US3148843A - Breaker bar for web rewinding machine - Google Patents

Breaker bar for web rewinding machine Download PDF

Info

Publication number
US3148843A
US3148843A US845415A US84541559A US3148843A US 3148843 A US3148843 A US 3148843A US 845415 A US845415 A US 845415A US 84541559 A US84541559 A US 84541559A US 3148843 A US3148843 A US 3148843A
Authority
US
United States
Prior art keywords
web
roll
breaker bar
breaker
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US845415A
Inventor
Thomas M Turner
William H Jaques
John J Bradley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FMC Corp
Original Assignee
FMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FMC Corp filed Critical FMC Corp
Priority to US845415A priority Critical patent/US3148843A/en
Application granted granted Critical
Publication of US3148843A publication Critical patent/US3148843A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H19/00Changing the web roll
    • B65H19/22Changing the web roll in winding mechanisms or in connection with winding operations
    • B65H19/26Cutting-off the web running to the wound web roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/414Winding
    • B65H2301/4148Winding slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/417Handling or changing web rolls
    • B65H2301/4187Relative movement of core or web roll in respect of mandrel
    • B65H2301/4189Cutting
    • B65H2301/41894Cutting knife moving on circular or acuate path, e.g. pivoting around winding roller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2408/00Specific machines
    • B65H2408/20Specific machines for handling web(s)
    • B65H2408/23Winding machines
    • B65H2408/231Turret winders
    • B65H2408/2312Turret winders with bedroll, i.e. very big roll used as winding roller

