US3223056A - Table construction - Google Patents

Table construction Download PDF

Info

Publication number
US3223056A
US3223056A US416191A US41619164A US3223056A US 3223056 A US3223056 A US 3223056A US 416191 A US416191 A US 416191A US 41619164 A US41619164 A US 41619164A US 3223056 A US3223056 A US 3223056A
Authority
US
United States
Prior art keywords
core
edge
panel
veneer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US416191A
Inventor
William N Wilburn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilburn Co
Original Assignee
Wilburn Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilburn Co filed Critical Wilburn Co
Priority to US416191A priority Critical patent/US3223056A/en
Application granted granted Critical
Publication of US3223056A publication Critical patent/US3223056A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B13/00Details of tables or desks
    • A47B13/08Table tops; Rims therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B2200/00General construction of tables or desks
    • A47B2200/0001Tops
    • A47B2200/001Manufacture of table tops

Definitions

  • This invention relates to tables, and more particularly to panel edge construction for table top panels.
  • Table tops having a decorative veneer top sheet conventionally have a peripheral veneer edge strip covering the panel core.
  • These edge strips often become damaged and dislodged after a relatively short period of time. This is especially true in institutions such as colleges, hospitals, schools and dormitories where the tables are treated roughly, both by banging their edges together or against the walls, or by sliding them along the floor on one edge when students are clearing the room. Consequently, the edge strip becomes chipped, loosened and/or peeled to create an unsightly appearance. Ordinarily, the remainder of the table is still in excellent condition, but loses its attraction due to the edge damage. Often however, the upper veneer also tends to peel along its edge with damage of the edge strip. Therefore, a constant expense and nuisance exists today to periodically recondition these damaged edges. To achieve this, the panels must either be returned to the factory, or a special expensive crew of workmen must travel to the place where the panels are utilized.
  • Another object of this invention is to provide a door having an edge construction that absorbs bumping or abuse by carelessly wheeled hospital beds or such other equipment without any noticeable damage.
  • a still further object of this invention is to provide a method of forming a protective decorative bumper strip on furniture panels such as table tops, doors, countertops and the like without the formation of any air pockets in the strip, providing permanent bonding, enabling manufacture using relatively inexpensive techniques, and extending the useful life of the panel, yet without any periodic reconditioning of the edges.
  • FIG. 1 is a perspective view of a table employing the panel as a table top;
  • FIG. 2 is an enlarged, sectional, perspective view of a portion of the panel
  • FIG. 3 is a side elevational, sectional fragmentary view illustrating one method of formation of the panel
  • FIG. 4 is a fragmentary, sectional, elevational view of a second form of the panel
  • FIG. 5 is a fragmentary, sectional, elevational view of a second method of forming the panel
  • FIG. 6 is an enlarged, side, sectional, elevational view of the panel illustrated in FIG. 2;
  • FIG. 7 is an enlarged, sectional, elevational fragmentary view illustrating a third method of forming the panel.
  • the novel panel 12 illustrated in FIG. 1 serves as a table top supported by a base 14 to form the completed table 10.
  • the base is recessed laterally beneath the top so that the top extends beyond it around its periphery.
  • the panel 12 has a core which may be formed of laminated construction with a series of layers 16, or alternatively of a solid core 15 (FIG. 5) of hollow core.
  • the rigid core is the main portion of the table top. It includes a thin flexible veneer sheet 18 on the top for decorative effects, and preferably a lower thin veneer sheet 20 on the bottom to cover the rough bottom core surface. Since top and bottom are relative terms, the veneer cover layers are more accurately on opposite sides of the panel.
  • the layers 16 may, and usually do, comprise sheets of wood bonded together with a suitable adhesive in conventional manner to form a rigid core.
  • the core may alternatively comprise a chipped core of flaked core, a veneer core, a hardboard core, a lumber core, or others such as plastic and metal.
