US3199789A - Spray nozzle having a rectangular high velocity gas outlet and low velocity liquid outlets - Google Patents

Spray nozzle having a rectangular high velocity gas outlet and low velocity liquid outlets Download PDF

Info

Publication number
US3199789A
US3199789A US296724A US29672463A US3199789A US 3199789 A US3199789 A US 3199789A US 296724 A US296724 A US 296724A US 29672463 A US29672463 A US 29672463A US 3199789 A US3199789 A US 3199789A
Authority
US
United States
Prior art keywords
nozzle
liquid
gas
pattern
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US296724A
Inventor
James R James
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
POLYURETHAE TECHNOLOGY OF AMERICA- MARTIN SWEETS COMPANY Inc
Original Assignee
Martin Sweets Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martin Sweets Co Inc filed Critical Martin Sweets Co Inc
Priority to US296724A priority Critical patent/US3199789A/en
Priority to US474396A priority patent/US3335956A/en
Application granted granted Critical
Publication of US3199789A publication Critical patent/US3199789A/en
Assigned to POLYURETHAE TECHNOLOGY OF AMERICA- MARTIN SWEETS, COMPANY, INC. reassignment POLYURETHAE TECHNOLOGY OF AMERICA- MARTIN SWEETS, COMPANY, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MARTIN SWEET COMPANY, INC., THE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0876Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form parallel jets constituted by a liquid or a mixture containing a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material

