US3186523A - Ground anchoring system - Google Patents

Ground anchoring system Download PDF

Info

Publication number
US3186523A
US3186523A US80362A US8036261A US3186523A US 3186523 A US3186523 A US 3186523A US 80362 A US80362 A US 80362A US 8036261 A US8036261 A US 8036261A US 3186523 A US3186523 A US 3186523A
Authority
US
United States
Prior art keywords
guy
clamp
ground
ground anchor
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US80362A
Inventor
William C Brisse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LACONIA MALLEABLE IRON CO Inc
Original Assignee
LACONIA MALLEABLE IRON CO Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LACONIA MALLEABLE IRON CO Inc filed Critical LACONIA MALLEABLE IRON CO Inc
Priority to US80362A priority Critical patent/US3186523A/en
Priority to US457342A priority patent/US3242623A/en
Application granted granted Critical
Publication of US3186523A publication Critical patent/US3186523A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors

Definitions

  • a satisfactory ground anchor first of all must be capable of insertion to any desired depth in different kinds of soil, ranging from soft dirt, or loess, to hardpan, or rock-bestudded ground. It is even desirable that ground anchors be adapted also to use in compacted snow or ice. Such widely differing conditions make it mandatory that the ground anchor be extremely strong, yet somewhat flexible, so as to be operable under any condition encountered. In addition, it is highly desirable that a ground anchor be compact and easily transported, since numbers of anchors often are used in almost inaccessible sites. This last stricture requires that satisfactory g-round anchors be nestable, so that transportation problems attendant upon bringing anchors to their place of use may be minimized.
  • ground anchors which have been fabricated from a flat piece, or a sheet, of material will best meet this last-mentioned requirement, but that special provision must be made if an anchor fabricated from a sheet of material is to have sufiicient strength satisfactorily to perform its intended function.
  • Clevett shows a ground anchor which, although it may very well be used to anchor a portable structure, is not adapted to use in all kinds of soil.
  • the disclosed triangular ground anchor which has a coneshaped rib running longitudinally thereof may be used to advantage in soft dirt, or loess. However, since it is relatively inflexible, it may not be used to maximum advantage in hard-pan or rock-bestudded soil.
  • Kiemzle describes a clamp for a cable in which means are provided to ensurerup ture of a coupling before the elastic limits of the cable are reached. Such a device is particularly suited for applications in which sudden strains are experienced and does not provide any easy way of adjusting tension on a cable.
  • Webb describes a clamp for wire used to connect a guy between a fence anda ground anchor.
  • Clevett describes a clamp which holds a cable by deforming such cable between two jalws. While such a clamp may be satisfactory for some applications, the weakening of the cable which may be experienced under certain conditions and the fact that the clamp may not be used with a wire guy limits its use.
  • the means for embedding a ground anchor into any type of substratum is critical to a satisfactory anchoring system.
  • the requirements for driving means for ground anchors are the ability to drive a ground anchor into any type of soil to any desired depth and the ability to withstand repeated shocks in such use.
  • satisfactory driving means must be highly resistant to fatigue. Consequently, concentration of strain points, whether such points occur in either the ground anchor being driven or in the driving means itself, must be avoided.
  • satisfactory driving means must lock positively to a ground anchor during the driving operation and automatically compensate for small differences in the relat-ive positions of the two elements, should the ground anchor strike some obstruction.
  • satisfactory driving means should not interfere with the soil displaced by the ground anchor during the driving operation.
  • the driving means must be capable of easy withdrawal after a ground anchor has been driven to a desired depth.
  • a primary object of .my. invention is to provide an improved ground anchoring system adapted to use with many types of portable structures.
  • Another object of my invention is to provide an improved ground anchor, clamp, and driving rod which, when used together permit anchor-ing of portable structures in many types of substrate, using either solid Wire or cable as guys.
  • Still another object of my invention is to provide a ground anchor that may be embedded into many kinds of substrate to any desired depth.
  • Another object of my invention is to provide clamping means which will allow adjustment of the tension among a plurality of guys, without danger of deforming any one of the ys.
  • a still further object of my invention is to provide a ground anchor and a driving rod which, when used together, will allow the anchor to be driven into soil containing alarge number of rocks.
  • a still further object of my invention is to provide a driving rod and a ground anchor which, when used togeaher, minimize chances of damage to either the driving rod or the ground anchor'by distributing forces between the two over a large area. 7
  • Each guy assembly consists of a unitary ground anchor embedded in the. substratum over which a portable structure is to be erected, a guy doubled on itself to form a bight, the
  • FIG. 1 is an isometric view, greatly simplified, showing the anchoring system contemplated by this invention in use;
  • FIG. 2 is an isometric view of a preferred embodiment of the ground anchor used in FIG. 1.;
  • FIG. 3 is an isometric View of a preferred embodiment of a driving tool, showing particularly the end of such tool which mates With the. ground anchor shown in FIG- 2;
  • FIG. 4. is aside view of ground anchor shown in FIG. 2 and the. driving tool shown in FIG. 3 mated together in a substratum during typical driving process;
  • FIG. 5 and FIG. 6 are isometric views, partially broken away, showing in detail the clamp used in FIG. 1;
  • FIG. 7 and FIG. 8 are, cross-sectional views taken respectively by passing the planes 7-7 and 8-8 through the clamp. as shown in FIG. 6 to illustrate the action of the clamp when it is taken up to secure a guy.
  • FIG; 1' my ground-anchoring system is shown securing a radome, although other types of portable structures are equally well adapted to the system.
  • the numeral ltlr designates a radome. Peripher ally attached to the radome is a so-called catenary" 'line 12.
  • the manner in which the catenary line 12 is attached to theradome is notcritical to the invention, it being suflicienty only that a number ofdepending loops beprovided.
  • the radome 10- is-secured to a substratum 14 by, means of a plurality. of my anchoring assemblies 16, one of the. anchoring assemblies 16 being attached to. each one of theloopsof the catenary line 12.
  • Each one of the anchoring assemblies 16 consists of a clamp 18, a guy 20, and. a ground anchor 22.
  • the guy 20 consists of a wire folded approximately at its center and'doubled back on itself to "provide two leads. The bight of the wire is attached to the ground anchor 22 as shown in detail in FIG. 2.
  • the individual ground anchors are driven into the substratum 14 to a desired depth, using the driving tool illustrated in FIG. 3, leaving the free ends of the two leadslprojecting up from. the substratum as shownat A in FIG; 4.
  • the clamp 18 shown in detail in FIGS. 5 and 6 is placed on each of the loops of the catenary line 12, and the free ends of the guys 20 are inserted in their respective clamps. The clamps are then adjusted so that the tensionon the guys is equalized.
  • the preferred embodiment of the groimd anchor 22 is shown in FIG..2 to consist of a triangular head section 3.9 and .a driver guide 32 integrally formed with the head section 30 and projecting therefrom.
  • a semi-hard steel sheet say A" thick
  • my ground anchor although other materials and other thicknesses may be used without departing from the: concepts of my invention.
