTABLE POWDER) A mixture of 100 parts of compound V, 1,000 parts of Attaclay and 0.01 part of Nacconol is intimately mixed in an L-shaped blender. The 10 percent wettable powder thus prepared produces a satisfactory water suspension when 1 1 parts are stirred into 10,000 parts of Water, producing a suspension containing 100 ppm. active ingredient.
EXAMPLE VI (COLLOIDAL FORMULATION) A colloidal formulation is prepared by passing a mixture of 10 parts of compound VI, 100 parts of kerosene, 1000 parts of water and 1 part of mannitan monooleate throughthe colloid mill until homogenation of the oil in Water is achieved.
EXAMPLE VIII (OINTMENT) 2000 parts of compound VIII is ground in a ball mill until it is no longer gritty and then passed through a fine mesh sieve. The powder is then transferred to a suitable mixing vessel and 10,000 parts of white petrolatum, U.S.P., is added. The mixture is mixed until all powder is suspended within the petrolaturn in the form of a fine paste. Then the remainder of 998,000 parts of White petrolatum is added and the mixture again thoroughly mixed until a homogeneous product is obtained.
The fungicidal effectiveness of my compounds was demonstrated by one or more of the following tests.
I by the agar-plate technique against five fungi representing groups of economic importance. The test fungi and their occurrences are as follows:
Aspergillus niger Mildew of fabrics and leather, in o l d in g of fruit, bakery goods and stored grain.
Penicillium expansum Molding of stored grain,
hay and fruit.
Alternaria solani Early blight of potato and tomato.
Glomerella cingulata Bitter rot of apples.
T richophyton interdigitale Pathogenic for man and animals.
Specifically, the method wa the agar-plate technique, USDA Circular No. 198, pages 12 and 14, 19311. The medium employed was Sabouraud dextrose agar. This medium is used for carrying the stock cultures as well as for the test itself. The agar is put into solution and then cooled to 4245 C. To this is added a saline spore suspension of the test organism. The inoculated agar is then poured into sterile Petri dishes and all-owed to harden. A suitable amount of the compound tested was placed on a one square centimeter area in the center of the agar. If the compound was solid, the compound was sprinkled upon this area of the plate. When the compound was a liquid, a depression was cut out in the center of the agar by means of a cork borer having a diameter of 1.5 mm. Four drops of the liquid compound were placed in this depression. The agar plates were incubated for days at C. If the compound is inhibitory, a zone of clear agar will be noted around the area of inoculation. The size of this Zone is measured, and is an indication of the inhibitory value of the compound tested. The diffusibility of the compound will alfeet the area of inhibition. If the compound tested has no antifungicidal activity, there will be no area of inhibition, and insome cases, growth will appear under the compound tested.
SERIAL DILUTION TESTS The sample was tested for activity against the same five fungi utilized in the agar plate technique. The fungi for all tests were grown in a Bacto Sabouraud liquid medium, pH of 5.7. The sample was dissolved in a minimal quantity of ethanol and diluted with sterile water thereafter to give an original concentration of 512 p.p.m. The test cultures were grown upon the Bacto Sabouraud dextrose agar for 10 days. A heavy spore suspension was prepared in buffered distilled Water. The inoculum for each tube was one drop of the heavy spore suspension. The test cultures were incubated at C. for 10 days. An effective concentration of 250 parts per million (p.p.m.) is generally accepted as the concentration at which a chemical can be considered for use as an agricultural fungicide.
Further screening of representative types of these compounds was carried out by the serial dilution test according to Burlingame and Reddish, J. Lab. Clin. Med. 24, page 765, 1939. The test fungi used in this case were T richophyron interdigitale, Trichophyton rubrum, T richophyzon schoenleinii, Microsporum audouini, Epidermophyton floccosum, Microsporum gypseum. These fungi were grown in Difcos Sabourauds liquid medium, pH 4.7. Sample preparation consisted of dissolving al iquots of each compound in 10 mls. of ethanol and diluting to 512 p.p.m. concentrations with distilled water. These stock solutions were serially diluted through 10 tubes of culture medium. The inoculum consisted of 1 dropper tube of a heavy spore suspension of the test fungi. The tests Were incubated at 35 C. for one week. Particular effectiveness of the samples in this series of tests indicates possible therapeutic use in the treatment of athletes foot, ringworm of the nails and scalp and external fungal infection of animals. Some presently commercial fungicides, utilized in this field of therapy, contain an active ingredient in concentrations as high as 30 percent by weight (300,000 parts per 1,000,000).
FOLIAR FUNGICIDE SCREENING Cereal l af rust wheat is grown'in soil in paper pots with 20-30 plants per pot. When the plants are 6-8 inches tall, they are sprayed with the test solution (300- p.p.m. and p.p.m. concentration) with three pots used for each treatment applied. After the spray treatments have dried thoroughly, the plants are sprayed with a suspension of spores of wheat leaf rust disease, Puccinia rubigovera, reared on live wheat leaf culture. After one week to ten days, disease symptoms are observed and percent control obtained by comparison of the sample with inoculated controls and manzate-treated positive controls.
Tomato late blight.-Susceptible species tomato plants are treated from seed and transplanted into soil in individual paper pots. When they are 6 to 8 inches high, they are sprayed with the test solutions (300 p.p.m. and 75 p.p.m. concentration) with three plants used for each treatment applied. After the spray treatments have dried thoroughly, the plants are sprayed with a suspension of spores of the tomato late blight fungus, Phytophthora infestans, which is reared on lima bean agar culture. After a few days to one week disease symptoms are observed and percent control obtained by comparison of the sample with inoculated controls and 'manzate-treated positive controls.
