US3180411A - Protection of well casing for in situ combustion - Google Patents

Protection of well casing for in situ combustion Download PDF

Info

Publication number
US3180411A
US3180411A US195766A US19576662A US3180411A US 3180411 A US3180411 A US 3180411A US 195766 A US195766 A US 195766A US 19576662 A US19576662 A US 19576662A US 3180411 A US3180411 A US 3180411A
Authority
US
United States
Prior art keywords
stratum
well
casing
tubing
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US195766A
Inventor
Harry W Parker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phillips Petroleum Co
Original Assignee
Phillips Petroleum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phillips Petroleum Co filed Critical Phillips Petroleum Co
Priority to US195766A priority Critical patent/US3180411A/en
Application granted granted Critical
Publication of US3180411A publication Critical patent/US3180411A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1007Wear protectors; Centralising devices, e.g. stabilisers for the internal surface of a pipe, e.g. wear bushings for underwater well-heads
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/001Cooling arrangements

Definitions

  • a relatively deep oil structure is being produced by conventional methods (such as pumping) and the casing and tubing leading to this structure pass thru other oil bearing strata which are amenable to production by in situ combustion.
  • the Ellenberger formation lies about 2280-24-00 feet deep while the Strawn sand is about 1600 feet deep and direcdy over the Ellenberger stratum.
  • the Ellenberger stratum is being produced by a number of wells thru casing and tubing extending thru the Strawn sand. It has recently become desirable to produce the Strawn sand by in situ combustion.
  • an object of the invention to provide a process and apparatus for protecting the casing and tubing of a well extending thru a shallow stratum, being produced by in situ combustion, to a deeper producing formation.
  • Another object of the invention is to protect the casin and tubing of wells extending to or thru a burning carbonaceous stratum.
  • a broad aspect of the invention comprises providing a cooling zone or chamber just above the lower end of a casing and tubing in a production well adjacent a stratum undergoing in situ combustion, and maintaining suitable vaporizable liquid coolant such as water, in the lower section of said chamber so as to dissipate heat from the casing and tubing.
  • the chamber may extend all of the way to the well head so that adequate condensation space is provided in the cool annulus nearer the well head.
  • Another aspect of the invention comprises providing a cooling zone or chamber around a well casing extending through an upper stratum, being produced by in situ combustion, to a lower producing stratum and maintaining a suitable liquid coolant in the cooling zone which dissipates the heat of combustion of the carbonaceous material adjacent said casing.
  • the tubing-casing annulus is packed oif below the upper stratum and the annulus above the packer is filled with the liquid coolant to a level at least as high as the top of the adjacent stratum.
  • a larger casing is extended from ground level through the upper stratum (to be burned) and a smaller diameter casing is set from a level substantially above the upper stratum extendin to the lower producing stratum, thereby providing an annulus between the lower section of the upper casing and the upper section of the lower casing which is sealed off, with the coolant therein,
  • This section of the two casings is preferably fabricated above ground with a coolant sealed therein and the same is then set at the proper level in the well so that the coolant extends from a level below the upper stratum to a level above same.
  • FIGURE 1 is an elevation in partial section of an arrangement of wells in accordance with the invention
  • FIGURE 2 is a fragmentary elevation in cross section iHustrating a second embodiment of the invention
  • PlGURE 3 is an elevation in partial section of a production well arrangement using the invention
  • FIGURE 4 is a fragmentary elevation in partial cross section showing a second embodiment of the device of FIGURE 3.
  • an upper stratum 10 is penetrated by wells 12 and l4- and a lower producing stratum 16 is penetrated by well l8.
  • Well 18 is provided with casing 29 extending through stratum 1t) and with tubing 2.2.
  • a packer 24 is set between tubing 22 and casing 20 just below stratum 10 and a suitable liquid coolant 26 is positioned in the annular cooling chamber above packer 24 so that the liquid extends at least to the upper level of stratum 1-9.