  • a ground anchor made in a shape of an isosceles triangle having a base of 4" and an altitude. of 4' may be fabricated to withstand a pull of 2,000 pounds when embedded in soiL. In order to: render such a relatively light anchor capable of withstanding such a force, the
  • Rib '38 consists of a. leading portion 38A running from the. apex 36 of the head portion 30 adjacent therib 34;; diverging slightly therefrom and being curved oppositelythereto anddeepening with distance from the: apex 36.
  • Trailing portion 38B consists of a ribgenerally similar to leadingportion138A, butv commencingadjacent rib 34 at. the: end of' the leading portion 38A.
  • a protuberance 42 is formed at the junction. between the leading portion 38A and the trailing portion 38B.
  • An aperture'44 isformed through the'head section 30 behind protuberance 42z to receive. a guy, shown here as a wire 43 although. a cable may also be used. Insertion of the wire. 48:.in the aperture 44. may be facilitated by slotting the body section. 30 inwardly from the edge thereof to. the: aperture. 44: and rolling back a flap: 50.. .After the WiI8'48 is inserted in the aperture 44,. flap. 50 is forced downwardly again into the plane of the head section 30 so. as to, holdthe.
  • .jBase 66 is preferably formed from a sheet material, say of /s" steel, formed so as to have a substantially semicircular element 72 joining a pair of wing-like elements 74, plate 68 being disposed between wing-like elements 74 over a semicircuthe ground anchor is inserted in the noncircular aperture 76 until surfaces 68A, and 74A of the driver tool come in contact with the base of the head section 30.
  • rotation of the ground anchor with respect to the driving tool is prevented and driving forces transmitted through the driving rod iisare passed through the wing-like elements 74 and the plate 68 to the ground anchor.
  • the noncircular opening 76 in the driving tool is slightly larger than the driver guide 34, it is possible for the ground anchor to move slightly out of alignment with the longitudinal axis of the rod 60. This means then that, should the anchor strike an obstruction, as the rock 78, it may move slightly with respect to the driving rod 69 so as to find the easiest path around the obstruction thereby minimizing danger of breakage of the anchor. It should be noted also that there is a space between the plate 68 and the beveled end 62 of the driving rod 60. This space provides a relief opening for dirt or small stones which pass through the noncircular opening 76 between the plate 68 and the driver guide 32 during the embedding operation. After the ground anchor has been driven into the substratum 14 to a desired depth, the driving tool may be withdrawn by simply pulling on its upper end.
  • FIGS. 5 through 8 the details of construction and operation of a preferred embodiment of the clamp 13 particularly suited for use in my anchoring system is shown.
  • the clamp is adapted to be used with a wire guy, but as will be shown hereinafter, the clamp may be easily modified for use with a cable guy.
  • the clamp 18 consists of a pair of opposing clamping jaws 80, 82 oriented with respect to each other by a pair of complementary cover plates 86, 83 and linked by a threaded stud 90 and a nut 92 as shown in FIG. 8.
  • the faces of the clamping jaws 8t 32 are crowned, again as shown in FIG. 8, and the stud-9t! is disposed adjacent the base 4 of the clamping jaws 80, 82.
  • a rounded depression 96 is centrally formed in each of the complementary cover plates 86, 88 and the clamping jaws St), 82 to accommodate the catenary line 12 during use.
  • the complementary cover plates 86, 83 are folded so as to form walls 98, 1439 having a number of extensions, as for example extensions 99, 161, to match a corresponding number of cooperating depressions in the opposite cover element to prevent the two cover plates 86, 88 and the clamping jaws 8t), 82 from rotating with respect to each other.
  • the stud 90 passes through the cover plates 86, 83 and the jaws 80, 82 being led through aligned openings in each of the elements.
  • the sizes of the aligned openings are not critical to the invention, it being sufficient only that they be somewhat larger than the diameter of the stud 90.
  • the clamp is placed over the catenary line 12 with the depression 96 resting on top of the catenary line.
  • the free ends of the wire 43 to be clamped are passed through the base of the clamp, one free end lying on one side of the catenary line 12 and the other free end lying on the opposite side of the catenary line 12.
  • the leads are passed on different sides of the stud 90, crossed, and let out of the clamp on different sides of the extensions 99, 101.
  • the screw 92 is made hand-tight and tension is applied to the wire 48 in the direction shown by the arrows in FIG. 6, the wire moves slightly in the direction of the arrows, frictionally engaging the surfaces of the jaws 8t), 82.
  • the minimum spacing between the faces of the clamping jaws 80, 82 is dependent upon the thickness of the wire therebetween. At the cross-over point of the free ends of the wire, this minimum spacing is equal to twice the thickness of the wire, if there is no deformation of the wire, while at other points within the clamp the minimum spacing is less, approaching the thickness of the wire as a limit (again, if there is no deformation of the wire).
  • a 2" clamp that is, a clamp having clamping jaw faces 2" wide
  • a 2" clamp may withstand more than 2,000 pounds tension on a guy without slippage or damage to the guy.
  • the illustrated clamp may easily be adapted to such a purpose as previously mentioned.
  • the jaws 80, 82 may be reversed within the clamp so that two serrated surfaces 102, 104 are oppositely disposed.
  • a cable is inserted in the clamp in exactly the same manner as previously described and tension is applied to the leads of the cable.
  • the clamp itself operates in basically the same manner as when a wire is to be held, except that the serrations M2, 1% provide additional frictional forces between the cable and the jaws 80, 82 so that the relatively rough surface of the cable may be firmly held.
  • a ground anchoring system to secure a portable structure to a substratum comprising, a line affixed to the outside of said portable structure at a plurality of equally spaced points initially to form a plurality of catenary sections of line depending from said portable structure, a similar plurality of guy assemblies, a separate one of said guy assemblies cooperating with a separate one of said catenary sections of line, each said separate one of said guy assemblies consisting of a clamp having opposed convex guy wedging and clamping surfaces, a guy, and a ground anchor, said ground anchor being embedded in said substratum, said guy being looped around said ground anchor to form a first and a second lead of said guy, said first and said second lead running from said ground anchor through said substratum to said clamp, the free ends of said first and said second lead extending beyond said clamp, the points of contact between said clamp and said first and second leads being adjustable along the length thereof, said first and said second lead being frictionally engaged in said clamp, a separate clamp of each said plurality of guy
  • a variable tension adjustable ground anchoring system adapted to secure a portable structure to a substratum, said system including, a peripheral line secured to the exterior of said structure, having a plurality of circumferentially spaced dependent caternary sections, clamping means removably attached to each of said caternary sections, doubled stranded guy members having one end formed into looped engagement with ground anchors embedded in the substrata, said guy members passing in crossed relationship to each other through said clamp hav- 8 7 ing the free ends disposed on either side of said caternary section, said guy members being, retained infrictional engagement between opposed convex guy wedging and clamping surfaces of said clamp and the points of contact therewith adjustable along the lengththereof whereby uniformity of tension may be maintained on each of said guy members V References Cited by the Examiner UNITED STATES PATENTS Wilcox f l8992 RICHARD W. COOKE,'JR., Primary Examiner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Description