Description

3,199,789 Y GAS J. R. JAMES Aug. 10, 1965 SPRAY NOZZLE HAVING A RECTANGULAR HIGH VELOCIT OUTLET AND LOW VELOCITY LIQUID OUTLETS 2 Sheets-Sheet 1 Filed July 22, 1963 lllllll l INVENTOR.
JAMES R. JAMES BY wfly/i;
ATTORNEY Aug. 10, 1965 J. R. JAMES SPRAY NOZZLE HAVING A RECTANGULAR HIGH VELOCITY GAS OUTLET AND LOW VELOCITY LIQUID OUTLETS Filed July 22, 1965 2 Sheets-Sheet 2 /2 \nl gaw 0 000 :OOOOOOO lnv In .0009009009 00- INVENTOR.
JAMES R. JAMES [@fifi ATTORNEY United States Patent C) M 3,199,789 SPRAY NfiZZLE HAVHJG A RECTANG' .QAR HIGH VELOCITY GAS @UTLET AND LEW VELGCITY LIQUID OUTLETS .iames R. James, Louisville, Ky., assignor to The l /iartin Sweets Company, inc Louisville, Ky, a corporation of Kentucky Filed July 22, 1963, Ser. No. 296,724 4 Claims. (Cl. 239-424) This invention relates to a novel spray nozzle for use in spraying a liquid stream which is conveyed by a pressurized gas. More specifically, this invention relates to a spray nozzle which is adapted to spray a liquid stream comprising mixed liquid components in which one or more of said components may contain suspended solids. More specifically, this invention relates to a spray nozzle which is adapted to produce an elliptical spray pattern on a substrate.
The spray nozzle of this invention is specifically adapted for use in spraying various foam blends, as for example, polyrethane. However, it may be advantageously used in spraying other liquid components wherein the problem of overspray and the production of a uniform pattern of uniform thickness is encountered. Overspray, which is sometimes termed off spray, relates to materials which fall outside of the general spray pattern. Additionally, overspray relates to particles of materials which do not reach the surface of the substrate. Thus, if the atomization of the material is too great there is a possibility of a large portion of the liquid material being so line in particle size that is not conveyed to the substrate and either falls short or is blown away by cross draft or the exhaust system in the spray booth. Gverspray refers also to volatile components in the stream which turn into a gas prior to reaching the substrate and thus are effectively lost.
An object of my invention, therefore, is the provision of a spray nozzle which minimizes the amount of ofispray.
Another problem which is encountered in the spraying of foam blends onto a substrate is in obtaining a uniform desired thickness. In spraying of foam blends thicknesses of from a fraction of an inch up to several inches are desired and this normally creates a difficulty in producing an even planar surface. In some instances, thicknesses up to ten inches or more are required. In some cases, the exterior surface appears rough and pebbly. More importantly, however, with prior art apparatus, there has been a lack of uniformity in thickness of the sprayed material. This produces waste material on the thicker portions if one thickness is desired to accomplish the purpose of coating and/or insulation. Thus, for example, if a thickness of one inch of insulation is required, it was sometimes necessary with prior art apparatus to spray an average of one and one-quarter to one and one-half inches to insure that in certain areas there would be a minimum of one inch.
Another important object of my invention is the provision of a spray nozzle which will provide a uniform pattern whereby a uniform thickness of material may be sprayed onto a substrate.
The nozzle of my invention may be utilized on some types of mixing heads now in production. One such type of mixing head is commercially produced by The Martin Sweets Company, Inc. of Louisville, Kentucky. This type of mixing head is described by John F. Reeves in an article entitled, Rigid FoamsApplication and Use in Transportation, contained in the publication, Cellular PlasticsTodays Technology, which was presented at the 7th Annual Technical Conference Proceedings, Cellular Plastics Division, Society of the Plastics Industry, and published by the Society of the Plastics Industry,
3,199,789 Patented Aug. 10, 1965 Inc., New York, New York, Section 2N, pages 2 through 6, April 1963. This mixing head utilizes a rotatable rodtype valve such as that disclosed by G. F. Spragens in US. Patent 3,098,596 for Valve Packing Assembly. By use :of this valve communication is established in one position to the mixing chamber of the mixing head and in another position to return lines for recirculation of the liquid components by liquid pumps. Thus, the liquid components, as for example, a prepolymer mixture and a catalyst, are mixed internally in the mixing chamber so that the provision of my improved nozzle with an accessory source of gas will provide a spraying apparatus for use on various substrates, which may be disposed either vertically or horizontally.
Basically, my invention provides a gas pattern forming means whereby a gas pattern of high velocity and low pressure is formed directly adjacent to the face of the nozzle. Combined with the high velocity gas pattern is a low velocity liquid flow which is pushed by atmospheric pressure or, more precisely, by the difference in atmospheric pressure and the low pressure zone created by the high velocity gas into the gas pattern to be conveyed onto the substrate. Additionally, I have found it advantageous to utilize a liquid distribution face directly adjacent to the gas pattern forming means and the liquid outlets so that the liquid will be pushed up onto the liquid distribution face in the form of a uniform layer to be aspirated into the gas stream. The low pressure, high velocity gas pattern is provided by a series of small diameter gas outlets arranged in such a manner as to produce a gas pattern which is rectangular in shape and of small cross section directly adjacent to the face of the nozzle. In one modification, I have used a single row of small diameter gas outlets. The pattern formed thereby is considered to be rectangular in shape and of small cross section. The low velocity liquid flow is accomplished by use of relatively large liquid outlets disposed on each side of the gas