  • Well 12 is provided with casing 28 and tubing 39 extending to a level adjacent stratum 19.
  • Well 14 is provided with similar casing 32 and tubing 34.
  • a pump 36 is positioned on the lower end of tubing 22 in well 18.
  • stratum 19 around well 12 it is conventional to ignite stratum 19 around well 12 by any suitable means, such as burning a charcoal pack in well 12 Within stratum l0, and injecting a combustion supporting gas, preferably, containing a small concentration of fuel gas (1-3 or 4% by volume) through well 14 (as through tubing 34) so as to force the combustion supporting gas throughthe stratum to the ignited area around well 12 and cause the combustion zone to move through stratum ill to well 14.
  • the combustion zone heats casing 26 and the coolant 26 in the annular cooling zone adjacent stratum 19 is heated and boiled so that the heat of vaporization dissipates the heat imparted to the casing by the combustion and keeps the casing below a deleterious temperature.
  • the vaporized coolant is cooled on the side of casing 20 above stratum it which results in condensation and refluxing.
  • Liquids which function as desirable coolants include mercury, sulfur, stable organic compounds such as polyphenyls, water, kerosene, high boiling point alcohols such as ethylene glycol, etc. Polyphenyls are preferred because they are cheap and stable at temperatures up to 800 to 900 F. Any coolants known to the art may be utilized in the cooling zone. The invention is not dependent upon the use of any particular coolant.
  • a prefabricated section of easing ll comprises a large diameter casing 42 extending to a level below stratum it) and a smaller casing 44 of smaller diameter, extending to a level substantially above stratum 1b to provide ample condensing space 4-6 above liquid coolant '43 in the resulting annulus between the two casings.
  • Cooling chamber 59 is sealed gas tight by annular plate 52 welded onto the bottom of casing 42 and onto casing 44, and by plate 54 welded onto the top of easing d4- and to casing 42. It is to be understood that casing 42 extends to the Well head and casing 44 extends to the proximity of the lower producing zone.
  • coolant 48 is positioned therein and the condensation space as is preferably evacuated before sealing the cooling chamber. This facilitates the cooling process in which coolant 43 is boiled and condensed in the upper section 45 of the cooling chamber.
  • it is desirable to fill ers may be set in lieu of annular plates 52 and 54 to seal oil the cooling chamber.
  • the coolant is positioned in the cooling chamber 50.
  • a stratum 60 is penetrated by a well 62 provided with casing 64 and tubing 66 extend- ,ing to a-level adjacent stratum 60.
  • An annular combustion zone 68 surrounds Well 62 and hot combustion gases are being driven into the well below the tubing.
  • a packer 70 seals off the tubing-casing annulus adjacent'the lower end of the tubing, providing a cooling chamber 72, extending to the well head.
  • Liquid coolant 74 fills the lower section of chamber 72 to level 76.
  • the section of chamber 72 above level 76, designated 78, comprises a condensation Zone or section.
  • :Boiling liquid dissipates heat from the gases passing thru the'tubing to the well head by indirect heat exchange 3.
  • said chamber is formed by a first larger diameter casing in said well extending to a level just below the bottom of said second stratum; a second casing of smaller diameter extending firoma level substantially above said second stratum to a level substantially below said first casing; and closure means in the resulting annulus between the overlapping casings at levels above and'below said second stratum seated against the casings and sealing said chamber, said coolant occupying only about the lower half of said chamber but at least to the top ofsaid second stratum.
  • production well 80 penetrates oil stratum 82 undergoing production by in situ combustion.
  • Well 80 is provided with casing 84 and tubing 86, terminating just above the stratum.
  • Cooling chamber 88 is formed by a cylindrical section of conduit 90 sealed to the lower end of tubing 86 by annular plate 92 and by packer 94 at its upper end.
  • Asbestos 'or refractory concrete packing 96 packs off the lower end of annulus 98 to prevent condensation of oil in this annulus.
  • Positioning packer 9.4 in the mannershown in FIG- URE 4 allows use of a packer with non-metallic seals.