June 1, 1965 w. c. BRISSE GROUND ANCHORING SYSTEM 2 Sheets-Sheet 1 Filed Jan. 3. 1961 INVENTOR. WILLIAM C. BRISSE amwfw V, ATTOR NEYS June 1965 w. c. BRISSE GROUND ANCHORING SYSTEM 2 Sheets-Sheet 2 Filed Jan. 3, 1961 INVENTOR. WILLIAM C. BRISSE wfifzgww wyw FIG? ATTO RN EYS United States Patent 3,186,523 GROUND AN CHORlNG SYSTEM William C. Brisse, Laconia, N.H., assignor to Laconia Malleable Iron Company, Ina, Laconia, NJHL, a corporation of New Hampshire Filed Jan. 3, 1961, Ser. No. 80,362 2 Claims. (Cl. 189-2) This invention relates generally to supporting and anchoring systems and particularly to ground anchors, embedding tools, and guy clamps appurtenant to portable structures.
It is well known that, in recent years, new types of large portable structures, as radomes, have been developed for many diverse purposes. As a result, persons in the art have become increasingly aware of the necessity for providing means which are especially adapted to supporting and anchoring portable structures, the problem being emphasized by the increased size of practical portable structures and the use of such structures under more and more diflicult conditions. A most satisfactory solution to the problem may be attained only when it is recognized that a ground anchoring system designed specifically to support and anchor modern portable structures must be provided.
Insofar as a supporting and anchoring system per se is concerned, there are many criteria which must be met if the full advantages of modern portable structures are to be realized. Among the criteria are the following: The system must be adapted to use wit-h many different types of structures; no special provisions must be required to use the system in different environments; and the system must be economical to produce and use.
A satisfactory ground anchor, first of all must be capable of insertion to any desired depth in different kinds of soil, ranging from soft dirt, or loess, to hardpan, or rock-bestudded ground. It is even desirable that ground anchors be adapted also to use in compacted snow or ice. Such widely differing conditions make it mandatory that the ground anchor be extremely strong, yet somewhat flexible, so as to be operable under any condition encountered. In addition, it is highly desirable that a ground anchor be compact and easily transported, since numbers of anchors often are used in almost inaccessible sites. This last stricture requires that satisfactory g-round anchors be nestable, so that transportation problems attendant upon bringing anchors to their place of use may be minimized. It is evident that ground anchors which have been fabricated from a flat piece, or a sheet, of material will best meet this last-mentioned requirement, but that special provision must be made if an anchor fabricated from a sheet of material is to have sufiicient strength satisfactorily to perform its intended function.
The prior art relating to single piece ground anchors is exemplified by anchors such as are described in Burns et al., US. Patent No. 1,014,806, Saunders, Patent No. 1,244,133, Eggleston, Patent No. 1,308,940, and Clevett, Patent No. 2,712,864. Both Burns et al. and Saunders disclose curved-ground anchors particularly suited for use with relatively light structures, as fences. Such an chors may not be driven straight down into any kind of soil, but must of necessity follow an arcuate path. Therefore, neither may be driven deeply into any type of ground so as to be effective inanchoring large portable structures. Eggleston shows a removable ground stake which also may not be fully inserted into any type of ground. Clevett shows a ground anchor which, although it may very well be used to anchor a portable structure, is not adapted to use in all kinds of soil. The disclosed triangular ground anchor, which has a coneshaped rib running longitudinally thereof may be used to advantage in soft dirt, or loess. However, since it is relatively inflexible, it may not be used to maximum advantage in hard-pan or rock-bestudded soil.
It is common practice in the art to use guys, either wire or cable, running from a number of ground anchors to spaced points on a portable structure. The tension of each guy must be adjusted so that the load is equally distributed between the guys, regardless of the number of guys used or the contour of the terrain on which the structure is being erected. Therefore, any means used to attach guys to a portable structure are critical in a satisfactory anchoring system, since such attaching means must be positive in action under all conditions, easily adjusted and must not weaken the guy.
The prior art relating to clamps used in anchoring systems is exemplified by clamps such as are described in Kiemzle, US. Patent No. 1,315,969, Webb, US. Patent No. 862,298, and the co-pending application of Clevett, Ser. No. 782,597, filed December 23, 1958, now Patent Number 2,986,242. Kiemzle describes a clamp for a cable in which means are provided to ensurerup ture of a coupling before the elastic limits of the cable are reached. Such a device is particularly suited for applications in which sudden strains are experienced and does not provide any easy way of adjusting tension on a cable. Webb describes a clamp for wire used to connect a guy between a fence anda ground anchor. In view of the relatively small strains experienced in such a use, no provision is made to ensure holding by the clamp when large strains are placed on it. Clevett describes a clamp which holds a cable by deforming such cable between two jalws. While such a clamp may be satisfactory for some applications, the weakening of the cable which may be experienced under certain conditions and the fact that the clamp may not be used with a wire guy limits its use.