Powdery mildew of cucumb rs-Susceptible species cucumbers are grown in soil in paper pots with 2-3 plants per pot. When the first leaf has reached a size of about 3 inches in diameter, they are sprayed with the test solutions (300 p.p.m and 75 p.p.m. concentration) with 3 pots used for each treatment applied. After the spray treatments have dried thoroughly, the plants are dusted with spores of powdery mildew fungus, Erysiphe cz'choracearum, reared on live cucumber leaf culture. After one Week to ten days, disease symptoms are observed and percent control obtained by comparison of the sample with inolculated controls and Karathane-treated positive contro s.
Agar Plate Serial Dilution effective concentratron in p.pJn. (250 p.p.m. or less considered good activity) Zone of inhibition in millimeters p-CH CuH4-OCH3CI(CO)3 r( p-CHa-CsH4-CE3Cr(CO)3.
A.n.=Aspergillus niger: P.e.=
T4. Tricophyton interdigitale.
Penicillium expansion: A.s.=AZtemaria solani: G.c.=GlomereZla cingulata:
tzrdigital.
FOLIAGE FUNGIOIDE TEST [Percent kills/concentration parts/million] lchophycon 1'11- 1 'ILB =tomato late blight; PMC =powdery mildew cucumber; LRW=leaf rust wheat.
I claim:
1. Method of combating fungi comprising treating the locus of the fungi with a fungitoxic amount of a compound having the formula Yb e Yb wherein M is chromium, X is a halogen; a is an integer having the value 0 to 1; Y is selected from the class consisting of NR R OR and Yf wherein M is chromium, X is halogen; ais an integer having the value 0 to 1; Y is selected from the class consisting of NR1R2, -OR1,
and
wherein R and R are independently selected from the class consisting of hydrogen and alkyl groups having one to 4 carbon atoms; b is an integer having the value 0 to l; R is selected from the class consisting of hydrogen and alkyl groups having one to 4 carbon atoms, and c is an integer having the value 0 to 3, such that when c=3, a=0 and 11:0 and (2) a surface active agent as a dispersant therefor.
3. Method of combating fungi comprising treating the locus of the fungi with mesitylene chromium tricarbonyl.
4. A fungicidal composition comprising (1) as a principal active ingredient, mesitylene chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
5. Method of combating fungi comprising treating the locus of the fungi with aniline chromium tricarbonyl.
6. A fungicidal composition comprising (1) as a principal active ingredient, aniline chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
7. Method of combating fungi comprising treating the locus of the fungi with toluene chromium tricarbonyl.
8. A fungicidal composition comprising (1) as a principal active ingredient, toluene chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
9. Method of combating fungi comprising treating the locus of the fungi with o-Xylene chromium tricarbonyl.
10. A fungicidal composition comprising (1) as a principal active ingredient, o-xylene chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
11. Method of combating fungi comprising treating the locus of the fungi with chlorobenzene chromium tricarbonyl.
12. A fungicidal composition comprising (1) as a principal active ingredient, chlorobenzene chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
13. Method of combating fungi comprising treating the locus of the fungi with o-toluidine chromium tricarbonyl.
14. A fungicidal composition comprising (1) as a principal active ingredient, o-toluidine chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
15. Method of combating fungi comprising treating the locus of the fungi with p-Xylene chromium tricarbonyl.
16. A fungicidal composition comprising (1) as a principal active ingredient, p-xylene chromium tricarbonyl and (2) a surface, active agent as a dispersant therefor.
17. Method of combating fungi comprising treating the locus of the fungi with m-xylene chromium tricarbonyl.
18. A fungicidal composition comprising (1) as a principal active ingredient, m-Xylene chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
19. Method of combating fungi comprising treating the locus of the fungi with methylbenzoate chromium tricarbonyl.
20. A fungicidal composition comprising (1) as a principal active ingredient, methylbenzoate chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
21. Method of combating fungi comprising treating the locus of the fungi with benzene chromium tricarbonyl.
22. A fungicidal composition comprising (1) as a prin cipal active ingredient, benzene chromium tricarbonyl and (2) a surface active agent as a dispersant therefor.
References Cited in the file of this patent UNITED STATES PATENTS Shapiro et al Aug. 4, 1959 12 Kozikowski Dec. 8, 1959 De Witt et a1 Dec. 13, 1960 Brown et a] Dec. 13, 1960 Gash Mar. 21, 1961 Shapiro et a1 Mar. 21, 1961 De Witt et a1 Mar. 21, 1961 Weinmayer June 13, 1961 Graham June 13, 1961 Closson et a1. Nov. 7, 1961 Sandel Nov. 21, 1961 Thomas Apr. 17, 1962 Haslam May 1, 1962 Haven May 15, 1962 OTHER REFERENCES Encyclopedia of Chemical Technology, Entries: Carbonyl Compounds, Carbonyl, volume 3, pages 201205, published 1949 by Interscience Encyclopedia, Inc., New York, New York.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,123,523 March 3, 1964 William E. Burt It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Columns 7 and 8, line 1 of footnote 1 of the table, for "expansion", in italics, read expansum in italics; columns 9 and 10, first table, first column, line 11 thereof, for "l, 3,5-(CH -C I-I Cr(CO) read l,3,5(CH C H Cr(CO)3 column 9, lines 30 to 35, and lines 55 to 60, the formula, each occurrence, should appear as shown below instead of as in the patent:
M(CO) same column 9, line 52, for "b=" read b O Signed and sealed this llth day of August 1964.
(SEAL) Attest:
ERNEST W. SWIDER EDWARD J, BRENNER Attesting Officer Commissioner of Patents