  • the thin veneer cover sheets 18 and 20 may comprise a resin-impregnated sheet of wood, paper, cloth or synthetic material in solid or woven form. It is thin, flexible, and of itself has little strength.
  • the veneer is adhesively bonded to the surface of the core, preferably with an unsaturated polyester resin adhesive having up to about solids.
  • the polyester may be formed from conventional components of dihydric alcohol and a dibasic acid.
  • the alcohol may be a glycol of ethylene, pro pylene, 1,3- or 2,3-butylene, diethylene or dipropylene.
  • the acid may be a saturated dibasic acid such as terephthalic, isophthalic, adipic, azalaic, phthalic anhydride, or in some instances, an unsaturated dibasic acid such as maleic anhydric or fumaric acid.
  • terephthalic, isophthalic, adipic, azalaic, phthalic anhydride or in some instances, an unsaturated dibasic acid such as maleic anhydric or fumaric acid.
  • suitable adhesives such as an epoxy resin formed conventionally from epichlorohydrin and bisphenol A, or epoxy-polyamide copolymers.
  • Other suitable thermo setting resins may also be used instead of the ones described above.
  • the veneer sheets themselves will flex and curve with little stress.
  • the porous material that is saturated with resin to form the veneer sheets 18 and 20 acquires a relatively stiff characteristic sufficient so that, even though the free sheet will flex before assembly, once they are bonded to the core they are self-supporting when positioned to protrude a small amount past the edges of the core, and the overlapping edges, though friable, will hold their position.
  • This is used to form a cavity mold for the protective resin when still fluid. That is, the veneer layers, when adhered to the core and protruding approximately /2 inch more or less beyond the peripheral edge of the core, define a gap therebetween.
  • this gap or recess is filled with a curable resinous composition which will form a sturdy, wear-resistant, acid-resistant, water-resistant, noncorroding, rigid bumper strip having only slight resilience.
  • the edge also has excellent aesthetic qualities, especially when provided with one of any selected colors to match the room decor.
  • This novel bumper 22 is provided around the periphery of the panel.
  • the edge is formed by casting or molding the resin in place on the panel. This casting in place has been found, after extended experimental use, to be very important to prevent the formation of any air bubbles beneath the plastic adjacent the core, and to achieve good bonding.
  • the uncured fluid resin is held in place and thereby confined between the protruding edges of the veneer sheets, enabling it to bond securely to both the veneer sheets and to the core, while simultaneously assuming the proper dimension and shape.
  • the bond is especially secure if the material has an epoxy resin base due to the excellent bonding characteristics of epoxy resins.
  • Suitable catalysts may be used such as the Lewis acid type, including boron trifiuoride and its complexes. Straight epoxy resins may also be utilized, but since these normally require elevated temperatures for curing, they are not preferred.
  • a copolymer of epoxy-polyamides may be employed. Both have a hard, durable characteristic
  • a suitable polyester may be employed.
  • This polyester may be from conventional components of a dihydric alcohol and a dibasic acid as described above with respect to the adhesive to be employed for the veneer sheets.
  • Typical catalysts may be used with the polyester resins such as an organic peroxide or a hydroperoxide. A 2% addition of methyl ethyl ketone peroxide is preferred.
  • Accelerators such as cobalt naphthenate, alkyl mercaptans and dialkyl aromatic amines in amounts of approximately /2% in a 6% solution may be added to the catalysts. Obviously these percentages and particular components will vary with the desired curing time and curing temperature, in accordance with presently known technology.
  • thermosetting materials may be used for this purpose.
  • An example of these are the polyurethane resins conventionally formed from ethylene glycol or other di or poly hydroxy organic materials, and a diisocyanate such as tolylene diisocyanate or castor oil diethanolimine diisocyanate. Equivalent materials useful for this purpose will of course require good bonding characteristics, excellent wear qualities, and aesthetic appeal.
  • These resins may be reinforced by a suitable fibrous agent such as fibrous glass, nylon or the like in random for-m embodied in the resin. Such reinforcement is not normally necessary however,