The means for embedding a ground anchor into any type of substratum is critical to a satisfactory anchoring system. The requirements for driving means for ground anchors are the ability to drive a ground anchor into any type of soil to any desired depth and the ability to withstand repeated shocks in such use. To meet the latter requirement, satisfactory driving means must be highly resistant to fatigue. Consequently, concentration of strain points, whether such points occur in either the ground anchor being driven or in the driving means itself, must be avoided. To meet the former requirement, satisfactory driving means must lock positively to a ground anchor during the driving operation and automatically compensate for small differences in the relat-ive positions of the two elements, should the ground anchor strike some obstruction. In addition, satisfactory driving means should not interfere with the soil displaced by the ground anchor during the driving operation. Finally, the driving means must be capable of easy withdrawal after a ground anchor has been driven to a desired depth.
The prior art relating to driving rods for ground anchors is exemplified in the patent to Foulke, US. Patent No. 1,311,335, in which a device for inserting a fence anchor is described. The lower end of the disclosed driving rod is formed so as to accommodate a particular ground anchor along the side of a rod near the lower end thereof. In operation, an anchor, with a guy attached thereto, is placed on the rod and the rod is driven into the ground to a desired depth. The guy is then pulley upwardly to remove the ground anchor from the rod. While such construction is satisfactory when the anchor is being driven into rockless soil, it is obvious that, if the anchor is being driven into rocky soil, it is quite likely then a rock will dislodge from the flat face before the anchor reaches its desired depth.
Therefore, a primary object of .my. invention is to provide an improved ground anchoring system adapted to use with many types of portable structures.
Another object of my invention is to provide an improved ground anchor, clamp, and driving rod which, when used together permit anchor-ing of portable structures in many types of substrate, using either solid Wire or cable as guys.
Still another object of my inventionis to provide a ground anchor that may be embedded into many kinds of substrate to any desired depth.
Another object of my invention is to provide clamping means which will allow adjustment of the tension among a plurality of guys, without danger of deforming any one of the ys.
A still further object of my invention is to provide a ground anchor and a driving rod which, when used together, will allow the anchor to be driven into soil containing alarge number of rocks.
. A still further object of my invention is to provide a driving rod and a ground anchor which, when used togeaher, minimize chances of damage to either the driving rod or the ground anchor'by distributing forces between the two over a large area. 7
In the accomplishment of these and other objects of my invention, I provide an. anchoring system having a plurality of similar adjustable guy assemblies.
Each guy assembly consists of a unitary ground anchor embedded in the. substratum over which a portable structure is to be erected, a guy doubled on itself to form a bight, the
bight being secured to the ground anchor and the freedetails of my invention will become apparent from the following description of a preferred embodiment, wherein:
FIG. 1 is an isometric view, greatly simplified, showing the anchoring system contemplated by this invention in use;
FIG. 2 is an isometric view of a preferred embodiment of the ground anchor used in FIG. 1.;
FIG. 3 is an isometric View of a preferred embodiment of a driving tool, showing particularly the end of such tool which mates With the. ground anchor shown in FIG- 2;
,FIG. 4. is aside view of ground anchor shown in FIG. 2 and the. driving tool shown in FIG. 3 mated together in a substratum during typical driving process;
FIG. 5 and FIG. 6 are isometric views, partially broken away, showing in detail the clamp used in FIG. 1;
,FIG. 7 and FIG. 8 are, cross-sectional views taken respectively by passing the planes 7-7 and 8-8 through the clamp. as shown in FIG. 6 to illustrate the action of the clamp when it is taken up to secure a guy.
In. FIG; 1', my ground-anchoring system is shown securing a radome, although other types of portable structures are equally well adapted to the system. 'In the figure, the numeral ltlrdesignates a radome. Peripher ally attached to the radome is a so-called catenary" 'line 12. The manner in which the catenary line 12 is attached to theradome is notcritical to the invention, it being suflicienty only that a number ofdepending loops beprovided. 'The radome 10- is-secured to a substratum 14 by, means of a plurality. of my anchoring assemblies 16, one of the. anchoring assemblies 16 being attached to. each one of theloopsof the catenary line 12. Each one of the anchoring assemblies 16 consists of a clamp 18, a guy 20, and. a ground anchor 22. As illustrated, the guy 20 consists of a wire folded approximately at its center and'doubled back on itself to "provide two leads. The bight of the wire is attached to the ground anchor 22 as shown in detail in FIG. 2. The individual ground anchors are driven into the substratum 14 to a desired depth, using the driving tool illustrated in FIG. 3, leaving the free ends of the two leadslprojecting up from. the substratum as shownat A in FIG; 4. After all the ground anchors have been embedded in the substratum 14, the clamp 18 (shown in detail in FIGS. 5 and 6) is placed on each of the loops of the catenary line 12, and the free ends of the guys 20 are inserted in their respective clamps. The clamps are then adjusted so that the tensionon the guys is equalized.