pattern forming means. The liquid distribution face is disposed on either side of the gas pattern forming means between the gas outlets and the liquid outlets, so that the liquid is first distributed over the distribution face prior to atomization by the gas stream. I have found that it is advantageous to make both the gas pattern forming means and the liquid distribution face longer than the liquid outlets to insure that all of the liquid is drawn onto the sides of the face. Furthermore, in a preferred embodiment I utilize slit-like liquid outlets to assist in dis tributing the liquid over a relatively long area. I have found that if the liquid projects in the form of a stream away from the nozzle to meet the gas stream, that considerable turbulence results, thus producing an excessive amount of overspray. Thus, one of the features of my invention is the mixing of the liquid and the gas in an area adjacent to the face of the nozzle and not in spaced relation therefrom.
ly invention will be better understood by reference to the accompanying drawings and to the following detailed description.
FIG. 1 is a front elevation of the spray nozzle of this invention.
PEG. 2 is a side elevation of the nozzle.
FIG. 3 is a horizontal section of the nozzle of this invention taken along lines 33 of FIG. 1.
FIG. 4 is a diagrammatical view illustrating the relation of the liquid outlets and the gas outlets of my spray nozzle to the pattern produced on the substrate.
FIG. 5 is a front elevation of another embodiment of my spray nozzle.
FIG. 6 is a horizontal section taken along lines 66 of PEG. 5.
FIGS. 7 and 8 are front elevations of other modifications of my spray nozzle.
amazes 3 Referring now to an illustration of the embodiments of my invention as shown in FIGS. l3, 1 designates the spray nozzle. The face of the nozzle 15 contains a raised enclosure 8 for the liquid and gaseous outlets 9 and 4, respectively. Gas is introduced through gas hose 25, which is connected to the nozzle by hose coupling 26, and
into gas conduit 2 which runs transversely across the diameter of the nozzle and terminates in plug 27. Conduit 2 communicates with air channels 3, the axes of which are substantially perpendicular to the conduit, and to the face 15 of the nozzle. The air channels 3 terminate in air outlets 4 which in FIG. 1 are in approximate linear arrangement along ridge 5 in two rows separated by septum 7. The liquid component is introduced through liquid chamber 11, which has sloping walls 17 which converge with liquid channels it Liquid channels it terminate in slit-like liquid outlets 9 on each side of the walls 6 of ridge 5. These slits are of such size that the liquid leaves the slits at a very low velocity, otherwise the liquid would shoot out some distance before being drawn into the gas stream, causing a tremendous amount of overspray. Further, it will be noted that the walls 6 of ridge 5 extend beyond the ends of the slits 9 to form a liquid. distribution face, so that the liquid emerging therefrom at low pressure and low velocity is drawn up the walls 6 of the ridge in a uniform layer and is thence pushed into the low pressure gas stream. Liquid chamber 11 is separated in the middle by a V-shaped post 16 in which air conduit 2 is located (see FIG. 3). The entire assembly is equipped with flange 12 and groove 13 on the inner side for an O ring seal so as to engage with the mixing head of the type previously referred to.
In the modifications shown in FIGS. 5 and 6, the liquid channels terminate in round liquid outlets 3!). Gas outlets 4 are contained in a triangular ridge 37 in which the area 35 constitutes a liquid distribution face and area 36 serves as a dividing septum.
In the modification shown in FIG. 7, the liquid outlets comprise a series of round openings 31 and the gas outlets 4 form a single row along the face of the ridge. This modification is primarily useful with materials falling in the lower range of viscosities.
FIG. 8 illustrates another modification utilizing two round liquid outlets 32 on each side of the ridge 5.
Operation For purposesof illustration, the operation of the nozzle of this invention is as follows: If it were desired to produce' a foam blend, the mixed chemical constituents in the form of one or more liquids in which one or more of the constituents might contain a suspended solid, enter liquid chamber 11. The mixed components flow through liquid channels and emerge from liquid outlets 9. Compressed gas at a pressure generally in the range of from. to 100 p.s.i.g. is introduced via air hose 25 onto conduit 2 and is forced through air channels 3 to emerge from air outlets 4 as small gas jets of high velocity. These air channels in practice are about 4 of an inch in diameter although the diameter may vary somewhat depending on the particular requirements. Thus, there is produced a low pressure area projecting from the longitudinal axis of the nozzle, the shape of this area, in the zone adjacent to the face of the ridge is substantially rectangular, having a very narrow cross section. The liquid components emerging at a relatively low pressure and velocity from liquid outlets 9 are aspirated into the low pressure zone produced by the high velocity gas stream. More precisely, atmospheric pressure or the difference between atmospheric pressure and the low pressure zone caused by the gas jets, forces the liquid against the distribution wall 6 of ridge 5 to force the liquid components into the gas pattern. The pattern at this point is generally rectangular and thus differs from that which results on thesubstrate. It appears that the liquid entering the gas stream causes turbulence so directed that it confines itself for most part to one of the two axes perpendicular to the direction of spray; thus spreading the original pattern composed only of gas to form an ellipse of approximately two to one dimensions (see FIG. 4). it will be noted that the longitudinal or major ams of the pattern 2% is essentially perpendicular to the longitudinal direction of the air outlets. The material 21 outside of the pattern area 26 is overspray previously referred to.