  • the upper veneer sheet 18 protrudes beyond the edge of the core, while the lower veneer sheet 20' has its edges coincident with the edges of the core.
  • This assembly is surrounded by a mold 28 which abuts the edges of the extending veneer sheet 18 to form closed cavities 30 between the core and the mold 28 having an open upper end.
  • the uncured resin 22a is cast, injected or poured from injector 32 into this peripheral space 30 around the core to fill this space. It bonds securely to the veneer sheet 18 and the core as it cures.
  • the mold is removed to allow complete curing of the edging either at elevated or room temperatures, depending upon the catalyst used, the polymer or copolymer employed and other operational factors. , The cured polymeric edge projects beyond the veneer sheets.
  • each bevel 24 recesses the protruding edge of the adjacent veneer strip 18 to prevent it from being bumped and thereby peeled from the remainder of the panel or chipped. Consequently, the 'most protruding portion constitutes the rigid resin material which can absorb bumps or be slid along the floor without damage to the decorative veneer sheet.
  • the lower corner 24' is also beveled as illustrated for protection of the lower veneer sheet against peeling and chipping, for symmetry of design, and for maximum wearing capacity.
  • this same result can be achieved by initially providing a protruding plastic portion with a generally convex cross sectional configuration. This can be achieved by employing a flexible mold having a peripheral concavity to form the resin.
  • a series of the panels are abutted together side to side, and lowered end wise into a tank 50 containing uncured liquid resin 22a in the bottom thereof to a depth at least as great as the depth of the cavity or gap between the veneer sheets.
  • the resin ma terial is allowed to cure or otherwise solidify sufiiciently to cause it to bond and adhere to the core and inside of the veneer sheets sufliciently to retain this position.
  • a suitable releasing agent may be coated thereon.
  • the panels are then removed from the vat 50, and the resin is completely cured at room or elevated temperatures. Then the corners of the edging are beveled at 24 (FIGS. 2 and 6) to recess the veneer sheets 18 and 20, and cause all bumping and wear to occur on the resin rather than upsetting the decorative cover sheet.
  • the panel is set upright with the veneer sheets 18 and 20 forming an opentopped cavity into which the uncured resin 22a is injected from a suitable injecting means 34.
  • a suitable injecting means 34 When this is filled to the level of the protruding edges of the veneer sheets, it is cured completely, and the edges are subsequently beveled as at 24 in FIGS. 2 and 6.
  • the cured resin does not extend above the upper plane surface of the panel, nor below the lower panel surface. It in efifect is an integral part of the panel with its base embedded within the confines of the panel, and its edge face protruding laterally beyond the outermost portions of the panel veneeer. It will be realized that the specific configuration of the overall panel may vary greatly to include square, rectangular, circular, ovular or others without departing from the method or structure taught. With curved edges, the method of FIG. 3 with only one overlapping veneer sheet, and a peripheral mold is preferred.
  • a table construction comprising: a base; a table top supported on said base; said top including a rigid core forming the main portion of said top, a thin bottom surface sheet under and bonded to the bottom surface of said core, and a decorative flat veneer sheet overlying, covering, and bonded to the upper surface of said core; said sheets both having portions extending beyond the entire peripheral edge of said core around the periphery of said table top, forming a peripheral cavity; said portions being in the same planes as their respective sheets; a cast-in-place, cured, peripherally extending, rigid resin edge filling said cavity, and bonded to the peripheral edge of said core, to the under surface only of the overlapping portions of said veneer sheet, and to the upper surface only of the overlapping portion of said bottom sheet to rigidify the overlapping sheet portions and prevent fiexure thereof, while the sheet portions contain the resin only between them, with said resin having a vertical thickness equal to that of said core; said cast resin and sheet overlapping portions having generally beveled finished surfaces at their end junctures; said resin