Definitions

  • a large, mill size parent roll of sheet. material is placed on a rewinding machine.
  • the web is unwound from the parent roll and as it passes through the machine it is perforated transversely at regular intervals to divide it into individual sheets, slit longitudinally into marketable roll size widths, and then rewound into rolls of marketable diameter.
  • a roll being wound reaches marketable diameter the web must be broken or severed transversely and a new roll started.
  • Another object of the invention is to provide a web breaking mechanism which produces a sharp straight break across the full width of the web.
  • Another object of the invention is to provide a web breaking mechanism capable of producing a straight clean break across the web while the web is moving at high velocity.
  • FIG. 1 is a section through a rewinding machine incorporating the breaker arm assembly of the present invention.
  • FIG. 2 is a fragmentary section on the same plane as FIG. 1 and illustrates the breaker arm assembly in an alternative position.
  • FIG. 3 is a fragmentary section taken generally on line 33 of FIG. 2 and illustrates the mounting structure of the breaker arm.
  • FIGS. 4-7 are fragmentary sections similar to FIG. 2 and illustrate the breaker arm assembly in various phases of its cycle of operation.
  • cores 12 mounted on suitable rollers or mandrels 14 are introduced to the machine at station A.
  • the mandrels 14 are gripped between suitable spindles 16 provided at spaced points along two parallel endless chains located adjacent the opposite sides of the machine, one of said chains being shown at 18.
  • the cores are carried by the endless chains past a core cutting station B, at which station the cores 12 are cut into individual roll size lengths by cutters 20.
  • the cores 12 next pass an adhesive applying station C where adhesive is applied to the cores 12 by a roller or rollers 22.
  • the cores then progress to the winding station D. After the rolls are wound onto the cores 12 in the manner described hereinbelow, the finished rolls 24 are discharged from the machine at E.
  • the paper web W enters from a mill or parent roll (not shown) through a perforating mechanism P which perforates the paper web W along evenly spaced transverse lines.
  • the web W then passes through a longitudinal splitting mechanism G which slits the web W longitudinally into strips of marketable width.
  • a roll 24a being wound on a core 12a at the winding station D reaches marketable diameter the breaker arm assembly H of the present invention is actuated to break the web W in the manner illustrated in FIG. 2, and a new roll is started on the next succeeding core 12b in a manner described hereinbelow.
  • the driving mechanism for rotating the rolls 24 as they are being wound comprises a plurality of endless belts 30 (FIGS. 2 and 4) each of which frictionally engages the periphery of one of the rolls 2411 being wound and rotates it at the same peripheral velocity as the linear velocity of the web W.
  • the belts 30 are trained around suitable drums 32 and 34.
  • the shaft 36 of the upper drum 32 is rotatably mounted in suitable bearings (not shown) carried by horizontal slide blocks one of which is shown at 38.
  • Each slide block 38 is mounted in a suitable guide groove 4% on the side frame of the machine.
  • the shaft 42 of the lower drum 34- is mounted in suitable bearings (not shown) carried by swinging brackets one of which is shown at 44.
  • the swinging brackets are mounted for pivotal movement about the axis of the shaft 36 of the upper drum 32 so that the belts 30 can swing outwardly as the diameter of the rolls 24a being wound increases.
  • the chains 18 travel through chain guides 50 which hold the chains so as to retain the rolls 24 in contact with the drive belts 30 while they are being wound.
  • An arm 52 is fixed to the slide block 38 and rotatably carries on its outer end a cam follower roller 54 which rides on the periphery of a cam 56.
  • the cam 56 when actuated moves the upper end of the winding drive assembly to the left as viewed in FIG. 2 to push the empty core 12 entering the winding station into contact with the web W as the latter travels over the roller 58 of the slitting assembly G to properly start the operation of winding the roll.
  • the breaker arm assembly comprises a shaft 64 rotatably mounted by suitable bearings one of which is shown at 62 (FIG. 3) on two stub shafts 64 and 66 fixed to the opposite side frames of the machine.
  • Two arms 68 and 70 (FIG. 3) are fixed to the shaft 60 and project upwardly therefrom.
  • a breaker bar 72 extends between and is fixed to the outer ends of the arms 68 and 70.
  • the breaker bar 72 is provided with a flange portion 74 which is turned inwardly toward the path of travel of the web W and is provided with a rounded nose portion 76.
  • An actuating arm '78 is fixed to the shaft 60 and rotatably carries a cam follower roller it which rides on the periphery of an actuating cam 82.
  • An arm 84- is fixed to the shaft 60 and a spring 86 fixed between the arm 84 and a pin 88 on a side frame of the machine maintains the roller 3i? in contact with the cam 82.
  • a brush 90 extends transversely of the machine immediately below the breaker bar 72 and is in contact with each finished roll 24 as the breaker arm is actuated and for a short period of time thereafter.
  • the brush 90 is fixed to an angle bar 92 which in turn is fixed at its opposite ends to the upper ends of two bracket arms 94 and 96.
  • the bracket arms 94 and 96 are fixed at their lower ends to a transverse frame member 98.
  • the cores 12, having previously been mounted on mandrels 14, are introduced into the machine at station A and are successively picked up and clamped between the spindles 16 on the endless chains 18.
  • the cores 12 pass through the cutting station E where they are severed into individual core sections each the width of the final marketable size roll and through the station C where an adhesive is applied to the cores 12.
  • the cores 12 then approach the winding station D.
  • the web As the web approaches the winding station D, it first passes through the transverse perforating mechanism F 2.9 whence it passes through the longitudinal slitting mechanism G which divides it into a plurality of strips each of which corresponds in width to one of the core sections. After passing over the roller 58 of the slitting mechanism G, the several strips pass to the rolis 24a being rotated by the action of the roll driving belts 31). As the rolls 24!: increase in size they are slowly advanced by the chains 18 until they reach marketable diameter at about the position illustrated in FIG. 4.
  • the cam 82 has started to move the breaker bar '72 to the right as viewed in that figure, i.e., inward toward the web W far enough for the rounded nose '76 to just contact the web W.
  • Continued inward movement of the breaker bar 72 causes a deflection of the portion of the web W between the roller 58 and the rolls 24a in the manner illustrated in FIG. 5. This deflection increases the length of the web W between the roller 58 and the rolls 24a.
  • both the roller 58 and the rolls 24a are traveling at the same peripheral velocity, and since both have considerable inertia, the portion of th web between the roller 58 and the rolls 24a is stretched slightly, thus generating a tensile force therein. As the deflection of Web W is increased, so is the tensile force increased. Since the rounded nose portion 76 of the breaker bar 72 additionally applies a frictional drag to the web W, the tensile force in the web W below the point of contact of the nose portion 76 of the breaker bar '72 will be greater than the tensile force above said point of contact.
  • the breaker bar 72 continues its advance until the tensile force in the portion of the web W between the nose 76 of the breaker bar 72 and the rolls 24a is sufiicient to cause the web W to sever along one of the previously formed transverse lines of perforations as illustrated in FIG. 6.
  • the various elements are so positioned that only one such line of perforations is located at any time in the zone of high tensile stress, namely, between the nose portion 76 of the breaker bar '72 and the periphery of the roll 24a, whereby, the web W will be severed cleanly in the one straight line of perforations, completely across the full width of the web.
  • a machine for rewinding web having spaced apart lines of web-weakening perforations, said rewinding machine having means for moving a series of adhesive-covered cores successively past a web guide roller, 2.
  • web severing and roll starting mechanism comprising a breaker bar mounted for movement in a path intersecting the path normally followed by the web being pulled from said guide roller to the roll being wound, means on the breaker bar for making frictional sliding engagement with the web, and means operable to project the bar to and through said path of movement of the web in a region spaced from the roll being wound a distance less than the spacing between said lines of perforations to impose additional tension upon the web between the breaker bar and the roll being wound while the web is being dragged over the breaker bar in sliding frictional engagement therewith and thereby pull the web apart at a transverse line of perforations in the web between the breaker bar and the roll being wound.