I have found that the relation of the minor axis of the ellipse to the major axis of the ellipse as it appears on the substrate is approximately one to two. Moreover, utilizing various liquid constituents having viscosities within the approximate range of from less than 1 centipoise to about 5,000 centipoises it has been found that the pattern produced is similar in all cases. \Vhile the shape of the pattern and its relation on the substrate relative to the face of the nozzle appears similar, the pattern does not to be the same size under various conditions and with different materials. My experiments show that the higher the throughput of the liquids the bigger the pattern becomes. However, the ratio of the major axis to the minor axis appears to remain about two to one. I have utilized materials ranging in viscosity from less than 1 centipoise to about 5,000 centipoises, i.e., from methylene chloride to a viscous foam blend of polyurethane. It appears also that the hi her-the viscosity of the liquid the big er the pattern on the substrate. Thus, it may be stated that the more turbulence which is created in the spray pattern, the larger the pattern on the substrate will be. it will be appreciated that the pattern under discussion is that obtained at the usual spray distance of two to four feet from the gun to substrate. Under a different set of circumstances, moving the gun closer to the substrate causes the propelling gas to deform the spray already on the substrate. Moving farther away from the substrate causes the atomized foam, or a portion thereof, to fall short of the substrate. However, it may be stated that even though there are wide variations in the dimensions of the pattern depending upon the throughput of the liquid, the viscosity, and the distance fromthe substrate, that the resulting pattern has a ratio of the major of the pattern to the minor axis of the pattern of about two to one. It should also be pointed out that the major axis of the pattern on the substrate lies perpendicular to the longitudinal direction of the air outlets on the face of the nozzle.
While there has been shown and described the fundamental novel features of the invention as applied to preferred embodiments, it will be understood that various omissions and substitutions and changes in the form and details of the assembly illustrated and in its operation may be made by those skilled in the art without departing from the spirit of the invention. It is the intention, therefore, to be limited only so as to be commensurate in scope with the appended claims.
I claim:
1. In a liquid spraying appliance wherein a liquid com ponent is conveyed by a pressurized gas stream:
(a) a nozzle for producing a substantially elliptical spray pattern on a substrate, said nozzle having a face portion located in a plane and containing a gas pattern forming means and liquid channels having liquid outlets which open in the face portion of said nozzle inwhich (i) said gas pattern forming means comprises a gas channel containing a high velocity gas outlet which opens near the center of the face of said nozzle in the form of a jet opening of relatively small dimension and which is in operative relation with a source of pressurized gas to form a low pressure area which defines a substantially rectangular gas pattern of narrow cross section in close proximity to said face LALV portion of said nozzle, said gas channel having.
an axis which lies essentially perpendicular to the plane of the face of said nozzle and which lies essentially parallel to the longitudinal axis of said nozzle; and
(i) said liquid channels terminate in low velocity liquid outlets of large dimension relative to the dimension of said high velocity gas outlet which are located on each of two sides of said gas pattern forming means in the face portion of said nozzle, said liquid channels being in operative relation to a source of liquid so as to produce at least two liquid streams of low velocity which are aspirated into said gas pattern in an area outside of said nozzle out which is closely adjacent to the face portion of said nozzle.
2. A nozzle as defined in claim 1 in which the gas pattern forming means comprises at least one linearly arranged series of small diameter high velocity gas outlets located near the center of the face portion of the nozzle so as to produce a gas pattern, in close proximity to the face portion of the nozzle, which is substantially rectangular in shape and which has a narrow cross section.
3. A nozzle as defined in claim 1 in which the gas pattern forming means comprises a series of high velocity gas outlets of small diameter which open along the surface of a raised ridge running across the center of the face of the nozzle, said ridge projecting forwardly of the plane of said face portion in the direction of the longitudinal axis of said nozzle, said series of high velocity gas outlets forming a pattern of gas outlets longer in one dimension than in another in which the long dimension of said pattern extends beyond the ends of the liquid outlets.
4. A nozzle as defined in claim 1 which is further combined with a raised step running across the center of the face portion of the nozzle, said step projecting forwardly of the face portion in the d-irection of the longitudinal axis of said nozzle and terminating in a flat surface, said high velocity gas outlet of said gas pattern forming means opening in the fiat surface of said raised step, and the sides of said raised step forming two liquid distribution faces, each of said faces being located directly adjacent and laterally to said gas pattern forming means and each of said faces lying directly adjacent and medially to one of said liquid outlets.
References Qited by the Examiner UNITED STATES PATENTS 584,864 6/97 Fisher 239424 1,733,054 10/29 Crill 239424 2,382,151 8/ Harper 239--424 2,515,792 7/50 Ofeldt 239-9 2,721,148 10/55 Reading 239-9 2,813,754 12/57 Zielinski 239-424 3,084,875 4/63 Klingler 239-424 3,096,023 7/63 Thomas 239424 FOREIGN PATENTS 583,788 6/ 47 Great Britain.
M. HENSON WOGD, IR., Primary Examiner.
EVERETT W. KIRBY, Examiner.