The preferred embodiment of the groimd anchor 22 is shown in FIG..2 to consist of a triangular head section 3.9 and .a driver guide 32 integrally formed with the head section 30 and projecting therefrom. I prefer to use a semi-hard steel sheet, say A" thick, for my ground anchor, although other materials and other thicknesses may be used without departing from the: concepts of my invention. With the preferred material, I have found that a ground anchor made in a shape of an isosceles triangle having a base of 4" and an altitude. of 4' may be fabricated to withstand a pull of 2,000 pounds when embedded in soiL. In order to: render such a relatively light anchor capable of withstanding such a force, the
.head section 30 and the driver guide 32 are stiffened by a pair of complex ribs 38, 40; As may be seen, ribs 38 and 4d are mirror images of each other, so only one will be described in detail. Rib '38 consists of a. leading portion 38A running from the. apex 36 of the head portion 30 adjacent therib 34;; diverging slightly therefrom and being curved oppositelythereto anddeepening with distance from the: apex 36.. Trailing portion 38B=consists of a ribgenerally similar to leadingportion138A, butv commencingadjacent rib 34 at. the: end of' the leading portion 38A. Thus, a protuberance 42 is formed at the junction. between the leading portion 38A and the trailing portion 38B. An aperture'44: isformed through the'head section 30 behind protuberance 42z to receive. a guy, shown here as a wire 43 although. a cable may also be used. Insertion of the wire. 48:.in the aperture 44. may be facilitated by slotting the body section. 30 inwardly from the edge thereof to. the: aperture. 44: and rolling back a flap: 50.. .After the WiI8'48 is inserted in the aperture 44,. flap. 50 is forced downwardly again into the plane of the head section 30 so. as to, holdthe. wire securely in place on the end: sectionSO- It will be noted that the ribs 34; 38, and 4.0 stiffen :the' headsection 34 materially between the apertures 44, thus rendering the head section 30- 'capable of. withstanding the, strains encountered when tension isapplied tothe wire.48; Further, it will'be noted that the wire 48; atthepointswhere it, is bent sharply is protected, by the. protuberances" 42 against abrasion during insertion. into a substratum. It
will further be noted that theposition of the apertures.
consists of a base 66 and. a plate 68 rigidly-attachedto;
each other, as by a bead weld 70. .jBase 66 is preferably formed from a sheet material, say of /s" steel, formed so as to have a substantially semicircular element 72 joining a pair of wing-like elements 74, plate 68 being disposed between wing-like elements 74 over a semicircuthe ground anchor is inserted in the noncircular aperture 76 until surfaces 68A, and 74A of the driver tool come in contact with the base of the head section 30. Thus, rotation of the ground anchor with respect to the driving tool is prevented and driving forces transmitted through the driving rod iisare passed through the wing-like elements 74 and the plate 68 to the ground anchor. However, since the noncircular opening 76 in the driving tool is slightly larger than the driver guide 34, it is possible for the ground anchor to move slightly out of alignment with the longitudinal axis of the rod 60. This means then that, should the anchor strike an obstruction, as the rock 78, it may move slightly with respect to the driving rod 69 so as to find the easiest path around the obstruction thereby minimizing danger of breakage of the anchor. It should be noted also that there is a space between the plate 68 and the beveled end 62 of the driving rod 60. This space provides a relief opening for dirt or small stones which pass through the noncircular opening 76 between the plate 68 and the driver guide 32 during the embedding operation. After the ground anchor has been driven into the substratum 14 to a desired depth, the driving tool may be withdrawn by simply pulling on its upper end.
Referring now to FIGS. 5 through 8, the details of construction and operation of a preferred embodiment of the clamp 13 particularly suited for use in my anchoring system is shown. As illustrated, the clamp is adapted to be used with a wire guy, but as will be shown hereinafter, the clamp may be easily modified for use with a cable guy. The clamp 18 consists of a pair of opposing clamping jaws 80, 82 oriented with respect to each other by a pair of complementary cover plates 86, 83 and linked by a threaded stud 90 and a nut 92 as shown in FIG. 8. The faces of the clamping jaws 8t 32 are crowned, again as shown in FIG. 8, and the stud-9t! is disposed adjacent the base 4 of the clamping jaws 80, 82. A rounded depression 96 is centrally formed in each of the complementary cover plates 86, 88 and the clamping jaws St), 82 to accommodate the catenary line 12 during use. The complementary cover plates 86, 83 are folded so as to form walls 98, 1439 having a number of extensions, as for example extensions 99, 161, to match a corresponding number of cooperating depressions in the opposite cover element to prevent the two cover plates 86, 88 and the clamping jaws 8t), 82 from rotating with respect to each other. The stud 90 passes through the cover plates 86, 83 and the jaws 80, 82 being led through aligned openings in each of the elements. The sizes of the aligned openings are not critical to the invention, it being sufficient only that they be somewhat larger than the diameter of the stud 90.