Description

April 27, 1965 H. w. PARKER 3,180,411
PROTECTION OF WELL CASING FOR IN SITU COMBUSTION Filed May 18, 1962 2 Sheets-Sheet 1- FIG. 2
l Ll: w
| (D I m L Iii .1112: -ILIL INVENTOR.
H. W. PARKER BY y A TTORNEVS FIG.
April 27, 1965 H. w. PARKER PROTECTION OF WELL CASING FOR IN SITU COMBUSTION Filed- May 18, 1962 2 Sheets-Sheet 2 INVENTOR. H W PARKER A TTORNEKS lhldddll Patented Apr. 2?, 1%55 3,18%,411 RQT-"QTE@N QB WELL QASlNG FUR 1N SITU CGIvlBUS'llGN Harry W. Parker, Eartlesville, @kla, assignor to Phillips Petroleum (Zompany, a corporation oi Delaware Filed May 18, $62, Ear. No. 195,766 8 Ciaims. (Ql. led-ll) This invention relates to a method and apparatus for protecting well casing and tubing from overheating during in situ combustion.
Frequently a relatively deep oil structure is being produced by conventional methods (such as pumping) and the casing and tubing leading to this structure pass thru other oil bearing strata which are amenable to production by in situ combustion. To illustrate, in North and West Central Texas, the Ellenberger formation lies about 2280-24-00 feet deep while the Strawn sand is about 1600 feet deep and direcdy over the Ellenberger stratum. The Ellenberger stratum is being produced by a number of wells thru casing and tubing extending thru the Strawn sand. It has recently become desirable to produce the Strawn sand by in situ combustion. However, by igniting the Strawn sand around certain wells therein and in jecting combustion gas to the ignited area, the resulting combustion zone is moved thru the sand to other wells therein and contacts the deeper wells extending to the Ellenberger stratum. Since the temperature in the burning stratum reaches levels (IOOO-ZQOG" F.) which melt or otherwise damage the casing and tubing of the deeper Wells, it is essential to protect these wells by some method. Also, in producing hot gases from a combustion zone in an oil bearing stratum, the production well tubing and casing are overheated. This invention is concerned with a method of protecting such wells from damaging tern erature.
Accordingly, it is an object of the invention to provide a process and apparatus for protecting the casing and tubing of a well extending thru a shallow stratum, being produced by in situ combustion, to a deeper producing formation. Another object of the invention is to protect the casin and tubing of wells extending to or thru a burning carbonaceous stratum. Other objects of the invention will become apparent to one skilled in the art upon consideration of the accompanying disclosure.
A broad aspect of the invention comprises providing a cooling zone or chamber just above the lower end of a casing and tubing in a production well adjacent a stratum undergoing in situ combustion, and maintaining suitable vaporizable liquid coolant such as water, in the lower section of said chamber so as to dissipate heat from the casing and tubing. The chamber may extend all of the way to the well head so that adequate condensation space is provided in the cool annulus nearer the well head.
Another aspect of the invention comprises providing a cooling zone or chamber around a well casing extending through an upper stratum, being produced by in situ combustion, to a lower producing stratum and maintaining a suitable liquid coolant in the cooling zone which dissipates the heat of combustion of the carbonaceous material adjacent said casing. In one aspect of the invention, the tubing-casing annulus is packed oif below the upper stratum and the annulus above the packer is filled with the liquid coolant to a level at least as high as the top of the adjacent stratum. In another aspect of the invention, a larger casing is extended from ground level through the upper stratum (to be burned) and a smaller diameter casing is set from a level substantially above the upper stratum extendin to the lower producing stratum, thereby providing an annulus between the lower section of the upper casing and the upper section of the lower casing which is sealed off, with the coolant therein,
fter removing the air. This section of the two casings is preferably fabricated above ground with a coolant sealed therein and the same is then set at the proper level in the well so that the coolant extends from a level below the upper stratum to a level above same.
A more complete understanding of the invention may be had by reference to the accompanying schematic drawing of which FIGURE 1 is an elevation in partial section of an arrangement of wells in accordance with the invention; FIGURE 2 is a fragmentary elevation in cross section iHustrating a second embodiment of the invention; PlGURE 3 is an elevation in partial section of a production well arrangement using the invention; and FIGURE 4 is a fragmentary elevation in partial cross section showing a second embodiment of the device of FIGURE 3.