Description

p 1964 T/M. TURNER ETAL BREAKER BAR FOR WEB REWINDING 'IMACHINE 4 Sheets-Sheet 1 Filed Oct. 9, 1959 INVENTORS THOMAS M. TURNER WILLIAM H. JAQUES JOHN J. BRADLEY BY M H m-HFMHI ATTO RNEY 1'. M. TURNER ETAL BREAKER BAR FOR WEB REWINDING MACHINE Filed Oct. 9, 1959 4 Sheets-Sheet 2 ATTO RN EY Sept. 15, 1964 T. M. TURNER ETAL BREAKER BAR FOR WEB REWINDING MACHINE Filed on. 9, 1959 4 Sheets-Sheet 3 i I F] 1: I m 8% H P 1; o 6) (X) l f moui ir'lfiia WlLLIAM H. JAQUES JOHN J. BRADLEY BY Qpm /W ATTORNEY p 15, 1954 1'. M. TURNER ETAL 3,148,843
BREAKER BAR FOR was REWINDING MACHINE Filed Oct. 9, 1959 4 Sheets-Sheet.4
mvlu'rons THOMAS M. TURNER WILLIAM H. UES
JOHN J. BR EY A'I'TO RN EY United States Patent 3,148,843 BREAKER BAR FOR WEB REWINDIN MACE Thomas M. Turner and William H. Jaques, Cincinnati, and John J. Bradley, Terrace Park, Ohio, assignors, by mesne assignments, to FMC Corporation, San Jose, Calif., a corporation of Delaware Filed Oct. 9, 1959, Ser. No. 845,415 '1 Claim. (Cl. 24256) This invention pertains to machines for winding toilet tissue, paper toweling, or like materials into marketable size rolls. More particularly, the invention is directed to a novel web breaking mechanism for use in such a machine.
In the preparation of toilet tissue, paper toweling and like materials for market, a large, mill size parent roll of sheet. material is placed on a rewinding machine. The web is unwound from the parent roll and as it passes through the machine it is perforated transversely at regular intervals to divide it into individual sheets, slit longitudinally into marketable roll size widths, and then rewound into rolls of marketable diameter. When a roll being wound reaches marketable diameter the web must be broken or severed transversely and a new roll started.
It is an object of this invention to provide a novel mechanism for breaking the web when the roll being wound reaches marketable diameter.
Another object of the invention is to provide a web breaking mechanism which produces a sharp straight break across the full width of the web.
Another object of the invention is to provide a web breaking mechanism capable of producing a straight clean break across the web while the web is moving at high velocity.
These and other objects and advantages of the instant invention will become apparent from the following detailed description and the accompanying drawings, in which:
FIG. 1 is a section through a rewinding machine incorporating the breaker arm assembly of the present invention.
FIG. 2 is a fragmentary section on the same plane as FIG. 1 and illustrates the breaker arm assembly in an alternative position.
FIG. 3 is a fragmentary section taken generally on line 33 of FIG. 2 and illustrates the mounting structure of the breaker arm.
FIGS. 4-7 are fragmentary sections similar to FIG. 2 and illustrate the breaker arm assembly in various phases of its cycle of operation.
In the rewinding machine 16 illustrated in FIG. 1, cores 12 mounted on suitable rollers or mandrels 14 are introduced to the machine at station A. The mandrels 14 are gripped between suitable spindles 16 provided at spaced points along two parallel endless chains located adjacent the opposite sides of the machine, one of said chains being shown at 18. The cores are carried by the endless chains past a core cutting station B, at which station the cores 12 are cut into individual roll size lengths by cutters 20. The cores 12 next pass an adhesive applying station C where adhesive is applied to the cores 12 by a roller or rollers 22. The cores then progress to the winding station D. After the rolls are wound onto the cores 12 in the manner described hereinbelow, the finished rolls 24 are discharged from the machine at E.
The paper web W enters from a mill or parent roll (not shown) through a perforating mechanism P which perforates the paper web W along evenly spaced transverse lines. The web W then passes through a longitudinal splitting mechanism G which slits the web W longitudinally into strips of marketable width. When a roll 24a being wound on a core 12a at the winding station D reaches marketable diameter the breaker arm assembly H of the present invention is actuated to break the web W in the manner illustrated in FIG. 2, and a new roll is started on the next succeeding core 12b in a manner described hereinbelow.
The driving mechanism for rotating the rolls 24 as they are being wound comprises a plurality of endless belts 30 (FIGS. 2 and 4) each of which frictionally engages the periphery of one of the rolls 2411 being wound and rotates it at the same peripheral velocity as the linear velocity of the web W. The belts 30 are trained around suitable drums 32 and 34. The shaft 36 of the upper drum 32 is rotatably mounted in suitable bearings (not shown) carried by horizontal slide blocks one of which is shown at 38. Each slide block 38 is mounted in a suitable guide groove 4% on the side frame of the machine. The shaft 42 of the lower drum 34- is mounted in suitable bearings (not shown) carried by swinging brackets one of which is shown at 44. The swinging brackets are mounted for pivotal movement about the axis of the shaft 36 of the upper drum 32 so that the belts 30 can swing outwardly as the diameter of the rolls 24a being wound increases. Within the winding station D the chains 18 travel through chain guides 50 which hold the chains so as to retain the rolls 24 in contact with the drive belts 30 while they are being wound.
An arm 52 is fixed to the slide block 38 and rotatably carries on its outer end a cam follower roller 54 which rides on the periphery of a cam 56. The cam 56 when actuated moves the upper end of the winding drive assembly to the left as viewed in FIG. 2 to push the empty core 12 entering the winding station into contact with the web W as the latter travels over the roller 58 of the slitting assembly G to properly start the operation of winding the roll.
The breaker arm assembly comprises a shaft 64 rotatably mounted by suitable bearings one of which is shown at 62 (FIG. 3) on two stub shafts 64 and 66 fixed to the opposite side frames of the machine. Two arms 68 and 70 (FIG. 3) are fixed to the shaft 60 and project upwardly therefrom. A breaker bar 72 extends between and is fixed to the outer ends of the arms 68 and 70. The breaker bar 72 is provided with a flange portion 74 which is turned inwardly toward the path of travel of the web W and is provided with a rounded nose portion 76.
An actuating arm '78 is fixed to the shaft 60 and rotatably carries a cam follower roller it which rides on the periphery of an actuating cam 82. An arm 84- is fixed to the shaft 60 and a spring 86 fixed between the arm 84 and a pin 88 on a side frame of the machine maintains the roller 3i? in contact with the cam 82.