During operation, the clamp is placed over the catenary line 12 with the depression 96 resting on top of the catenary line. The free ends of the wire 43 to be clamped are passed through the base of the clamp, one free end lying on one side of the catenary line 12 and the other free end lying on the opposite side of the catenary line 12. Upon entering the clamp, the leads are passed on different sides of the stud 90, crossed, and let out of the clamp on different sides of the extensions 99, 101. When the screw 92 is made hand-tight and tension is applied to the wire 48 in the direction shown by the arrows in FIG. 6, the wire moves slightly in the direction of the arrows, frictionally engaging the surfaces of the jaws 8t), 82. This frictional engagement causes the jaws S0, 82 to rock slightly on the stud 9ft, bringing the opposing faces of the jaws together adjacent the base of the clamp as shown in FIG. 8. At the same time, each :of the free ends of the wire 43 bears upon one side of the stud 90 and one of the extensions 99, 101, thereby maintaining the overlap of the free ends of the wire 48 in the clamp, even though the wire 4% slides a short distance within the clamp. As the rocking motion of the jaws 80, 82 continues, the frictional engagement between the wire and the faces of the jaws 8t 82 increases and the cross-over point between the free ends of the wire moves toward the stud until the wire is jammed in the clamp. The advantages attained by crowning the faces of the jaws 80, 82 may now be seen. Obviously, the minimum spacing between the faces of the clamping jaws 80, 82 is dependent upon the thickness of the wire therebetween. At the cross-over point of the free ends of the wire, this minimum spacing is equal to twice the thickness of the wire, if there is no deformation of the wire, while at other points within the clamp the minimum spacing is less, approaching the thickness of the wire as a limit (again, if there is no deformation of the wire). If the faces of the clamping jaws 8t 82 are uncrowned, that is, if the faces are flat, there would be a tendency for holding engagement between the wire and the clamping jaws to be restricted to the area of the clamping jaws adjacent the base of the clamp, or at the very edge of such base. This latter condition, when it exists, is not desirable in that the wires may be held only when the jaws of the clamp dig into the wire. On the other hand, when the faces of the jaws are crowned, the holding engagement between the jaws and the wire is maintained over a relatively long length of the wire, thus ensuring a more secure clamping action without danger of deforming the wire. As a matter of fact, I have found that, the faces of the clamping jaws are crowned, a 2" clamp (that is, a clamp having clamping jaw faces 2" wide) may withstand more than 2,000 pounds tension on a guy without slippage or damage to the guy.
If it is desired to clamp cables rather than wires, the illustrated clamp may easily be adapted to such a purpose as previously mentioned. Thus the jaws 80, 82 may be reversed within the clamp so that two serrated surfaces 102, 104 are oppositely disposed. During operation, a cable is inserted in the clamp in exactly the same manner as previously described and tension is applied to the leads of the cable. The clamp itself operates in basically the same manner as when a wire is to be held, except that the serrations M2, 1% provide additional frictional forces between the cable and the jaws 80, 82 so that the relatively rough surface of the cable may be firmly held.
There are modifications to my clamp which may be made without departing from the original concepts thereof. For example, the cover plates '86, 38 may be dis pensed with, their function being assumed by forming a noncircular hole through the clamping jaws 8t 82 to receive a stud 90 having a noncircular section. Thus, when the screw 92 is taken up, the clamping jaws 80, 82 are prevented from rotating with respect to each other. Another obvious modification to the invention is to provide separate clamping jaws for holding wire and cable rather than the reversible clamping jaw illustrated.
Having thus described and disclosed a preferred embodiment of my invention what I claim as new and desire to secure by Letters Patent of the United States is:
1. A ground anchoring system to secure a portable structure to a substratum, comprising, a line affixed to the outside of said portable structure at a plurality of equally spaced points initially to form a plurality of catenary sections of line depending from said portable structure, a similar plurality of guy assemblies, a separate one of said guy assemblies cooperating with a separate one of said catenary sections of line, each said separate one of said guy assemblies consisting of a clamp having opposed convex guy wedging and clamping surfaces, a guy, and a ground anchor, said ground anchor being embedded in said substratum, said guy being looped around said ground anchor to form a first and a second lead of said guy, said first and said second lead running from said ground anchor through said substratum to said clamp, the free ends of said first and said second lead extending beyond said clamp, the points of contact between said clamp and said first and second leads being adjustable along the length thereof, said first and said second lead being frictionally engaged in said clamp, a separate clamp of each said plurality of guy assemblies being disposed on'a separate one of said catenary sections whereby the tension on each said guy assembly may beequalized by adjusting the points of contact between each said clamp and the leads of said guy corresponding thereto.
2. A variable tension adjustable ground anchoring systemadapted to secure a portable structure to a substratum, said system including, a peripheral line secured to the exterior of said structure, having a plurality of circumferentially spaced dependent caternary sections, clamping means removably attached to each of said caternary sections, doubled stranded guy members having one end formed into looped engagement with ground anchors embedded in the substrata, said guy members passing in crossed relationship to each other through said clamp hav- 8 7 ing the free ends disposed on either side of said caternary section, said guy members being, retained infrictional engagement between opposed convex guy wedging and clamping surfaces of said clamp and the points of contact therewith adjustable along the lengththereof whereby uniformity of tension may be maintained on each of said guy members V References Cited by the Examiner UNITED STATES PATENTS Wilcox f l8992 RICHARD W. COOKE,'JR., Primary Examiner.
JACOB L, NACKENOFF, CORNELIUS D. ANGEL,
' Examiners.