Referring to FIGURE 1, an upper stratum 10 is penetrated by wells 12 and l4- and a lower producing stratum 16 is penetrated by well l8. Well 18 is provided with casing 29 extending through stratum 1t) and with tubing 2.2. A packer 24 is set between tubing 22 and casing 20 just below stratum 10 and a suitable liquid coolant 26 is positioned in the annular cooling chamber above packer 24 so that the liquid extends at least to the upper level of stratum 1-9.
Well 12 is provided with casing 28 and tubing 39 extending to a level adjacent stratum 19. Well 14 is provided with similar casing 32 and tubing 34. A pump 36 is positioned on the lower end of tubing 22 in well 18.
In operation, it is conventional to ignite stratum 19 around well 12 by any suitable means, such as burning a charcoal pack in well 12 Within stratum l0, and injecting a combustion supporting gas, preferably, containing a small concentration of fuel gas (1-3 or 4% by volume) through well 14 (as through tubing 34) so as to force the combustion supporting gas throughthe stratum to the ignited area around well 12 and cause the combustion zone to move through stratum ill to well 14. In passing well 18, the combustion zone heats casing 26 and the coolant 26 in the annular cooling zone adjacent stratum 19 is heated and boiled so that the heat of vaporization dissipates the heat imparted to the casing by the combustion and keeps the casing below a deleterious temperature. The vaporized coolant is cooled on the side of casing 20 above stratum it which results in condensation and refluxing.
Liquids which function as desirable coolants include mercury, sulfur, stable organic compounds such as polyphenyls, water, kerosene, high boiling point alcohols such as ethylene glycol, etc. Polyphenyls are preferred because they are cheap and stable at temperatures up to 800 to 900 F. Any coolants known to the art may be utilized in the cooling zone. The invention is not dependent upon the use of any particular coolant.
Referring to FIGURE 2, a prefabricated section of easing ll comprises a large diameter casing 42 extending to a level below stratum it) and a smaller casing 44 of smaller diameter, extending to a level substantially above stratum 1b to provide ample condensing space 4-6 above liquid coolant '43 in the resulting annulus between the two casings. Cooling chamber 59 is sealed gas tight by annular plate 52 welded onto the bottom of casing 42 and onto casing 44, and by plate 54 welded onto the top of easing d4- and to casing 42. It is to be understood that casing 42 extends to the Well head and casing 44 extends to the proximity of the lower producing zone.
When casing section as is fabricated above ground, coolant 48 is positioned therein and the condensation space as is preferably evacuated before sealing the cooling chamber. This facilitates the cooling process in which coolant 43 is boiled and condensed in the upper section 45 of the cooling chamber. When utilizing organic compounds as cooling liquids, it is desirable to fill ers may be set in lieu of annular plates 52 and 54 to seal oil the cooling chamber. Before setting the upper packer, the coolant is positioned in the cooling chamber 50.
Referring to FIGURE 3, a stratum 60 is penetrated by a well 62 provided with casing 64 and tubing 66 extend- ,ing to a-level adjacent stratum 60. An annular combustion zone 68 surrounds Well 62 and hot combustion gases are being driven into the well below the tubing. A packer 70 seals off the tubing-casing annulus adjacent'the lower end of the tubing, providing a cooling chamber 72, extending to the well head. Liquid coolant 74 fills the lower section of chamber 72 to level 76. The section of chamber 72 above level 76, designated 78, comprises a condensation Zone or section.
:Boiling liquid dissipates heat from the gases passing thru the'tubing to the well head by indirect heat exchange 3. The structure of claim lrwherein said chamber is formed bya first larger diameter casing in said well extending to a level just below the bottom of said second stratum; a second casing of smaller diameter extending firoma level substantially above said second stratum to a level substantially below said first casing; and closure means in the resulting annulus between the overlapping casings at levels above and'below said second stratum seated against the casings and sealing said chamber, said coolant occupying only about the lower half of said chamber but at least to the top ofsaid second stratum.
