US3225241A - Aperture fluorescent lamp - Google Patents

Aperture fluorescent lamp Download PDF

Info

Publication number
US3225241A
US3225241A US197211A US19721162A US3225241A US 3225241 A US3225241 A US 3225241A US 197211 A US197211 A US 197211A US 19721162 A US19721162 A US 19721162A US 3225241 A US3225241 A US 3225241A
Authority
US
United States
Prior art keywords
coating
lamp
tube
phosphor
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US197211A
Inventor
Spencer Domina Eberle
Jr Sandford Christopher Peek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
Sylvania Electric Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US825915A external-priority patent/US3115309A/en
Application filed by Sylvania Electric Products Inc filed Critical Sylvania Electric Products Inc
Priority to US197211A priority Critical patent/US3225241A/en
Application granted granted Critical
Publication of US3225241A publication Critical patent/US3225241A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/10Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the liquid phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/256Ag
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/114Deposition methods from solutions or suspensions by brushing, pouring or doctorblading

Definitions

  • This invention relates to fluorescent lamps and similar devices, and equipment in which said lamps are operated.
  • the brightness of the lamps can be increased by increasing the power input while keeping the mercury vapor pressure at a suitable value, but even the brightness obtained by this means is smaller than that required for certain types of applications, and in any event, the total light output of the lamp is increased, which is not always desirable.
  • the brightness can be increased without increasing either the power input, or the total light output, by the use of a small aperture in the lamp coating.
  • the lam instead of being coated with phosphor entirely around its circumferential surface, the lam will be coated around only a portion of its circumferential surface; that is it will be coated over an angle somewhat less than the full 360 degrees of circumference. This will leave a narrow uncoated strip extending lengthwise along the lamp generally parallel to the longitudinal lamp axis. The brightness of the light coming through said aperture or uncoated portion will be much greater than the light emerging through the coated portion of the lamp.
  • a reflector for example, in the form of a reflective coating, be placed on the inside surface of the glass tube between the glass and the fluorescent phosphor, said reflecting coating being omitted from the aperture; that is, from the portion of the lamp which has no fluorescent coating.
  • the coating can be of a reflecting powder for example, titanium dioxide, or of a metal, for example, aluminum or silver.
  • a reflecting powder for example, titanium dioxide
  • a metal for example, aluminum or silver.
  • the use of aluminum has the additional advantage of increasing not only the visible reflection but also the ultraviolet reflection.
  • a coating of aluminum oxide will also reflect ultraviolet light.
  • the reflector or reflecting coating can be put on the outside of the surface of the glass tube, but will then be less effective because of the absorption of light in the glass between the phosphor coating and the reflecting material.
  • the particle size of the phosphor should ordinarily be between three and thirty microns to reduce the reflection back into the tube.
  • the transmission of light through the coating is not desired and hence a smaller particle size, below three microns, for example, about l micron, is most effective.
  • a light-transmitting protective coating can be applied to the inner surface of the glass tube, or at least to the portion not coated with phosphor.
  • a thin coating of antimony oxide can be used, or a very thin coating of the phosphor itself, much thinner than the main phosphor coating, can be applied over the uncoated portion of the tube.
  • the protective phosphor coating can be of a thickness less than half that of the main phosphor coating, and it is desirable to make it of an average particle size of greater than about 3 microns, in order to minimize reflection and increase transmission of light through it.
  • the discoloration can also be reduced by making the lamp tube of a special glass, for example, lead glass, instead of the lime glass commonly used.
  • a phosphor may even be used which will transform some of the radiation from the main phosphor coating into radiation of a different wave length. This will produce a two-color lamp appealing to the eye.