Claims (1)

1. IN A LIQUID SPRAYING APPLIANCE WHEREIN A LIQUID COMPONENT IS CONVEYED BY A PRESSURIZED GAS STREAM: (A) A NOZZLE FOR PRODUCING A SUBSTANTIALLY ELLIPTICAL SPRAY PATTERN ON A SUBSTRATE, SAID NOZZLE HAVING A FACE PORTION LOCATED IN A PLANE AND CONTAINING A GAS PATTERN FORMING MEANS AND LIQUID CHANNELS HAVING LIQUID OUTLETS WHICH OPEN IN THE FACE PORTION OF SAID NOZZLE IN WHICH (I) SAID GAS PATTERN FORMING MEANS COMPRISES A GAS CHANNEL CONTAINING A HIGH VELOCITY GAS OUTLET WHICH OPENS NEAR THE CENTER OF THE FACE OF SAID NOZZLE IN THE FORM OF A JET OPENING OF RELATIVELY SMALL DIMENSION AND WHICH IS IN OPERATIVE RELATION WITH A SOURCE OF PRESSURIZED GAS TO FORM A LOW PRESSURE AREA WHICH DEFINES A SUBSTANTIALLY RECTANGULAR GAS PATTERN OF NARROW CROSS SECTION IN CLOSE PROXIMITY TO SAID FACE PORTION OF SAID NOZZLE, SAID GAS CHANNEL HAVING AN AXIS WHICH LIES ESSENTIALLY PERPENDICULAR TO THE PLANE OF THE FACE OF SAID NOZZLE AND WHICH LIES ESSENTIALLY PARALLEL TO THE LONGITUDINAL AXIS OF SAID NOZZLE; AND (II) SAID LIQUID CHANNELS TERMINATE IN LOW VELOCITY LIQUID OUTLETS OF LARGE DIMENSION RELATIVE TO THE DIMENSION OF SAID HIGH VELOCITY GAS OUTLET WHICH ARE LOCATED ON EACH OF TWO SIDES OF SAID GAS PATTERN FORMING MEANS INTHE FACE PORTION OF SAID NOZZLE, SAID LIQUID CHANNELS BEING IN OPERATIVE RELATION TO A SOURCE OF LIQUID SO AS TO PRODUCE AT LEAST TWO LIQUID STREAMS OF LOW VELOCITY WHICH ARE ASPIRATED INTO SAID GAS PATTERN IN AN AREA OUTSIDE OF SAID NOZZLE BUT WHICH IS CLOSELY ADJACENT TO THE FACE PORTION OF SAID NOZZLE.
US296724A 1963-07-22 1963-07-22 Spray nozzle having a rectangular high velocity gas outlet and low velocity liquid outlets Expired - Lifetime US3199789A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US296724A US3199789A (en) 1963-07-22 1963-07-22 Spray nozzle having a rectangular high velocity gas outlet and low velocity liquid outlets
US474396A US3335956A (en) 1963-07-22 1965-07-23 Spray process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US296724A US3199789A (en) 1963-07-22 1963-07-22 Spray nozzle having a rectangular high velocity gas outlet and low velocity liquid outlets