4. The structure of claim 3 wherein said chamber is at 'least partially evacuated. I
therewith thru tubing 66 to prevent damage to the tubing and easing. V
In FIGURE 4, production well 80 penetrates oil stratum 82 undergoing production by in situ combustion. Well 80 is provided with casing 84 and tubing 86, terminating just above the stratum. Cooling chamber 88 is formed by a cylindrical section of conduit 90 sealed to the lower end of tubing 86 by annular plate 92 and by packer 94 at its upper end. Asbestos 'or refractory concrete packing 96 packs off the lower end of annulus 98 to prevent condensation of oil in this annulus.
Positioning packer 9.4 in the mannershown in FIG- URE 4 allows use of a packer with non-metallic seals.
The remoteness from the hot gases entering the Well below plate 92 and the presence of coolant adjacent the .packer protects the packer from excessive heat and eliminates the problem of positioning seats in the casing and the tubing required for metal seals.
Certain modifications of the invention will become ap parent to those skilled in the art and the illustrative details disclosed are not to be construed as imposing unnecessary limitations on the invention.
I claim: I
1. In an earth structure wherein a first oil-bearing stratum lies substantially below a second oil-bearing stratum and is penetrated by a well including casing and .tubing passing thru said second stratum, and said second stratum is being produced by in situ combustion so that .a' combustion zone at a temperature in the range of 1000 to 2000 F. is moved thru said second stratum adjacent said casing and tubing, said secondstratum being at said temperature: a structure for protecting said castically from just below the bottom of said second stratum 5. The structure of claim 3 wherein hydrogen occupies space in said chamber above said coolant and said coolant comprises an organic compound.
6. In an earth structure wherein an oil-bearing stratum is being produced by in situ combustion comprising igniting said stratum and injecting O -containing gas into the ignited area from an injection 'well and producing hot hydrocarbons and combustion gases thru a production well therein thru tubing and easing extending to a level adjacent said stratum, whereby said hot gases heat said stratum adjacent said casing to a temperature in the range of 1000 to.2000 F. and overheat and damage said casing and tubing; a' structure comprising closure means sealing 05 the tubing-casing annulus at said level forming an elongated upright annular chamber, said closure means comprising a cylindrical section smaller in diame .ter than said casing extending upwardly from the lower end of saidtubing. and sealed therewith at its lower end .and a sealing means between said casing and said section adjacent its. upper end, whereby last said sealing means is substantially above the bottom of said chamber; and a vaporizable liquid coolant in a lower section of said chamber providing a vertically elongated condensation section in the upper section of said chamber.
7. The structure of claim 6 including packing means inthe annulus between said casing and said section at its lower end 'to exclude oil vapors from last said annulus.
, 8. A process for producing oil from a second oil-bearing stratum overlying a deeper first oil-bearing stratum to'which a first well having a casing and tubing string extends, Said first well passing thru, said second stratum, which comprises igniting said second stratum around a second well therein; feeding air to the ignited area thru at least one well in said second stratum so as to move a combustion zone therethru at a temperature in the range ,Of 1000 to 2000 F. adjacent said first well, and recover- ;maintaining a'liquid coolant in the annulus of said first to substantially above the top thereof, said casing forming a the outermost wall'of said chamber; and a vaporizable liquid coolant insaid chamber extending from the bottom thereof only to a level just above the top of said secondmstratum thereby forming a vertically extended vapor zone in said chamber above'said liquid.
' 2. The structure of claim 1 wherein saidchamber is formed by setting apacker' around said tubing adjacent the bottom of said second stratum to seal off the casingtubing annulus. a
Well extending from just below to just above said second stratum, and providing a vertically extended vaporizing zone for .saidvcoolant in saidannulus above saidcoolant for cooling and refluxingsaid coolant.
References Cited bythe Examiner UNITED STATES PATENTS 1,413,197' 4/22 Swan 16657 2,346,060 4/44 Yeatman 166-89 2,530,280 11/50 'Ackley l66-39 12,649,915 8/53 Miller 166-224 3,013,609 12/61 Brink -Q. 166-39 BENJAMIN 'HERSH, Priniary Examiner.