Claims (1)

  1. 2. A FUNGICIDAL COMPOSITION COMPRISING (1) AS A PRINCIPAL ACTIVE INGREDIENT, A FUNGITOXIC AMOUNT OF A COMPOUND HAVING THE FORMULA
US3123523D Certificate of correction Expired - Lifetime US3123523A (en)

Publications (1)

Publication Number Publication Date
US3123523A true US3123523A (en) 1964-03-03

Family

ID=3453078

Family Applications (1)

Application Number Title Priority Date Filing Date
US3123523D Expired - Lifetime US3123523A (en) Certificate of correction

Country Status (1)

Country Link
US (1) US3123523A (en)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2178099A (en) * 1934-09-29 1939-10-31 Schering Ag Organic mercury compound and a method of producing the same
US2208253A (en) * 1938-10-13 1940-07-16 Du Pont Insecticidal and fungicidal composition
US2278965A (en) * 1939-02-11 1942-04-07 Shell Dev Metal derivatives of amino methylene aldehydes
US2818417A (en) * 1955-07-11 1957-12-31 Ethyl Corp Cyclomatic compounds
US2818416A (en) * 1952-12-10 1957-12-31 Ethyl Corp Cyclomatic compounds
US2839552A (en) * 1955-08-08 1958-06-17 Ethyl Corp Cyclomatic manganese compounds
US2864843A (en) * 1953-05-06 1958-12-16 Ethyl Corp Cyclopentadienyl moiety-containing metal monohalides
US2898354A (en) * 1955-07-11 1959-08-04 Ethyl Corp Process for the preparation of cyclomatic manganese tricarbonyls
US2916503A (en) * 1956-10-31 1959-12-08 Ethyl Corp Friedel-crafts reaction with metal cyclopentadienyl compounds
US2964548A (en) * 1959-08-05 1960-12-13 Ethyl Corp Process for the preparation of cyclomatic manganese compounds
US2964547A (en) * 1959-03-23 1960-12-13 Ethyl Corp Process for the preparation of manganese cyclopentadienyl tricarbonyl compounds
US2976303A (en) * 1955-08-08 1961-03-21 Ethyl Corp Process for the preparation of bis (cyclopentadienyl) manganese compounds
US2976285A (en) * 1956-05-09 1961-03-21 Monsanto Chemicals Metal chelates and process of preparing same
US2976304A (en) * 1958-01-27 1961-03-21 Ethyl Corp Process for the preparation of cyclopentadienyl manganese compounds
US2988564A (en) * 1954-03-31 1961-06-13 Du Pont Substituted dicyclopentadienyliron compounds containing at least one cyano, formyl oxime or formyl oxime lower alkanoate group, and their preparation
US2988562A (en) * 1953-04-29 1961-06-13 Du Pont Process for preparing a monoacyl dicyclopentadienyl iron
US3007953A (en) * 1959-03-26 1961-11-07 Ethyl Corp Aryl manganese carbonyl compounds and process
US3009766A (en) * 1958-08-11 1961-11-21 Ethyl Corp Dihalodimanganese octacarbonyls and process for producing the same
US3030399A (en) * 1953-07-01 1962-04-17 Du Pont Cyclomatic chromium (iii) chelate halogenides
US3032570A (en) * 1959-02-13 1962-05-01 Du Pont Organic titanium compounds
US3035074A (en) * 1962-05-15 Amevocyclopentadienyl