  • the lamp is used for illuminating the street and is placed transverse to the axis of the street it may be desirable to use two apertures in the lamp, the two being spaced slightly apart so that the light coming from them will be directed along the street in opposite directions.
  • a linear lens can be used around the lamp to further direct the light in order to get a proper distribution on the street, and a phosphor coating without a reflector used between the apertures to direct some light onto the street directly below the lamp.
  • the lamp of the present invention is especially useful in the illumination of highways and airport runways in which it is desired to project a beam of light in which substantially all rays are horizontal or at angles below the horizontal, that is so that there will be no upward component of the light from the lamp.
  • a lamp of high brightness is especially needed in such installations because the brightness at the center of the runway will depend on the brightness of the light source.
  • a lamp can be very effectively used with a parabolic rcflector, with the edge of the aperture farthest from the apex of the parabola being along the axis of the parabola and at its focus, with the other edge of the aperture being above the axis of the parabola.
  • the lamp is then off the axis of the parabola, whereas in ordinary use of the parabolic reflector the center of the lamp would be at the focus of the parabola; that is, in cross-section, the center of the lamp would be on the axis of the parabola.
  • the aperture the greater the brightness becomes, as long as the aperture is finite and greater than zero in dimension.
  • the brightness increase can be tremendous, far more than 50 times the normal brightness of a lamp without an aperture.
  • the total light output will be less for very small apertures than for some intermediate sizes of apertures.
  • the maximum light output will occur at an aperture extending over only 60 of the 360' surface of the tube.
  • the aperture lamp of this invention with a suitable reflector or a refractor is especially suitable as a headlight for an automobile, because it gives a wide beam in which the upward component can be made as small or as large as desired, a type of beam which has been long sought in the automobile industry.
  • FIGURE 1 is a cross-sectional view of a lamp having an aperture in a fluorescent coating
  • FIGURE 2 is a cross-sectional view of such a lamp having a reflector coating under the fluorescent coating
  • FIGURE 3 is a cross-sectional view of a lamp with two spaced apertures
  • FIGURE 4 is a cross-sectional view of a lamp with two apertures spaced apart, with a fluorescent coating without a reflecting coating between apertures;
  • FIGURE 5 is a schematic view of a lamp with an external reflector to direct the light from the aperture
  • FIGURE 6 is a cross-sectional view of a lamp having an opaque coating over the lamp except at the aperture.
  • the glass tube 1 has the coating 2 of phosphor particles on its inside surface, the coating 2 having a gap 3 between its two ends 4, 5 in order to provide an aperture through which light from the inside surface of the coating 2 can be directly emitted, or emitted after internal reflection, without passing through the coating 2 itself.
  • the fluorescent coating should be thick enough to reflect into the tube 1 a large portion of the light emitted in the coating 2.
  • the phosphor particles of the coating 2 t are preferably of a small size, averaging less than about 3 microns, to enhance the reflection.
  • the coating can be applied in the customary manner for coating fluorescent lamps, over the entire surface if desired, and then scraped off the portion or gap 3 which is to be free of coating.
  • the brightness of the light emitted through the aperture can be greatly increased by adding a reflecting coating 6 between glass tube 1 and phosphor coating 2, as shown in FIGURE 2.
  • the reflecting coating 6 can be of powdered materials of good reflectivity, such as magnesium oxide, zinc oxide, or titanium dioxide.
  • the particle size can be small. for example an average size of 1 micron is quite effective.
  • the reflector coating can be applied in the same manner as the phosphor coating. or in some other manner, if desired, and the phosphor coating then applied over it in the manner previously mentioned.
  • the brightness obtained through the gap or aperture 3 will be greater if a metal surface, preferably a specular reflecting surface, is used for the reflecting coating 6.
  • the metal coating can be applied in any manner customary in the art, for example as shown in US. Patent 2,064,- 369 to O. H. Biggs.
  • Aluminum and silver are especially effective as reflecting materials, and can be applied by evaporation.