Claims (1)

  1. 8. A PROCESS FOR PRODUCING OIL FROM A SECOND OIL-BEARING STRATUM OVERLYING A DEEPER FIRST OIL-BEARING STRATUM TO WHICH A FIRST WELL HAVING A CASING AND TUBING STRING EXTENDS, SAID FIRST WELL PASSING THRU SAID SECOND STRATUM, WHICH COMPRISES IGNITING SAID SECOND STRATUM AROUND A SECOND WELL THEREIN; FEEDING AIR TO THE IGNITED AREA THRU AT LEAST ONE WELL IN SAID SECOND STRATUM SO AS TO MOVE A COMBUSTION ZONE THERETHRU AT A TEMPERATURE IN THE RANGE OF 1000 TO 2000* F. ADJACENT SAID FIRST WELL, AND RECOVERING PRODUCED HYDROCARBONS FROM A WELL IN SAID SECOND STRATUM, THEREBY NORMALLY EXPOSING THE CASING OF SAID FIRST WELL TO SAID TEMPERATURE; PRIOR TO MOVING SAID COMBUSTION
US195766A 1962-05-18 1962-05-18 Protection of well casing for in situ combustion Expired - Lifetime US3180411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US195766A US3180411A (en) 1962-05-18 1962-05-18 Protection of well casing for in situ combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US195766A US3180411A (en) 1962-05-18 1962-05-18 Protection of well casing for in situ combustion

Publications (1)

Publication Number Publication Date
US3180411A true US3180411A (en) 1965-04-27

Family

ID=22722713

Family Applications (1)

Application Number Title Priority Date Filing Date
US195766A Expired - Lifetime US3180411A (en) 1962-05-18 1962-05-18 Protection of well casing for in situ combustion

Country Status (1)

Country Link
US (1) US3180411A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379252A (en) * 1965-11-29 1968-04-23 Phillips Petroleum Co Well completion for extreme temperatures
US3456734A (en) * 1968-01-05 1969-07-22 Phillips Petroleum Co Protection of well casing from thermal overstressing
US4031956A (en) * 1976-02-12 1977-06-28 In Situ Technology, Inc. Method of recovering energy from subsurface petroleum reservoirs
US4102397A (en) * 1977-03-07 1978-07-25 In Situ Technology, Inc. Sealing an underground coal deposit for in situ production
US4509595A (en) * 1981-01-28 1985-04-09 Canadian Liquid Air Ltd/Air Liquide In situ combustion for oil recovery
EP0186952A1 (en) * 1984-11-19 1986-07-09 Mobil Oil Corporation Method for drilling deviated wellbores
US20090145598A1 (en) * 2007-12-10 2009-06-11 Symington William A Optimization of untreated oil shale geometry to control subsidence
US7631691B2 (en) 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US7669657B2 (en) 2006-10-13 2010-03-02 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US20100089575A1 (en) * 2006-04-21 2010-04-15 Kaminsky Robert D In Situ Co-Development of Oil Shale With Mineral Recovery
US20100101793A1 (en) * 2008-10-29 2010-04-29 Symington William A Electrically Conductive Methods For Heating A Subsurface Formation To Convert Organic Matter Into Hydrocarbon Fluids
US20100282460A1 (en) * 2009-05-05 2010-11-11 Stone Matthew T Converting Organic Matter From A Subterranean Formation Into Producible Hydrocarbons By Controlling Production Operations Based On Availability Of One Or More Production Resources
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US8104537B2 (en) 2006-10-13 2012-01-31 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1413197A (en) * 1919-02-10 1922-04-18 John C Swan Apparatus for excluding water from drilled wells for oil
US2346060A (en) * 1941-03-18 1944-04-04 Shell Dev Method and apparatus for setting well casing
US2530280A (en) * 1948-02-07 1950-11-14 Thermactor Corp Oil column heating means and method
US2649915A (en) * 1946-12-03 1953-08-25 Otis Eng Co Apparatus for treating wells
US3013609A (en) * 1958-06-11 1961-12-19 Texaco Inc Method for producing hydrocarbons in an in situ combustion operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1413197A (en) * 1919-02-10 1922-04-18 John C Swan Apparatus for excluding water from drilled wells for oil
US2346060A (en) * 1941-03-18 1944-04-04 Shell Dev Method and apparatus for setting well casing
US2649915A (en) * 1946-12-03 1953-08-25 Otis Eng Co Apparatus for treating wells
US2530280A (en) * 1948-02-07 1950-11-14 Thermactor Corp Oil column heating means and method
US3013609A (en) * 1958-06-11 1961-12-19 Texaco Inc Method for producing hydrocarbons in an in situ combustion operation