A brush 90 extends transversely of the machine immediately below the breaker bar 72 and is in contact with each finished roll 24 as the breaker arm is actuated and for a short period of time thereafter. The brush 90 is fixed to an angle bar 92 which in turn is fixed at its opposite ends to the upper ends of two bracket arms 94 and 96. The bracket arms 94 and 96 are fixed at their lower ends to a transverse frame member 98.
In the operation of the machine, the cores 12, having previously been mounted on mandrels 14, are introduced into the machine at station A and are successively picked up and clamped between the spindles 16 on the endless chains 18. The cores 12 pass through the cutting station E where they are severed into individual core sections each the width of the final marketable size roll and through the station C where an adhesive is applied to the cores 12. The cores 12 then approach the winding station D.
As the web approaches the winding station D, it first passes through the transverse perforating mechanism F 2.9 whence it passes through the longitudinal slitting mechanism G which divides it into a plurality of strips each of which corresponds in width to one of the core sections. After passing over the roller 58 of the slitting mechanism G, the several strips pass to the rolis 24a being rotated by the action of the roll driving belts 31). As the rolls 24!: increase in size they are slowly advanced by the chains 18 until they reach marketable diameter at about the position illustrated in FIG. 4.
As the substantially fully wound rolls 24a reach the position illustrated in FIG. 4, the cam 82 has started to move the breaker bar '72 to the right as viewed in that figure, i.e., inward toward the web W far enough for the rounded nose '76 to just contact the web W. Continued inward movement of the breaker bar 72 causes a deflection of the portion of the web W between the roller 58 and the rolls 24a in the manner illustrated in FIG. 5. This deflection increases the length of the web W between the roller 58 and the rolls 24a. Since both the roller 58 and the rolls 24a are traveling at the same peripheral velocity, and since both have considerable inertia, the portion of th web between the roller 58 and the rolls 24a is stretched slightly, thus generating a tensile force therein. As the deflection of Web W is increased, so is the tensile force increased. Since the rounded nose portion 76 of the breaker bar 72 additionally applies a frictional drag to the web W, the tensile force in the web W below the point of contact of the nose portion 76 of the breaker bar '72 will be greater than the tensile force above said point of contact.
The breaker bar 72 continues its advance until the tensile force in the portion of the web W between the nose 76 of the breaker bar 72 and the rolls 24a is sufiicient to cause the web W to sever along one of the previously formed transverse lines of perforations as illustrated in FIG. 6.
The various elements are so positioned that only one such line of perforations is located at any time in the zone of high tensile stress, namely, between the nose portion 76 of the breaker bar '72 and the periphery of the roll 24a, whereby, the web W will be severed cleanly in the one straight line of perforations, completely across the full width of the web.
While the breaker arm 72 has been moving in to break the web W in the manner described above, the cam 56 has been moving the upper end of the winding drive assembly to the left as illustrated in FIG. 6 so that the belts 30 have started the succeeding core 12b rotating, and at the time the web W breaks, the inward deflection of the web by the breaker bar, which has caused the newly developed leading end region of the web to extend between the completed rewound roll and the next succeeding empty core 12b, aids in applying the web to the core and in starting the newly formed end region to wrap around the core, as illustrated in FIGS. 2 and 6. The adhesive previously applied to the core 121) at station C causes the now loose end of the web W to adhere to the new core 12b to start the winding of a new roll 24b in the manner illustrated in FIG. 7.
It will be noted that when the web W is severed, the nearly completed roll 24a is in contact with the brush so that the latter brushes the severed end smoothly onto the roll 24a. This contact with the brush 90 is maintained after the roll 24a passes beyond the drive belts 30 and the frictional force of the contact of the brush 90 slows and stops the rapidly rotating finished roll 24a which then is subsequently discharged from the machine at station E.
While a preferred embodiment of the invention has been shown and described herein, it should be noted that various changes may be made therein without departing from the spirit of the invention as defined in the appended,
claim.
The invention having thus been described, what is claimed and desired to be protected by Letters Patent is:
In a machine for rewinding web having spaced apart lines of web-weakening perforations, said rewinding machine having means for moving a series of adhesive-covered cores successively past a web guide roller, 2. web severing and roll starting mechanism comprising a breaker bar mounted for movement in a path intersecting the path normally followed by the web being pulled from said guide roller to the roll being wound, means on the breaker bar for making frictional sliding engagement with the web, and means operable to project the bar to and through said path of movement of the web in a region spaced from the roll being wound a distance less than the spacing between said lines of perforations to impose additional tension upon the web between the breaker bar and the roll being wound while the web is being dragged over the breaker bar in sliding frictional engagement therewith and thereby pull the web apart at a transverse line of perforations in the web between the breaker bar and the roll being wound.
References Cited in the file of this patent UNITED STATES PATENTS 1,681,046 Marresford Aug. 14, 1928 2,186,884 Shomaker Jan. 9, 1940 2,266,995 Schultz et al. Dec. 23, 1941 2,328,582 Ratchford et a1 Sept. 7, 1943 2,361,264 Christman Oct. 24, 1944 2,691,490 Gerard Oct. 12, 1954 2,883,121 Barlament et a1 Apr. 21, 1959 2,902,197 Potdevin et a1 Sept. 1, 1959 2,942,796 Gurney et al June 28, 1960
US845415A 1959-10-09 1959-10-09 Breaker bar for web rewinding machine Expired - Lifetime US3148843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US845415A US3148843A (en) 1959-10-09 1959-10-09 Breaker bar for web rewinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US845415A US3148843A (en) 1959-10-09 1959-10-09 Breaker bar for web rewinding machine