Description

Dec. 14, 1965 w. N. WILBURN 3,223,056
TABLE CONSTRUCTION Filed Nov. 25, 1964 20 INVENTOR.
! hill/4M IV. W/ZBUK/V United States Patent 3,223,056 TABLE CONSTRUCTION William N. Wilburn, Grand Rapids, Mich, assignor to Wilburn Company, Grand Rapids, Mich, a corporation of Michigan Filed Nov. 25, 1964, Ser. No. 416,191 1 Claim. (Cl. NBS-%) This is a continuation-in-part application of my co pending application entitled Construction for Supporting Surface, filed March 13, 1963, Serial No. 264,882, now abandoned.
This invention relates to tables, and more particularly to panel edge construction for table top panels.
Table tops having a decorative veneer top sheet conventionally have a peripheral veneer edge strip covering the panel core. These edge strips often become damaged and dislodged after a relatively short period of time. This is especially true in institutions such as colleges, hospitals, schools and dormitories where the tables are treated roughly, both by banging their edges together or against the walls, or by sliding them along the floor on one edge when students are clearing the room. Consequently, the edge strip becomes chipped, loosened and/or peeled to create an unsightly appearance. Ordinarily, the remainder of the table is still in excellent condition, but loses its attraction due to the edge damage. Often however, the upper veneer also tends to peel along its edge with damage of the edge strip. Therefore, a constant expense and nuisance exists today to periodically recondition these damaged edges. To achieve this, the panels must either be returned to the factory, or a special expensive crew of workmen must travel to the place where the panels are utilized.
Consequently, although a veneer covered furniture panel provides an attractive and generally durable unit today for various purposes, their edges constitute a definite Achilles heel that shortens the useful decorative life of the entire panel, unless periodically refinished at a substantial expense.
It is therefore an object of this invention to provide a panel edge construction that eliminates the readily damageable characteristics of the conventional panel edge, and extends the life of the edge to a value at least equal to, and normally greater than the remainder of the panel itself.
It is another object of this invention to provide a panel edge construction having excellent aesthetic appeal, as well as providing a unique bumper along the edge capable of withstanding abuse.
It is a further object of this invention to provide a table top that can be bumped against other table tops or against the wall, etc. with tremendous impact without the slightest damage to the panel edge or Veneer, either structurally or aesthetically. It can even be skidded along the floor on one edge without any noticeable damage to the edge.
Another object of this invention is to provide a door having an edge construction that absorbs bumping or abuse by carelessly wheeled hospital beds or such other equipment without any noticeable damage.
A still further object of this invention is to provide a method of forming a protective decorative bumper strip on furniture panels such as table tops, doors, countertops and the like without the formation of any air pockets in the strip, providing permanent bonding, enabling manufacture using relatively inexpensive techniques, and extending the useful life of the panel, yet without any periodic reconditioning of the edges.
These-and other objects of this invention will be ap- 3,223, a Fatented Dec. 14, 1965 parent upon studying the following specification in conjunction with the drawings in which:
FIG. 1 is a perspective view of a table employing the panel as a table top;
FIG. 2 is an enlarged, sectional, perspective view of a portion of the panel;
FIG. 3 is a side elevational, sectional fragmentary view illustrating one method of formation of the panel;
FIG. 4 is a fragmentary, sectional, elevational view of a second form of the panel;
FIG. 5 is a fragmentary, sectional, elevational view of a second method of forming the panel;
FIG. 6 is an enlarged, side, sectional, elevational view of the panel illustrated in FIG. 2; and
FIG. 7 is an enlarged, sectional, elevational fragmentary view illustrating a third method of forming the panel.
The novel panel 12 illustrated in FIG. 1 serves as a table top supported by a base 14 to form the completed table 10. The base is recessed laterally beneath the top so that the top extends beyond it around its periphery.
The panel 12 has a core which may be formed of laminated construction with a series of layers 16, or alternatively of a solid core 15 (FIG. 5) of hollow core. The rigid core is the main portion of the table top. It includes a thin flexible veneer sheet 18 on the top for decorative effects, and preferably a lower thin veneer sheet 20 on the bottom to cover the rough bottom core surface. Since top and bottom are relative terms, the veneer cover layers are more accurately on opposite sides of the panel.
The layers 16 may, and usually do, comprise sheets of wood bonded together with a suitable adhesive in conventional manner to form a rigid core. The core may alternatively comprise a chipped core of flaked core, a veneer core, a hardboard core, a lumber core, or others such as plastic and metal.