Publications (1)

Publication Number Publication Date
US3199789A true US3199789A (en) 1965-08-10

Family

ID=23143277

Family Applications (1)

Application Number Title Priority Date Filing Date
US296724A Expired - Lifetime US3199789A (en) 1963-07-22 1963-07-22 Spray nozzle having a rectangular high velocity gas outlet and low velocity liquid outlets

Country Status (1)

Country Link
US (1) US3199789A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741482A (en) * 1971-09-17 1973-06-26 Atlantic Richfield Co Distribution device
US3836328A (en) * 1972-07-26 1974-09-17 Reynolds Metals Co Urface sterilization
US4575609A (en) * 1984-03-06 1986-03-11 The United States Of America As Represented By The United States Department Of Energy Concentric micro-nebulizer for direct sample insertion
US4615895A (en) * 1985-04-18 1986-10-07 Nabisco Brands, Inc. Forced air/gas burner and baking oven incorporating same
US4786247A (en) * 1985-04-18 1988-11-22 Nabisco Brands, Inc. Method of lengthening the flame from a gas burner
USRE33374E (en) * 1985-04-18 1990-10-09 Nabisco Brands, Inc. Forced air/gas burner and baking oven incorporating same
US5065942A (en) * 1990-03-05 1991-11-19 Shannon Timothy L Shower spray system
US5354378A (en) * 1992-07-08 1994-10-11 Nordson Corporation Slot nozzle apparatus for applying coatings to bottles
US5421921A (en) * 1992-07-08 1995-06-06 Nordson Corporation Segmented slot die for air spray of fibers
US5429840A (en) * 1992-07-08 1995-07-04 Nordson Corporation Apparatus and methods for applying discrete foam coatings
US5548866A (en) * 1994-01-14 1996-08-27 The Hoover Company Cleaning solution applicator
US5800614A (en) * 1996-09-24 1998-09-01 Foust; Paul William Adhesive applier for screen printing machine
US6938547B1 (en) 2004-04-21 2005-09-06 Donald R. Cecil Overspray guard for a screen printing machine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US584864A (en) * 1897-06-22 Pneumatic painting-nozzle
US1733054A (en) * 1926-12-29 1929-10-22 Edgar J Crill Shower-bath spray
US2382151A (en) * 1940-12-11 1945-08-14 Jr William Harper Fuel injector
GB588788A (en) * 1945-03-07 1947-06-03 Allen Charles R Improvements in and relating to nozzles for applying pressure within a liquid
US2515792A (en) * 1946-11-22 1950-07-18 Homestead Valve Mfg Co Spraying machine
US2721148A (en) * 1954-07-23 1955-10-18 Ralph R Reading Spray device for retreading tires and the like uses
US2813754A (en) * 1955-06-27 1957-11-19 Zielinski Joseph Pressure nozzles
US3084875A (en) * 1959-06-06 1963-04-09 Maschf Augsburg Nuernberg Ag Ink nozzle for pump-type ink motions
US3096023A (en) * 1959-09-16 1963-07-02 Auto Research Corp Lubrication

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US584864A (en) * 1897-06-22 Pneumatic painting-nozzle
US1733054A (en) * 1926-12-29 1929-10-22 Edgar J Crill Shower-bath spray
US2382151A (en) * 1940-12-11 1945-08-14 Jr William Harper Fuel injector
GB588788A (en) * 1945-03-07 1947-06-03 Allen Charles R Improvements in and relating to nozzles for applying pressure within a liquid
US2515792A (en) * 1946-11-22 1950-07-18 Homestead Valve Mfg Co Spraying machine
US2721148A (en) * 1954-07-23 1955-10-18 Ralph R Reading Spray device for retreading tires and the like uses
US2813754A (en) * 1955-06-27 1957-11-19 Zielinski Joseph Pressure nozzles
US3084875A (en) * 1959-06-06 1963-04-09 Maschf Augsburg Nuernberg Ag Ink nozzle for pump-type ink motions
US3096023A (en) * 1959-09-16 1963-07-02 Auto Research Corp Lubrication