Publications (1)

Publication Number Publication Date
US3148843A true US3148843A (en) 1964-09-15

Family

ID=25295187

Family Applications (1)

Application Number Title Priority Date Filing Date
US845415A Expired - Lifetime US3148843A (en) 1959-10-09 1959-10-09 Breaker bar for web rewinding machine

Country Status (1)

Country Link
US (1) US3148843A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282524A (en) * 1964-01-03 1966-11-01 Dietz Machine Works Inc Automatic winding machine
US3498558A (en) * 1968-07-24 1970-03-03 Paper Converting Machine Co Cutoff and transfer mechanism for rewinder
US3704835A (en) * 1971-07-13 1972-12-05 Arthur E Harley Roll changing system
US3791602A (en) * 1972-03-13 1974-02-12 Kimberly Clark Co Roll rewinder transfer apparatus and method
US3897912A (en) * 1973-02-16 1975-08-05 Yoshiharu Tajima Device for automatically winding material onto a core roll
EP0198495A2 (en) * 1985-04-17 1986-10-22 Paper Converting Machine Company Web winding machine and method
US4798350A (en) * 1987-05-29 1989-01-17 Magna-Graphics Corporation Web rewind apparatus with cutless web transfer
US4856725A (en) * 1986-04-01 1989-08-15 Paper Converting Machine Company Web winding machine and method
US4962897A (en) * 1986-04-01 1990-10-16 Paper Converting Machine Company Web winding machine and method
US4964585A (en) * 1987-05-20 1990-10-23 Sted Engineering S.R.L. Slitting and rewiding machine
US5273222A (en) * 1991-05-15 1993-12-28 Kampf Gmbh & Co. Maschinenfabrik Multiple-station winding machine for the winding of webs of foil or the like
US5421536A (en) * 1993-07-19 1995-06-06 Paper Coverting Machine Company Surface winder with recycled mandrels and method
EP0785157A2 (en) 1996-01-19 1997-07-23 Paper Converting Machine Company Method and apparatus for convolute winding
US5660350A (en) * 1995-06-02 1997-08-26 The Procter & Gamble Company Method of winding logs with different sheet counts
US5667162A (en) * 1995-06-02 1997-09-16 The Procter & Gamble Company Turret winder mandrel cupping assembly
US5690297A (en) * 1995-06-02 1997-11-25 The Procter & Gamble Company Turret assembly
US5732901A (en) * 1995-06-02 1998-03-31 The Procter & Gamble Company Turret winder mandrel support apparatus
US5810282A (en) * 1995-06-02 1998-09-22 The Procter & Gamble Company Method of winding a web
US5934534A (en) * 1996-03-11 1999-08-10 Cmd Corporation Separating a web at a line of weakness
US5961020A (en) * 1996-03-11 1999-10-05 Cmd Corporation Separating a web at a line of weakness
US6142407A (en) * 1995-06-02 2000-11-07 The Proctor & Gamble Company Web winding apparatus
US6308909B1 (en) * 1999-02-09 2001-10-30 The Procter & Gamble Company Web rewinder chop-off and transfer assembly
US6354530B1 (en) * 1995-06-02 2002-03-12 The Procter & Gamble Company Method of controlling a turret winder
US20030234314A1 (en) * 2002-06-25 2003-12-25 Alessandro Micheli Rewinding machine with flanks carrying mating centers moving along a closed path
US20040061021A1 (en) * 2002-09-27 2004-04-01 Butterworth Tad T. Rewinder apparatus and method
US6729572B2 (en) 2001-10-31 2004-05-04 Kimberly-Clark Worldwide, Inc. Mandrelless center/surface rewinder and winder
JP2005287577A (en) * 2004-03-31 2005-10-20 Daio Paper Corp Toilet paper roll, and manufacturing method and apparatus of toilet paper roll
US7175127B2 (en) 2002-09-27 2007-02-13 C.G. Bretting Manufacturing Company, Inc. Rewinder apparatus and method
US20080048062A1 (en) * 2002-02-28 2008-02-28 Kimberly-Clark Worldwide, Inc. Center/Surface Rewinder and Winder
US20080061182A1 (en) * 2002-02-28 2008-03-13 Wojcik Steven J Center/surface rewinder and winder
US20080105776A1 (en) * 2002-02-28 2008-05-08 Kimberly-Clark Worldwide, Inc. Center/Surface Rewinder and Winder
JP2010221041A (en) * 2010-04-13 2010-10-07 Daio Paper Corp Toilet paper roll, and method of manufacturing toilet paper roll
US20110057068A1 (en) * 2002-02-28 2011-03-10 James Leo Baggot Center/Surface Rewinder and Winder
US20110079671A1 (en) * 2009-10-06 2011-04-07 Kimberly-Clark Worldwide, Inc. Coreless Tissue Rolls and Method of Making the Same
US8364290B2 (en) 2010-03-30 2013-01-29 Kimberly-Clark Worldwide, Inc. Asynchronous control of machine motion
US8714472B2 (en) 2010-03-30 2014-05-06 Kimberly-Clark Worldwide, Inc. Winder registration and inspection system
US9352921B2 (en) 2014-03-26 2016-05-31 Kimberly-Clark Worldwide, Inc. Method and apparatus for applying adhesive to a moving web being wound into a roll
US11046540B2 (en) 2017-11-29 2021-06-29 Paper Converting Machine Company Surface rewinder with center assist and belt and winding drum forming a winding nest
US11247863B2 (en) 2018-11-27 2022-02-15 Paper Converting Machine Company Flexible drive and core engagement members for a rewinding machine
US11383946B2 (en) 2019-05-13 2022-07-12 Paper Converting Machine Company Solid roll product formed from surface rewinder with belt and winding drum forming a winding nest