The thin veneer cover sheets 18 and 20 may comprise a resin-impregnated sheet of wood, paper, cloth or synthetic material in solid or woven form. It is thin, flexible, and of itself has little strength. The veneer is adhesively bonded to the surface of the core, preferably with an unsaturated polyester resin adhesive having up to about solids. The polyester may be formed from conventional components of dihydric alcohol and a dibasic acid. The alcohol may be a glycol of ethylene, pro pylene, 1,3- or 2,3-butylene, diethylene or dipropylene. The acid may be a saturated dibasic acid such as terephthalic, isophthalic, adipic, azalaic, phthalic anhydride, or in some instances, an unsaturated dibasic acid such as maleic anhydric or fumaric acid. These materials are conventionally used for such purposes and may be substituted by any of several other suitable adhesives such as an epoxy resin formed conventionally from epichlorohydrin and bisphenol A, or epoxy-polyamide copolymers. Other suitable thermo setting resins may also be used instead of the ones described above.
The veneer sheets themselves will flex and curve with little stress. However, the porous material that is saturated with resin to form the veneer sheets 18 and 20 acquires a relatively stiff characteristic sufficient so that, even though the free sheet will flex before assembly, once they are bonded to the core they are self-supporting when positioned to protrude a small amount past the edges of the core, and the overlapping edges, though friable, will hold their position. This is used to form a cavity mold for the protective resin when still fluid. That is, the veneer layers, when adhered to the core and protruding approximately /2 inch more or less beyond the peripheral edge of the core, define a gap therebetween. According to this invention, this gap or recess is filled with a curable resinous composition which will form a sturdy, wear-resistant, acid-resistant, water-resistant, noncorroding, rigid bumper strip having only slight resilience. The edge also has excellent aesthetic qualities, especially when provided with one of any selected colors to match the room decor. This novel bumper 22 is provided around the periphery of the panel.
The edge is formed by casting or molding the resin in place on the panel. This casting in place has been found, after extended experimental use, to be very important to prevent the formation of any air bubbles beneath the plastic adjacent the core, and to achieve good bonding. The uncured fluid resin is held in place and thereby confined between the protruding edges of the veneer sheets, enabling it to bond securely to both the veneer sheets and to the core, while simultaneously assuming the proper dimension and shape. The bond is especially secure if the material has an epoxy resin base due to the excellent bonding characteristics of epoxy resins. Several different epoxy resins are satisfactory for this use, with the preferred one being formed from conventional components of epichlorohydrin and bisphenol A. Suitable catalysts may be used such as the Lewis acid type, including boron trifiuoride and its complexes. Straight epoxy resins may also be utilized, but since these normally require elevated temperatures for curing, they are not preferred.
Also, a copolymer of epoxy-polyamides may be employed. Both have a hard, durable characteristic,
Instead of the preferred poly epoxy, with its excellent adhering qualities as well as its wear resistance and aesthetic appeal, a suitable polyester may be employed. This polyester may be from conventional components of a dihydric alcohol and a dibasic acid as described above with respect to the adhesive to be employed for the veneer sheets. Typical catalysts may be used with the polyester resins such as an organic peroxide or a hydroperoxide. A 2% addition of methyl ethyl ketone peroxide is preferred. Accelerators such as cobalt naphthenate, alkyl mercaptans and dialkyl aromatic amines in amounts of approximately /2% in a 6% solution may be added to the catalysts. Obviously these percentages and particular components will vary with the desired curing time and curing temperature, in accordance with presently known technology.
Instead of the poly epoxy, poly epoxy-polyamine, or polyester materials described above, certain other thermosetting materials may be used for this purpose. An example of these are the polyurethane resins conventionally formed from ethylene glycol or other di or poly hydroxy organic materials, and a diisocyanate such as tolylene diisocyanate or castor oil diethanolimine diisocyanate. Equivalent materials useful for this purpose will of course require good bonding characteristics, excellent wear qualities, and aesthetic appeal. These resins may be reinforced by a suitable fibrous agent such as fibrous glass, nylon or the like in random for-m embodied in the resin. Such reinforcement is not normally necessary however,
In order to form the novel edge strip, one of three of the modifications of the novel method illustrated in FIGS. 3, and 7 may be employed.
Referring to FIG. 3, in this form of the invention only the upper veneer sheet 18 protrudes beyond the edge of the core, while the lower veneer sheet 20' has its edges coincident with the edges of the core. This assembly is surrounded by a mold 28 which abuts the edges of the extending veneer sheet 18 to form closed cavities 30 between the core and the mold 28 having an open upper end. Subsequently, the uncured resin 22a is cast, injected or poured from injector 32 into this peripheral space 30 around the core to fill this space. It bonds securely to the veneer sheet 18 and the core as it cures. After the resin is at least partially cured to a self-supporting state, the mold is removed to allow complete curing of the edging either at elevated or room temperatures, depending upon the catalyst used, the polymer or copolymer employed and other operational factors. ,The cured polymeric edge projects beyond the veneer sheets.
The corners of the panel edge may be purposely beveled as illustrated at 24 and 24 in FIG. 4, so that each bevel 24 recesses the protruding edge of the adjacent veneer strip 18 to prevent it from being bumped and thereby peeled from the remainder of the panel or chipped. Consequently, the 'most protruding portion constitutes the rigid resin material which can absorb bumps or be slid along the floor without damage to the decorative veneer sheet. Preferably the lower corner 24' is also beveled as illustrated for protection of the lower veneer sheet against peeling and chipping, for symmetry of design, and for maximum wearing capacity.