  • Silver can also be applied chemically, by the usual mirror deposition methods, if desired.
  • the reflector coating has been shown inside the bulb, it can also be placed on the outside of the bulb if desired, although then there will be additional losses in the glass between the phosphor and the reflector, with a smaller increase in brightness.
  • more than one aperture may be present, as shown in FIGURE 3.
  • the glass tube 1 and the coatings 2 and 6 can be the same as before, but part of the gap 3 between them will be covered by the additional reflecting coating 7 and the additional phosphor coat 8, thereby in effect producing two apertures 9, 10.
  • Such a lamp is especially useful as a street-light, mounted several feet, perhaps as high even as twenty feet, above the street, the axis of the lamp being perpendicular to the street or the center line thereof.
  • a refractor or series of longitudinal or linear lenses, parallel to the axis of the tube can be used on each side of the tube 1 to direct the light wherever desired.
  • some direct light from the lamp may be desired on the street directly below tube 1, and that may be achieved by omitting the reflecting coating 7 between the two apertures 9, 10, as shown in FIGURE 4, so that some direct light from the outside surface of phosphor coating 8 will fall on the roadway.
  • FIGURE 5 One type of fixture which is effective with an aperture lamp is shown in FIGURE 5.
  • the phosphor coating 2 is shown schematically, with its ends 4, 5 shown as dots for emphasis.
  • a reflecting parabola which can be of specular metal, is placed with its axis tangent to the circle of coating 2 at one end 5 thereof, with the other end 4 of the coating 2 off the axis 13 of the parabola 14. Only one side 15-16 of the parabola is present in the actual reflector, and the lamp is on the other side of the axis 13 than the portion 15-16 of the parabola 14.
  • One edge 5 of the coating 2 is tangent to the axis of the parabola, as previously stated, and at the focus of the parabola.
  • the other edge 4 of coating 2 is off the axis of the parabola and nearer to the apex 15 thereof.
  • This reflector-lamp combination is therefor especially eifective where it is desired to place the longitudinal axis of the lamp horizontally and to insure that all rays emanating from the fixture will be directed at or below the horizontal. If it is desired to have all rays below the horizontal, for example to have them just slightly below the horizontal when illuminating a runway or roadway from a region vertically close to the edge of the runway or roadway, then the whole unit, lamp plus reflector, can be tilted the desired amount.
  • a non-reflecting black region can be used between the forward end 16 of reflector l4 and the window, as shown in co-pending US. patent application Serial No. 712,203, filed January 30, 1958, by Biggs, Spencer and Peek.
  • the fixture of the present invention can be made much smaller than that shown in the application mentioned above.
  • an opaque coating can be used over the reflecting portion of the bulb in order to prevent any stray light passing through the reflector from reaching the reflector or the object to be eliminated. In that way, a sharp cut-off of the beam will be achieved.
  • a lamp having such an opaque coating 20 is shown in FIGURE 6.
  • the width of the beam can be adjusted by varying the distance 15-5, that is, the distance along the axis 13 between points 15 and 5.
  • the tube 1 is a sealed envelope, containing a filling of inert gas and a small amount of mercury vapor, with an electrode, preferably of the thermionic type, at each end of the lamp, in the manner customary in the art.
  • These features can be the same as in the so-called Very High Output" lamps, with an input of about 25 watts or more, such as shown in US. patent application Serial No. 742,928, filed June 18, 1958, by Waymouth et al., now Patent No. 2,961,566.
  • a fluorescent lamp comprising a sealed elongated tube, a coating of phosphor inside said tube and subtending the major portion of the angle around the axis of said tube, a portion of the tube being free from phosphor coating and subtending a minor portion of said angle, said phosphor coating being thick enough to reflect back into the tube substantially all light falling on the coating.
  • a fluorescent lamp comprising a sealed elongated tube, a coating of phosphor inside said tube and subtending the major portion of the angle around the axis of said tube, a portion of the tube being free from phosphor coating and subtending a minor portion of said angle, and a protective light-transmissive coating of material diflerent from that of the phosphor coating over the otherwise uncoated portion of the lamp tube.