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379252A (en) * 1965-11-29 1968-04-23 Phillips Petroleum Co Well completion for extreme temperatures
US3456734A (en) * 1968-01-05 1969-07-22 Phillips Petroleum Co Protection of well casing from thermal overstressing
US4031956A (en) * 1976-02-12 1977-06-28 In Situ Technology, Inc. Method of recovering energy from subsurface petroleum reservoirs
US4102397A (en) * 1977-03-07 1978-07-25 In Situ Technology, Inc. Sealing an underground coal deposit for in situ production
US4509595A (en) * 1981-01-28 1985-04-09 Canadian Liquid Air Ltd/Air Liquide In situ combustion for oil recovery
EP0186952A1 (en) * 1984-11-19 1986-07-09 Mobil Oil Corporation Method for drilling deviated wellbores
US20100078169A1 (en) * 2003-06-24 2010-04-01 Symington William A Methods of Treating Suberranean Formation To Convert Organic Matter Into Producible Hydrocarbons
US7631691B2 (en) 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US20100089575A1 (en) * 2006-04-21 2010-04-15 Kaminsky Robert D In Situ Co-Development of Oil Shale With Mineral Recovery
US8641150B2 (en) 2006-04-21 2014-02-04 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US7669657B2 (en) 2006-10-13 2010-03-02 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US8104537B2 (en) 2006-10-13 2012-01-31 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US20100319909A1 (en) * 2006-10-13 2010-12-23 Symington William A Enhanced Shale Oil Production By In Situ Heating Using Hydraulically Fractured Producing Wells
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US9347302B2 (en) 2007-03-22 2016-05-24 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US20090145598A1 (en) * 2007-12-10 2009-06-11 Symington William A Optimization of untreated oil shale geometry to control subsidence
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US20100101793A1 (en) * 2008-10-29 2010-04-29 Symington William A Electrically Conductive Methods For Heating A Subsurface Formation To Convert Organic Matter Into Hydrocarbon Fluids
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US8540020B2 (en) 2009-05-05 2013-09-24 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US20100282460A1 (en) * 2009-05-05 2010-11-11 Stone Matthew T Converting Organic Matter From A Subterranean Formation Into Producible Hydrocarbons By Controlling Production Operations Based On Availability Of One Or More Production Resources
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US9739122B2 (en) 2014-11-21 2017-08-22 Exxonmobil Upstream Research Company Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation

Similar Documents

Publication Publication Date Title
US3180411A (en) Protection of well casing for in situ combustion
US3209825A (en) Low temperature in-situ combustion
US3766982A (en) Method for the in-situ treatment of hydrocarbonaceous materials
US3013609A (en) Method for producing hydrocarbons in an in situ combustion operation
US2584606A (en) Thermal drive method for recovery of oil
US3024013A (en) Recovery of hydrocarbons by in situ combustion
US3110345A (en) Low temperature reverse combustion process
US3007521A (en) Recovery of oil by in situ combustion
US3010513A (en) Initiation of in situ combustion in carbonaceous stratum
US2584605A (en) Thermal drive method for recovery of oil
US3165154A (en) Oil recovery by in situ combustion
US3048221A (en) Hydrocarbon recovery by thermal drive
US3055423A (en) Controlling selective plugging of carbonaceous strata for controlled production of thermal drive
US3490529A (en) Production of oil from a nuclear chimney in an oil shale by in situ combustion
US3246693A (en) Secondary recovery of viscous crude oil
US3406755A (en) Forward in situ combustion method for reocvering hydrocarbons with production well cooling
US3024841A (en) Method of oil recovery by in situ combustion
US3630278A (en) Method for strengthening reservoir fractures
US3343598A (en) Protection of production well equipment in in situ combustion operation
US3160208A (en) Production well assembly for in situ combustion
US3499489A (en) Producing oil from nuclear-produced chimneys in oil shale
US3228471A (en) Method for producing hydrocarbons in an in situ combustion operation
US3170515A (en) In-situ combustion process
US3070178A (en) Method of drilling wells with air
US3134435A (en) Method for stabilizing an incompetent formation