Instead of forming a flat edge and bevelin'g it to cause the bumper edge protrusion beyond the decorative veneer, this same result can be achieved by initially providing a protruding plastic portion with a generally convex cross sectional configuration. This can be achieved by employing a flexible mold having a peripheral concavity to form the resin.
In the form of the invention where both of the veneer strips 18 and 20 protrude beyond the edge of the core, one of the methods illustrated in FIGS. 5 and 7 is employed.
Referring to FIG. 5, a series of the panels are abutted together side to side, and lowered end wise into a tank 50 containing uncured liquid resin 22a in the bottom thereof to a depth at least as great as the depth of the cavity or gap between the veneer sheets. The resin ma terial is allowed to cure or otherwise solidify sufiiciently to cause it to bond and adhere to the core and inside of the veneer sheets sufliciently to retain this position. In order to prevent any permanent bonding from occurring between the resin and the outside of the decorative veneer sheets, a suitable releasing agent may be coated thereon.
The panels are then removed from the vat 50, and the resin is completely cured at room or elevated temperatures. Then the corners of the edging are beveled at 24 (FIGS. 2 and 6) to recess the veneer sheets 18 and 20, and cause all bumping and wear to occur on the resin rather than upsetting the decorative cover sheet.
In the method illustrated in FIG. 7 the panel is set upright with the veneer sheets 18 and 20 forming an opentopped cavity into which the uncured resin 22a is injected from a suitable injecting means 34. When this is filled to the level of the protruding edges of the veneer sheets, it is cured completely, and the edges are subsequently beveled as at 24 in FIGS. 2 and 6.
The cured resin does not extend above the upper plane surface of the panel, nor below the lower panel surface. It in efifect is an integral part of the panel with its base embedded within the confines of the panel, and its edge face protruding laterally beyond the outermost portions of the panel veneeer. It will be realized that the specific configuration of the overall panel may vary greatly to include square, rectangular, circular, ovular or others without departing from the method or structure taught. With curved edges, the method of FIG. 3 with only one overlapping veneer sheet, and a peripheral mold is preferred.
Certain other obvious modifications may be made in this inventive construction and to this method within the skill of the ordinary designer without departing from the principles taught, once this invention is understood. These principles enable, for the first time as far as is known, a table panel edge construction having excellent wear qualities as well as optimum attractiveness. The panels are presently being received with great enthusiasm by larger institutions such as colleges and universities. The inventive structures, methods, and their obvious modifications within the principles taught, are deemed to be part of this invention, which is to be limited only by the scope of the appended claim and the reasonably equivalent structures and methods to those defined therein.
I claim:
A table construction comprising: a base; a table top supported on said base; said top including a rigid core forming the main portion of said top, a thin bottom surface sheet under and bonded to the bottom surface of said core, and a decorative flat veneer sheet overlying, covering, and bonded to the upper surface of said core; said sheets both having portions extending beyond the entire peripheral edge of said core around the periphery of said table top, forming a peripheral cavity; said portions being in the same planes as their respective sheets; a cast-in-place, cured, peripherally extending, rigid resin edge filling said cavity, and bonded to the peripheral edge of said core, to the under surface only of the overlapping portions of said veneer sheet, and to the upper surface only of the overlapping portion of said bottom sheet to rigidify the overlapping sheet portions and prevent fiexure thereof, while the sheet portions contain the resin only between them, with said resin having a vertical thickness equal to that of said core; said cast resin and sheet overlapping portions having generally beveled finished surfaces at their end junctures; said resin edge protruding laterally outwardly beyond both of said sheet portions around the entire table top periphery, forming a decorative visible rigid peripheral bumper preventing con- 6 tact again and peeling and chipping damage to said sheets with bumping of said table by another like table, and preventing flexure of said edge portions transverse to their respective planes.
References Cited by the Examiner UNITED STATES PATENTS 753,641 3/1904 Shepherd 156293 XR 1,444,405 2/ 1923 Wagemaker 16144 1,936,113 11/1933 Jelliffe 2074 2,278,331 3/1942 Meyercord 16144 2,717,187 9/1955 Morgan et al. 20-15 2,734,789 2/1956 Wilson 2015 2,813,766 11/1957 Shumaker et al. 2015 FOREIGN PATENTS 229,750 8/ 1960 Australia.
ALEXANDER WYMAN, Primary Examiner.
W. A. POWELL, JACOB STEINBERG, Examiners.
US416191A 1964-11-25 1964-11-25 Table construction Expired - Lifetime US3223056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US416191A US3223056A (en) 1964-11-25 1964-11-25 Table construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US416191A US3223056A (en) 1964-11-25 1964-11-25 Table construction