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741482A (en) * 1971-09-17 1973-06-26 Atlantic Richfield Co Distribution device
US3836328A (en) * 1972-07-26 1974-09-17 Reynolds Metals Co Urface sterilization
US4575609A (en) * 1984-03-06 1986-03-11 The United States Of America As Represented By The United States Department Of Energy Concentric micro-nebulizer for direct sample insertion
US4615895A (en) * 1985-04-18 1986-10-07 Nabisco Brands, Inc. Forced air/gas burner and baking oven incorporating same
US4786247A (en) * 1985-04-18 1988-11-22 Nabisco Brands, Inc. Method of lengthening the flame from a gas burner
USRE33374E (en) * 1985-04-18 1990-10-09 Nabisco Brands, Inc. Forced air/gas burner and baking oven incorporating same
US5065942A (en) * 1990-03-05 1991-11-19 Shannon Timothy L Shower spray system
US5354378A (en) * 1992-07-08 1994-10-11 Nordson Corporation Slot nozzle apparatus for applying coatings to bottles
US5421921A (en) * 1992-07-08 1995-06-06 Nordson Corporation Segmented slot die for air spray of fibers
US5429840A (en) * 1992-07-08 1995-07-04 Nordson Corporation Apparatus and methods for applying discrete foam coatings
US5548866A (en) * 1994-01-14 1996-08-27 The Hoover Company Cleaning solution applicator
US5799361A (en) * 1994-01-14 1998-09-01 The Hoover Company Cleaning solution applicator
US5800614A (en) * 1996-09-24 1998-09-01 Foust; Paul William Adhesive applier for screen printing machine
US6938547B1 (en) 2004-04-21 2005-09-06 Donald R. Cecil Overspray guard for a screen printing machine

Similar Documents

Publication Publication Date Title
US3199789A (en) Spray nozzle having a rectangular high velocity gas outlet and low velocity liquid outlets
US3764069A (en) Method and apparatus for spraying
US3168030A (en) Arrangement in spray-painting channels
US3388868A (en) Foam producing nozzle
ES405203A1 (en) Method and apparatus for producing a flat fan paint spray pattern
US3659787A (en) Nozzle
KR860008803A (en) Powder spraying apparatus and method
EP0498600B1 (en) Spray die for producing spray fans
US3335956A (en) Spray process
ES2165708T3 (en) GROOVED NOZZLE FOR SPRAYING A CONTINUOUS COLADA PRODUCT WITH A COOLING LIQUID.
AU2003267884A1 (en) Internal mix air atomizing spray nozzle assembly
KR920019425A (en) Fluid spray gun
GB2157591A (en) Air-assisted spray nozzle
GB1396959A (en) Apparatus for exhaust gas cleaning
GB1587898A (en) Method of and apparatus for pneumatically spraying liquid products
US4473186A (en) Method and apparatus for spraying
US4533571A (en) Method and apparatus for uniformly coating a substrate with a powder
US3258207A (en) Solid particle spray apparatus
US4998993A (en) Spraying gun
US3365137A (en) Liquid dispenser head which develops a fan-like spray
US3554164A (en) Powder spray system
US2587993A (en) Spray gun air cap
ES8205728A1 (en) Process for coating glass
GB938031A (en) Improvements in or relating to the spraying of surfaces and to spray guns
GB1321468A (en) Atomisation nozzle

Legal Events

Date Code Title Description
AS Assignment

Owner name: POLYURETHAE TECHNOLOGY OF AMERICA- MARTIN SWEETS,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MARTIN SWEET COMPANY, INC., THE;REEL/FRAME:003854/0734

Effective date: 19800304