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3035074A (en) * 1962-05-15 Amevocyclopentadienyl
US2178099A (en) * 1934-09-29 1939-10-31 Schering Ag Organic mercury compound and a method of producing the same
US2208253A (en) * 1938-10-13 1940-07-16 Du Pont Insecticidal and fungicidal composition
US2278965A (en) * 1939-02-11 1942-04-07 Shell Dev Metal derivatives of amino methylene aldehydes
US2818416A (en) * 1952-12-10 1957-12-31 Ethyl Corp Cyclomatic compounds
US2988562A (en) * 1953-04-29 1961-06-13 Du Pont Process for preparing a monoacyl dicyclopentadienyl iron
US2864843A (en) * 1953-05-06 1958-12-16 Ethyl Corp Cyclopentadienyl moiety-containing metal monohalides
US3030399A (en) * 1953-07-01 1962-04-17 Du Pont Cyclomatic chromium (iii) chelate halogenides
US2988564A (en) * 1954-03-31 1961-06-13 Du Pont Substituted dicyclopentadienyliron compounds containing at least one cyano, formyl oxime or formyl oxime lower alkanoate group, and their preparation
US2818417A (en) * 1955-07-11 1957-12-31 Ethyl Corp Cyclomatic compounds
US2898354A (en) * 1955-07-11 1959-08-04 Ethyl Corp Process for the preparation of cyclomatic manganese tricarbonyls
US2839552A (en) * 1955-08-08 1958-06-17 Ethyl Corp Cyclomatic manganese compounds
US2976303A (en) * 1955-08-08 1961-03-21 Ethyl Corp Process for the preparation of bis (cyclopentadienyl) manganese compounds
US2976285A (en) * 1956-05-09 1961-03-21 Monsanto Chemicals Metal chelates and process of preparing same
US2916503A (en) * 1956-10-31 1959-12-08 Ethyl Corp Friedel-crafts reaction with metal cyclopentadienyl compounds
US2976304A (en) * 1958-01-27 1961-03-21 Ethyl Corp Process for the preparation of cyclopentadienyl manganese compounds
US3009766A (en) * 1958-08-11 1961-11-21 Ethyl Corp Dihalodimanganese octacarbonyls and process for producing the same
US3032570A (en) * 1959-02-13 1962-05-01 Du Pont Organic titanium compounds
US2964547A (en) * 1959-03-23 1960-12-13 Ethyl Corp Process for the preparation of manganese cyclopentadienyl tricarbonyl compounds
US3007953A (en) * 1959-03-26 1961-11-07 Ethyl Corp Aryl manganese carbonyl compounds and process
US2964548A (en) * 1959-08-05 1960-12-13 Ethyl Corp Process for the preparation of cyclomatic manganese compounds

Similar Documents

Publication Publication Date Title
DE1443731B1 (en) Halogen-substituted benzodinitriles
US3119736A (en) Halo-nitroaniline fungicides
US2548509A (en) Fungicidal compositions containing hexachlorocyclopentadiene
US3224935A (en) Fungicidal compositions
US3123523A (en) Certificate of correction
US2536983A (en) Biocidal composition
US2799613A (en) Fungicides and bactericides and process of applying
US3224934A (en) Fungicidal compositions
CS249138B2 (en) Fungicide
US3123524A (en) Certificate of correction
US3224931A (en) Fungicidal compositions
US2651590A (en) Fumigant composition and process
US3224930A (en) Fungicidal compositions
US2658850A (en) 4-octyl-and nonyl-pyridines for controlling fungous attacks in organic materials
JP3714692B2 (en) Disinfectant composition
US3224933A (en) Fungicidal compositions
US2841522A (en) Fungicidal chloronitrobenzoic acid ester composition and method of using same
US2499396A (en) Parasiticidal synergistic composition of benzene hexachloride and 2.4-dinitro-phenols
US3803159A (en) Fluorine containing cyanopyridines
US2839444A (en) Fungicidal composition comprising 2, 4, dinitrofluorobenzene and methods of using same
US3751466A (en) N-benzylidene alkylamines
US2773331A (en) Herbicidal composition and method
US2922742A (en) Method and composition for the control of fungus organisms
US3798254A (en) Substituted s-dichloromethyl organothiosulfonates and their manufacture
US2945752A (en) Control of wild oats