Publications (1)

Publication Number Publication Date
US3223056A true US3223056A (en) 1965-12-14

Family

ID=23648954

Family Applications (1)

Application Number Title Priority Date Filing Date
US416191A Expired - Lifetime US3223056A (en) 1964-11-25 1964-11-25 Table construction

Country Status (1)

Country Link
US (1) US3223056A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3450593A (en) * 1965-12-15 1969-06-17 Dentin Mfg Co Panel having rims bonded with glass fibers and polyester resin
US3907624A (en) * 1968-08-28 1975-09-23 Henry County Plywood Corp Panel with decorative integral shaped edge and method of forming same
US4058584A (en) * 1974-04-05 1977-11-15 Enrique Ubach Aloy Method for manufacturing luminous hollow bodies for signs or the like
US4271649A (en) * 1979-04-09 1981-06-09 Bombardier Limited Structural panel
US4318764A (en) * 1980-05-05 1982-03-09 Voplex Corporation Method of extrusion/injection molding of trimmed product
US4517136A (en) * 1981-09-18 1985-05-14 Allibert S.A. Preparing reinforced impervious articles
US4570410A (en) * 1983-08-13 1986-02-18 Duropal-Werk Ebehr. Wrede Gmbh & Co. Kg Composite plate and method of making same
US4748780A (en) * 1984-01-28 1988-06-07 Duropal-Werk Eberh. Wrede Gmbh & Co. Kg Composite panels and methods of making composite panels
EP0382513A2 (en) * 1989-02-07 1990-08-16 Steelcase Inc. Panel manufacture and processors for use therein
US5085027A (en) * 1990-09-18 1992-02-04 Herman Miller, Inc. Panel edge construction
US5225170A (en) * 1989-02-07 1993-07-06 Steelcase Inc. Monolithic finishing process and machine for furniture parts and the like
US5422155A (en) * 1993-11-18 1995-06-06 Spence, Jr.; Daniel D. Composite laminated noteboard
US5804278A (en) * 1997-01-03 1998-09-08 Fixtures Manufacturing Corporation Laminated panel construction with honeycomb grid core
US6146252A (en) * 1995-10-10 2000-11-14 Perstorp Flooring Ab Method of machining a thermosetting laminate
US6607627B2 (en) 2001-03-05 2003-08-19 Premark Rwp Holdings, Inc. Compound injection molded high pressure laminate flooring
US6631686B2 (en) 2001-03-19 2003-10-14 Premark Rwp Holdings Inc. Insert injection molded laminate work surface
US20070158629A1 (en) * 2002-06-18 2007-07-12 Laws David J Rotationally molded, reinforced decorative fence post and method of making same
US8307769B1 (en) 2009-07-31 2012-11-13 Mity-Lite, Inc. Plastic and plywood laminate table with drop corner
US8550012B2 (en) 2011-10-27 2013-10-08 Mity-Lite, Inc. Leg locking and folding mechanism for folding table
US8671850B2 (en) 2011-10-27 2014-03-18 Mity-Lite, Inc. Convertible tabletop with pivotal modesty panel
US20150288263A1 (en) * 2013-02-28 2015-10-08 Mitsubishi Electric Corporation Resin injection apparatus into laminated core, resin injection method into laminated core, and rotating electric machine using the resin injection method
US20160143441A1 (en) * 2014-11-19 2016-05-26 Philip Joseph von Raabe, IV Structural laminates and their manufacturing
US20210045525A1 (en) * 2018-04-13 2021-02-18 Kvist Industries A/S Supporting Frame For A Piece Of Furniture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US753641A (en) * 1903-08-13 1904-03-01 Charles Shepherd Panel.
US1444405A (en) * 1921-11-09 1923-02-06 Wagemaker Isaac Pad or covering for desks, tables, and the like
US1936113A (en) * 1927-09-02 1933-11-21 Howard W Jelliffe Wear strip for pieces of furniture
US2278331A (en) * 1940-12-12 1942-03-31 Haskelite Mfg Corp Edge seal for metal-faced panels
US2717187A (en) * 1953-08-13 1955-09-06 American Seating Co Laminated table top with edging
US2734789A (en) * 1956-02-14 Molding for table and counter tops
US2813766A (en) * 1956-04-04 1957-11-19 Plastic Top Fabricators Inc Table top construction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734789A (en) * 1956-02-14 Molding for table and counter tops
US753641A (en) * 1903-08-13 1904-03-01 Charles Shepherd Panel.
US1444405A (en) * 1921-11-09 1923-02-06 Wagemaker Isaac Pad or covering for desks, tables, and the like
US1936113A (en) * 1927-09-02 1933-11-21 Howard W Jelliffe Wear strip for pieces of furniture
US2278331A (en) * 1940-12-12 1942-03-31 Haskelite Mfg Corp Edge seal for metal-faced panels
US2717187A (en) * 1953-08-13 1955-09-06 American Seating Co Laminated table top with edging
US2813766A (en) * 1956-04-04 1957-11-19 Plastic Top Fabricators Inc Table top construction