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1681046A (en) * 1924-11-19 1928-08-14 Marresford William Franklin Paper-rolling machine
US2186884A (en) * 1938-06-22 1940-01-09 Wesley P Shomaker Web cutting mechanism
US2266995A (en) * 1940-07-26 1941-12-23 Schultz Engineering Corp Automatic rewinding machine
US2328582A (en) * 1940-10-16 1943-09-07 Standard Register Co Strip severing and bursting machine
US2361264A (en) * 1944-03-06 1944-10-24 Paper Converting Machine Co Rewinding machine
US2691490A (en) * 1952-04-21 1954-10-12 George A Gerard Strip material winding apparatus
US2883121A (en) * 1955-10-24 1959-04-21 Hudson Sharp Machine Co Endless conveyor having web rewinder core shafts
US2902197A (en) * 1956-03-06 1959-09-01 Potdevin Machine Co Apparatus for separating predetermined lengths of material from a continuous tube of the same
US2942796A (en) * 1954-08-26 1960-06-28 Monsanto Chemicals Apparatus for winding thermoplastic film into rolls

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1681046A (en) * 1924-11-19 1928-08-14 Marresford William Franklin Paper-rolling machine
US2186884A (en) * 1938-06-22 1940-01-09 Wesley P Shomaker Web cutting mechanism
US2266995A (en) * 1940-07-26 1941-12-23 Schultz Engineering Corp Automatic rewinding machine
US2328582A (en) * 1940-10-16 1943-09-07 Standard Register Co Strip severing and bursting machine
US2361264A (en) * 1944-03-06 1944-10-24 Paper Converting Machine Co Rewinding machine
US2691490A (en) * 1952-04-21 1954-10-12 George A Gerard Strip material winding apparatus
US2942796A (en) * 1954-08-26 1960-06-28 Monsanto Chemicals Apparatus for winding thermoplastic film into rolls
US2883121A (en) * 1955-10-24 1959-04-21 Hudson Sharp Machine Co Endless conveyor having web rewinder core shafts
US2902197A (en) * 1956-03-06 1959-09-01 Potdevin Machine Co Apparatus for separating predetermined lengths of material from a continuous tube of the same