Claims (1)

1. A GROUND ANCHORING SYSTEM TO SECURE A PORTABLE STRUCTURE TO A SUBSTREAM, COMPRISING, A LINE AFFIXED TO THE OUTSIDE OF SAID PORTABLE STRUCTURE AT A PLURALITY OF EQUALLY SPACED POINTS INITIALLY TO FORM A PLURALITY OF CATENARY SECTIONS OF LINE DEPENDING FROM SAID PORTABLE STRUCTURE, A SIMILAR PLURALITY OF GUY ASSEMBLIES, A SEPARATE ONE OF SAID GUY ASSEMBLIES COOPERATING WITH A SEPARATE ONE OF SAID CANTENARY SECTIONS OF LINE, EACH SAID SEPARATE ONE OF SAID GUY ASSEMBLIES CONSISTING OF A CLAMP HAVING OPPOSED CONVEX GUY WEDGING AND CLAMPING SURFACES, A GUY, AND A GROUND ANCHOR, SAID GROUND ANCHOR BEING EMBEDDED IN SAID SUBSTREAM, SAID GUY BEING LOOPED AROUND SAID GROUND ANCHOR TO FORM A FIRST AND A SECOND LEAD OF SAID GUY, SAID FRIST AND SAID SECOND LEAD RUNNING FROM SAID GROUND ANCHOR THROUGH SAID SUBSTRATUM TO SAID CLAMP, THE FREE ENDS OF SAID FIRST AND SAID SECOND LEAD EXTENDING BEYOND SAID CLAMP, THE POINTS OF CONTACT BETWEEN SAID CLAMP AND SAID FIRST AND SECOND LEADS BEING ADJUSTABLE ALONG THE LENGTH THEREOF, SAID FIRST AND SECOND LEAD BEING FRICTIONALLY ENGAGED IN SAID CLAMP, A SEPARATE CLAMP OF EACH SAID PLURALITY OF GUY ASSEMBLIES BEING DISPOSED OND A SEPARATE ONE OF SAID CATENARY SECTIONS WHEREBY THE TENSION ON EACH SAID GUY ASSEMBLY MAY BE EQUALIZED BY ADJUSTING THE POINTS OF CONTACT BETWEEN EACH SAID CLAMP AND THE LEADS OF SAID GUY CORRESPONDING THERETO.,
US80362A 1961-01-03 1961-01-03 Ground anchoring system Expired - Lifetime US3186523A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US80362A US3186523A (en) 1961-01-03 1961-01-03 Ground anchoring system
US457342A US3242623A (en) 1961-01-03 1965-05-20 Ground anchoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80362A US3186523A (en) 1961-01-03 1961-01-03 Ground anchoring system