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3450593A (en) * 1965-12-15 1969-06-17 Dentin Mfg Co Panel having rims bonded with glass fibers and polyester resin
US3907624A (en) * 1968-08-28 1975-09-23 Henry County Plywood Corp Panel with decorative integral shaped edge and method of forming same
US4058584A (en) * 1974-04-05 1977-11-15 Enrique Ubach Aloy Method for manufacturing luminous hollow bodies for signs or the like
US4271649A (en) * 1979-04-09 1981-06-09 Bombardier Limited Structural panel
US4318764A (en) * 1980-05-05 1982-03-09 Voplex Corporation Method of extrusion/injection molding of trimmed product
US4517136A (en) * 1981-09-18 1985-05-14 Allibert S.A. Preparing reinforced impervious articles
US4570410A (en) * 1983-08-13 1986-02-18 Duropal-Werk Ebehr. Wrede Gmbh & Co. Kg Composite plate and method of making same
US4748780A (en) * 1984-01-28 1988-06-07 Duropal-Werk Eberh. Wrede Gmbh & Co. Kg Composite panels and methods of making composite panels
EP0382513A2 (en) * 1989-02-07 1990-08-16 Steelcase Inc. Panel manufacture and processors for use therein
US5116639A (en) * 1989-02-07 1992-05-26 Steelcase Inc. Monolithic finishing process and machine for furniture parts and the like
EP0382513A3 (en) * 1989-02-07 1992-12-16 Steelcase Inc. Panel manufacture and processors for use therein
US5225170A (en) * 1989-02-07 1993-07-06 Steelcase Inc. Monolithic finishing process and machine for furniture parts and the like
US5085027A (en) * 1990-09-18 1992-02-04 Herman Miller, Inc. Panel edge construction
US5422155A (en) * 1993-11-18 1995-06-06 Spence, Jr.; Daniel D. Composite laminated noteboard
US6146252A (en) * 1995-10-10 2000-11-14 Perstorp Flooring Ab Method of machining a thermosetting laminate
US5804278A (en) * 1997-01-03 1998-09-08 Fixtures Manufacturing Corporation Laminated panel construction with honeycomb grid core
US6607627B2 (en) 2001-03-05 2003-08-19 Premark Rwp Holdings, Inc. Compound injection molded high pressure laminate flooring
US6631686B2 (en) 2001-03-19 2003-10-14 Premark Rwp Holdings Inc. Insert injection molded laminate work surface
US20070158629A1 (en) * 2002-06-18 2007-07-12 Laws David J Rotationally molded, reinforced decorative fence post and method of making same
US7635114B2 (en) 2002-06-18 2009-12-22 Mfs, Llc Rotationally molded, reinforced decorative fence post and method of making same
US8307769B1 (en) 2009-07-31 2012-11-13 Mity-Lite, Inc. Plastic and plywood laminate table with drop corner
US8550012B2 (en) 2011-10-27 2013-10-08 Mity-Lite, Inc. Leg locking and folding mechanism for folding table
US8671850B2 (en) 2011-10-27 2014-03-18 Mity-Lite, Inc. Convertible tabletop with pivotal modesty panel
US20150288263A1 (en) * 2013-02-28 2015-10-08 Mitsubishi Electric Corporation Resin injection apparatus into laminated core, resin injection method into laminated core, and rotating electric machine using the resin injection method
US10396641B2 (en) * 2013-02-28 2019-08-27 Mitsubishi Electric Corporation Resin injection method into laminated core, and rotating electric machine using the resin injection method
US20160143441A1 (en) * 2014-11-19 2016-05-26 Philip Joseph von Raabe, IV Structural laminates and their manufacturing
US9943170B2 (en) * 2014-11-19 2018-04-17 Philip von Raabe Structural laminates and their manufacturing
US20210045525A1 (en) * 2018-04-13 2021-02-18 Kvist Industries A/S Supporting Frame For A Piece Of Furniture

Similar Documents

Publication Publication Date Title
US3223056A (en) Table construction
US4082882A (en) Fiberglass reinforced plywood structural sandwich with acrylic facing on one or both sides thereof
US4550540A (en) Compression molded door assembly
US3077012A (en) Counter top construction and the like
MXPA01000403A (en) Compression molded door assembly.
CA1048915A (en) Fiberglass reinforced plywood structural sandwich with acrylic facing on one or both sides thereof
US3393107A (en) Method for panel construction
US3415709A (en) Edge reinforced paneling
US3896199A (en) Method for making simulated wood panel
DE3925665A1 (en) Scratch resistant furniture panel suitable for kitchens - has transparent resin layer, possibly with decorative layer, bonding silica glass plate to wooden panel
WO1994025254A1 (en) Door and door frames
US5678906A (en) Decorative panel
US6945006B2 (en) Countertop assembly and method of manufacture thereof
CN206667646U (en) The environment friendly decoration board of built-in two-stage latch
CA2009353A1 (en) Knock-down shipping and storage container
KR20060088173A (en) Wood door and its manufacturing method
US3418030A (en) Reinforced construction unit
US2845318A (en) Reinforced molded desk tops
US1890093A (en) Casket
US2264401A (en) Furniture top construction
JPS6060808A (en) Top plate of table and desk
JPS6210120Y2 (en)
CN212591119U (en) Cabinet plate with built-in reinforcing ribs
CN215926541U (en) Effectual building heat preservation decorative board of resistance to deformation
JPS624962B2 (en)