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282524A (en) * 1964-01-03 1966-11-01 Dietz Machine Works Inc Automatic winding machine
US3498558A (en) * 1968-07-24 1970-03-03 Paper Converting Machine Co Cutoff and transfer mechanism for rewinder
US3704835A (en) * 1971-07-13 1972-12-05 Arthur E Harley Roll changing system
US3791602A (en) * 1972-03-13 1974-02-12 Kimberly Clark Co Roll rewinder transfer apparatus and method
US3897912A (en) * 1973-02-16 1975-08-05 Yoshiharu Tajima Device for automatically winding material onto a core roll
EP0198495A2 (en) * 1985-04-17 1986-10-22 Paper Converting Machine Company Web winding machine and method
EP0199286A2 (en) * 1985-04-17 1986-10-29 Paper Converting Machine Company Web winding machine and method
EP0199285A2 (en) * 1985-04-17 1986-10-29 Paper Converting Machine Company Web winding machine and method
US4723724A (en) * 1985-04-17 1988-02-09 Paper Converting Machine Web winding machine and method
EP0199285A3 (en) * 1985-04-17 1988-03-23 Paper Converting Machine Company Web winding machine and method web winding machine and method
EP0199286A3 (en) * 1985-04-17 1988-03-30 Paper Converting Machine Company Web winding machine and method
EP0198495A3 (en) * 1985-04-17 1988-03-30 Paper Converting Machine Company Web winding machine and method
US4856725A (en) * 1986-04-01 1989-08-15 Paper Converting Machine Company Web winding machine and method
US4962897A (en) * 1986-04-01 1990-10-16 Paper Converting Machine Company Web winding machine and method
US4964585A (en) * 1987-05-20 1990-10-23 Sted Engineering S.R.L. Slitting and rewiding machine
US4798350A (en) * 1987-05-29 1989-01-17 Magna-Graphics Corporation Web rewind apparatus with cutless web transfer
US5273222A (en) * 1991-05-15 1993-12-28 Kampf Gmbh & Co. Maschinenfabrik Multiple-station winding machine for the winding of webs of foil or the like
US5421536A (en) * 1993-07-19 1995-06-06 Paper Coverting Machine Company Surface winder with recycled mandrels and method
US6142407A (en) * 1995-06-02 2000-11-07 The Proctor & Gamble Company Web winding apparatus
US5667162A (en) * 1995-06-02 1997-09-16 The Procter & Gamble Company Turret winder mandrel cupping assembly
US5690297A (en) * 1995-06-02 1997-11-25 The Procter & Gamble Company Turret assembly
US5732901A (en) * 1995-06-02 1998-03-31 The Procter & Gamble Company Turret winder mandrel support apparatus
US5810282A (en) * 1995-06-02 1998-09-22 The Procter & Gamble Company Method of winding a web
US5660350A (en) * 1995-06-02 1997-08-26 The Procter & Gamble Company Method of winding logs with different sheet counts
US6354530B1 (en) * 1995-06-02 2002-03-12 The Procter & Gamble Company Method of controlling a turret winder
EP0785157A2 (en) 1996-01-19 1997-07-23 Paper Converting Machine Company Method and apparatus for convolute winding
US5725176A (en) * 1996-01-19 1998-03-10 Paper Converting Machine Co. Method and apparatus for convolute winding
US5934534A (en) * 1996-03-11 1999-08-10 Cmd Corporation Separating a web at a line of weakness
US5961020A (en) * 1996-03-11 1999-10-05 Cmd Corporation Separating a web at a line of weakness
US5964389A (en) * 1996-03-11 1999-10-12 Cmd Corporation Separating a web at a line of weakness
US5979729A (en) * 1996-03-11 1999-11-09 Cmd Corporation Separating a web at a line of weakness
US6488226B2 (en) 1999-02-09 2002-12-03 Mcneil Kevin Benson Web rewinder chop-off and transfer assembly
US6308909B1 (en) * 1999-02-09 2001-10-30 The Procter & Gamble Company Web rewinder chop-off and transfer assembly
US6729572B2 (en) 2001-10-31 2004-05-04 Kimberly-Clark Worldwide, Inc. Mandrelless center/surface rewinder and winder
US8042761B2 (en) 2002-02-28 2011-10-25 Kimberly-Clark Worldwide, Inc. Center/surface rewinder and winder
US7909282B2 (en) * 2002-02-28 2011-03-22 Kimberly-Clark Worldwide, Inc. Center/surface rewinder and winder
US8210462B2 (en) 2002-02-28 2012-07-03 Kimberly-Clark Worldwide, Inc. Center/surface rewinder and winder
US8757533B2 (en) 2002-02-28 2014-06-24 Kimberly-Clark Worldwide, Inc. Center/surface rewinder and winder
US8459587B2 (en) 2002-02-28 2013-06-11 Kimberly-Clark Worldwide, Inc. Center/surface rewinder and winder
US20080048062A1 (en) * 2002-02-28 2008-02-28 Kimberly-Clark Worldwide, Inc. Center/Surface Rewinder and Winder
US20080061182A1 (en) * 2002-02-28 2008-03-13 Wojcik Steven J Center/surface rewinder and winder
US20080105776A1 (en) * 2002-02-28 2008-05-08 Kimberly-Clark Worldwide, Inc. Center/Surface Rewinder and Winder
US8262011B2 (en) 2002-02-28 2012-09-11 Kimberly-Clark Worldwide, Inc. Center/surface rewinder and winder
US20110168830A1 (en) * 2002-02-28 2011-07-14 Steven James Wojcik Center/Surface Rewinder and Winder
US20110057068A1 (en) * 2002-02-28 2011-03-10 James Leo Baggot Center/Surface Rewinder and Winder
US20030234314A1 (en) * 2002-06-25 2003-12-25 Alessandro Micheli Rewinding machine with flanks carrying mating centers moving along a closed path
US6877689B2 (en) 2002-09-27 2005-04-12 C.G. Bretting Mfg. Co., Inc. Rewinder apparatus and method
US20040061021A1 (en) * 2002-09-27 2004-04-01 Butterworth Tad T. Rewinder apparatus and method
US7175127B2 (en) 2002-09-27 2007-02-13 C.G. Bretting Manufacturing Company, Inc. Rewinder apparatus and method
JP4647225B2 (en) * 2004-03-31 2011-03-09 大王製紙株式会社 Toilet paper roll manufacturing equipment
JP2005287577A (en) * 2004-03-31 2005-10-20 Daio Paper Corp Toilet paper roll, and manufacturing method and apparatus of toilet paper roll
US9365376B2 (en) 2009-10-06 2016-06-14 Kimberly-Clark Worldwide, Inc. Coreless tissue rolls and method of making the same
US20110079671A1 (en) * 2009-10-06 2011-04-07 Kimberly-Clark Worldwide, Inc. Coreless Tissue Rolls and Method of Making the Same
US8535780B2 (en) 2009-10-06 2013-09-17 Kimberly-Clark Worldwide, Inc. Coreless tissue rolls and method of making the same
US8364290B2 (en) 2010-03-30 2013-01-29 Kimberly-Clark Worldwide, Inc. Asynchronous control of machine motion
US8714472B2 (en) 2010-03-30 2014-05-06 Kimberly-Clark Worldwide, Inc. Winder registration and inspection system
US9540202B2 (en) 2010-03-30 2017-01-10 Kimberly-Clark Worldwide, Inc. Winder registration and inspection system
JP2010221041A (en) * 2010-04-13 2010-10-07 Daio Paper Corp Toilet paper roll, and method of manufacturing toilet paper roll
US9352921B2 (en) 2014-03-26 2016-05-31 Kimberly-Clark Worldwide, Inc. Method and apparatus for applying adhesive to a moving web being wound into a roll
US11046540B2 (en) 2017-11-29 2021-06-29 Paper Converting Machine Company Surface rewinder with center assist and belt and winding drum forming a winding nest
US11912519B2 (en) 2017-11-29 2024-02-27 Paper Converting Machine Company Surface rewinder with center assist and belt and winding drum forming a winding nest
US11643294B2 (en) 2018-11-26 2023-05-09 Paper Converting Machine Company Flexible drive and core engagement members for a rewinding machine
US11247863B2 (en) 2018-11-27 2022-02-15 Paper Converting Machine Company Flexible drive and core engagement members for a rewinding machine
US11383946B2 (en) 2019-05-13 2022-07-12 Paper Converting Machine Company Solid roll product formed from surface rewinder with belt and winding drum forming a winding nest