Publications (1)

Publication Number Publication Date
US3186523A true US3186523A (en) 1965-06-01

Family

ID=22156890

Family Applications (1)

Application Number Title Priority Date Filing Date
US80362A Expired - Lifetime US3186523A (en) 1961-01-03 1961-01-03 Ground anchoring system

Country Status (1)

Country Link
US (1) US3186523A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611970A (en) * 1969-12-10 1971-10-12 Sun Shipbuilding & Dry Dock Co High-pressure window arrangement
FR2488301A1 (en) * 1980-08-07 1982-02-12 Inst Francais Du Petrole Driven ground anchor for cable stay - has peg which leans away from applied force with cable secured by pin-joint below pressure centre
US4603520A (en) * 1985-01-22 1986-08-05 Construction Robotics, Inc. Post mounting anchor base
US4848046A (en) * 1985-10-11 1989-07-18 Malcolm Wallhead Buildings for harsh environments
US5404682A (en) * 1992-03-24 1995-04-11 West; Ronald R. Adjustable mounting for a post system
US5458428A (en) * 1992-03-24 1995-10-17 West; Ronald R. Cantilever mounting system
US6481166B2 (en) * 2001-04-12 2002-11-19 Andrew B. Shelton Weather shelter
WO2013009364A1 (en) * 2011-07-14 2013-01-17 Foresight Products Llc Improved ground anchor with guide ribs
USD745699S1 (en) * 2014-01-13 2015-12-15 Gripple Limited Anchoring device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1178282A (en) * 1915-06-24 1916-04-04 Jacob Wilcox Ground-anchor.
US1301624A (en) * 1916-07-31 1919-04-22 Frank J Van Cott Silo.
US1765837A (en) * 1929-02-27 1930-06-24 Edward O Keator Cable clamp
US2335300A (en) * 1941-11-25 1943-11-30 Neff Wallace Building construction
US2712864A (en) * 1952-10-03 1955-07-12 Jr Merton L Clevett Ground anchor
US2850026A (en) * 1954-07-01 1958-09-02 Goodyear Aircraft Corp Airplane hangar
US2986242A (en) * 1958-12-23 1961-05-30 Laconia Malleable Iron Company Base ring foundation
US3044807A (en) * 1961-01-03 1962-07-17 Laconia Mallcable Iron Company Guy clamp

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1178282A (en) * 1915-06-24 1916-04-04 Jacob Wilcox Ground-anchor.
US1301624A (en) * 1916-07-31 1919-04-22 Frank J Van Cott Silo.
US1765837A (en) * 1929-02-27 1930-06-24 Edward O Keator Cable clamp
US2335300A (en) * 1941-11-25 1943-11-30 Neff Wallace Building construction
US2712864A (en) * 1952-10-03 1955-07-12 Jr Merton L Clevett Ground anchor
US2850026A (en) * 1954-07-01 1958-09-02 Goodyear Aircraft Corp Airplane hangar
US2986242A (en) * 1958-12-23 1961-05-30 Laconia Malleable Iron Company Base ring foundation
US3044807A (en) * 1961-01-03 1962-07-17 Laconia Mallcable Iron Company Guy clamp

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611970A (en) * 1969-12-10 1971-10-12 Sun Shipbuilding & Dry Dock Co High-pressure window arrangement
FR2488301A1 (en) * 1980-08-07 1982-02-12 Inst Francais Du Petrole Driven ground anchor for cable stay - has peg which leans away from applied force with cable secured by pin-joint below pressure centre
US4603520A (en) * 1985-01-22 1986-08-05 Construction Robotics, Inc. Post mounting anchor base
US4848046A (en) * 1985-10-11 1989-07-18 Malcolm Wallhead Buildings for harsh environments
US5404682A (en) * 1992-03-24 1995-04-11 West; Ronald R. Adjustable mounting for a post system
US5458428A (en) * 1992-03-24 1995-10-17 West; Ronald R. Cantilever mounting system
USRE36550E (en) * 1992-03-24 2000-02-08 West; Ronald R. Adjustable mounting for a post system
US6481166B2 (en) * 2001-04-12 2002-11-19 Andrew B. Shelton Weather shelter
US6550189B2 (en) * 2001-04-12 2003-04-22 Andrew B. Shelton Weather shelter
WO2013009364A1 (en) * 2011-07-14 2013-01-17 Foresight Products Llc Improved ground anchor with guide ribs
USD745699S1 (en) * 2014-01-13 2015-12-15 Gripple Limited Anchoring device

Similar Documents

Publication Publication Date Title
US2712864A (en) Ground anchor
US7713003B2 (en) Ground anchors
US3186523A (en) Ground anchoring system
EP0578636B1 (en) Anchorage device for use in sand or sandy soils
US5775037A (en) Ground anchor
US4003169A (en) Anchor system
US4619559A (en) Rock bolting
US20060236620A1 (en) Ground anchor
US4662035A (en) Wire clamp
US3242623A (en) Ground anchoring system
US4537534A (en) Drive fit coupling for precast concrete piles
WO2008115078A1 (en) Ground anchor
US2955430A (en) Anchor
US2653688A (en) Fence post anchor
US20210048055A1 (en) Screw anchors for anchoring loads
US4435931A (en) Guy wire protector device
US855298A (en) Earth-anchor.
KR100586078B1 (en) Internal fixture of tension wire removal type ground anchorage
US2870245A (en) Electrical insulator
US3044807A (en) Guy clamp
US1361345A (en) Fencepost
US4026080A (en) Field anchor
JP4366334B2 (en) Cross clip and its fastening method
US5596854A (en) Post-tensioning anchor head assembly
US4337555A (en) Wire gripping device