Similar Documents

Publication Publication Date Title
US3148843A (en) Breaker bar for web rewinding machine
US3770172A (en) One-at-a-time alternate dispensing method
US5421536A (en) Surface winder with recycled mandrels and method
US4802632A (en) Method and apparatus for treating end portion of roll paper
US6488226B2 (en) Web rewinder chop-off and transfer assembly
US3853279A (en) Method and apparatus for forming lightweight web material into a coreless roll
US4004747A (en) Winding apparatus
US20080245923A1 (en) Machine and Method for the Production of Rolls of Weblike Material Together with a Winding Core and Roll Thus Obtained
US4546930A (en) Continuous web winder
US2361264A (en) Rewinding machine
ES430736A1 (en) Surface enveloper transfer winder
US2718362A (en) Web-winding machine
ATE28064T1 (en) DEVICE FOR AUTOMATIC CUTTING AND REWINDING OF WEB.
US3558070A (en) Automatic measuring, cutting and rolling machine for webs of paper or the like
EP0507749B1 (en) Method and apparatus for cutting web material
US3951023A (en) Transport guide for pliable sheet material
US3252671A (en) Method of splicing cigarette paper
US2507144A (en) Web winding machine
US5823461A (en) No-fold back splicer with electrostatic web transfer device
US20020066820A1 (en) Peripheral rewinding machine and method for producing logs of web material
US1154301A (en) Machine for slitting, perforating, and rewinding paper.
US20200055686A1 (en) Machine and method for winding strips of web material with means for the transverse cutting of the strips at the end of winding
US3282524A (en) Automatic winding machine
GB1377644A (en) Winding of continuous webs of sheet material
EP0331653A2 (en) Method and apparatus for producing rolls of perforated paper strips, a roll manufactured in this way and a dispenser for dispensing sheets from said roll