Description

1965 o. E. SPENCER ETAL 3,225,241
APERTURE FLUORESCENT LAMP Original Filed July 9, 1959 2 Sheets-Sheet 1 DOMINA E. SPENCER SANDFORD C. PEEK JR.
1 N VENTORS 13% ATTORNEY Dec. 21, 1965 D. E. SPENCER ETAL 3,225,241
APERTURE FLUORESCENT LAMP Original Filed July 9, 1959 2 sheets-she t DOMINA E. SPENCER SANDFORD C. PEEK JR.
ATTORNEY United States Patent Ofiice 3,225,241 Patented Dec. 21, 1965 3,225,241 APERTURE FLUORESCENT LAMP Domina Eberle Spencer, Cambridge, and Sandford Christopher Peek, Jr., Hamilton, Mass., assignors to Sylvania Electric Products Inc., a corporation of Delaware Original application July 9, 1959, Ser. No. 825,915, now Patent No. 3,115,309. Divided and this application May 2, 1962, Ser. No. 197,211
4 Claims. (Cl. 313109) This invention relates to fluorescent lamps and similar devices, and equipment in which said lamps are operated.
For many applications for fluorescent lamps, a higher brightness than presently obtainable is required. The brightness of the lamps can be increased by increasing the power input while keeping the mercury vapor pressure at a suitable value, but even the brightness obtained by this means is smaller than that required for certain types of applications, and in any event, the total light output of the lamp is increased, which is not always desirable.
We have discovered that the brightness can be increased without increasing either the power input, or the total light output, by the use of a small aperture in the lamp coating. In other words, instead of being coated with phosphor entirely around its circumferential surface, the lam will be coated around only a portion of its circumferential surface; that is it will be coated over an angle somewhat less than the full 360 degrees of circumference. This will leave a narrow uncoated strip extending lengthwise along the lamp generally parallel to the longitudinal lamp axis. The brightness of the light coming through said aperture or uncoated portion will be much greater than the light emerging through the coated portion of the lamp.
We have discovered that the brightness can be still further improved if a reflector, for example, in the form of a reflective coating, be placed on the inside surface of the glass tube between the glass and the fluorescent phosphor, said reflecting coating being omitted from the aperture; that is, from the portion of the lamp which has no fluorescent coating.
The coating can be of a reflecting powder for example, titanium dioxide, or of a metal, for example, aluminum or silver. The use of aluminum has the additional advantage of increasing not only the visible reflection but also the ultraviolet reflection. A coating of aluminum oxide will also reflect ultraviolet light.
The reflector or reflecting coating can be put on the outside of the surface of the glass tube, but will then be less effective because of the absorption of light in the glass between the phosphor coating and the reflecting material.
In a fluorescent coating for the usual type of lamp in which the entire circumferential surface is coated with phosphor, the particle size of the phosphor should ordinarily be between three and thirty microns to reduce the reflection back into the tube.
In the present type of lamp however, the transmission of light through the coating is not desired and hence a smaller particle size, below three microns, for example, about l micron, is most effective.
We have found that in lamps having a portion of their inside surface coated with phosphor and a portion uncoated, the mercury generally present in such devices will attack the uncoated portion of the glass tube, blackening it and thereby decreasing the light output. To prevent or reduce such blackening a light-transmitting protective coating can be applied to the inner surface of the glass tube, or at least to the portion not coated with phosphor. A thin coating of antimony oxide can be used, or a very thin coating of the phosphor itself, much thinner than the main phosphor coating, can be applied over the uncoated portion of the tube. In the latter case, the protective phosphor coating can be of a thickness less than half that of the main phosphor coating, and it is desirable to make it of an average particle size of greater than about 3 microns, in order to minimize reflection and increase transmission of light through it.
The discoloration can also be reduced by making the lamp tube of a special glass, for example, lead glass, instead of the lime glass commonly used.
In some cases it may even be desirable to make the phosphor coating on the aperture of a phosphor of a type emitting a different color than does the main phosphor coating, and a phosphor may even be used which will transform some of the radiation from the main phosphor coating into radiation of a different wave length. This will produce a two-color lamp appealing to the eye.
In some cases where the lamp is used for illuminating the street and is placed transverse to the axis of the street it may be desirable to use two apertures in the lamp, the two being spaced slightly apart so that the light coming from them will be directed along the street in opposite directions. If necessary, a linear lens can be used around the lamp to further direct the light in order to get a proper distribution on the street, and a phosphor coating without a reflector used between the apertures to direct some light onto the street directly below the lamp. The lamp of the present invention is especially useful in the illumination of highways and airport runways in which it is desired to project a beam of light in which substantially all rays are horizontal or at angles below the horizontal, that is so that there will be no upward component of the light from the lamp. A lamp of high brightness is especially needed in such installations because the brightness at the center of the runway will depend on the brightness of the light source. We have discovered that for such purposes a lamp can be very effectively used with a parabolic rcflector, with the edge of the aperture farthest from the apex of the parabola being along the axis of the parabola and at its focus, with the other edge of the aperture being above the axis of the parabola. The lamp is then off the axis of the parabola, whereas in ordinary use of the parabolic reflector the center of the lamp would be at the focus of the parabola; that is, in cross-section, the center of the lamp would be on the axis of the parabola.
We have found that the smaller the aperture is made, that is, the smaller the angle it subtends at the center of the tube, the nearer the light source becomes to a linear source in effect, although the light is not actually emitted from the aperture but rather through it from the inside surface of the lamp.
The smaller the aperture, the greater the brightness becomes, as long as the aperture is finite and greater than zero in dimension. With extremely small apertures and high reflectivity around the remainder of the lamp surface, the brightness increase can be tremendous, far more than 50 times the normal brightness of a lamp without an aperture.
The total light output, however, will be less for very small apertures than for some intermediate sizes of apertures. With a reflectivity of about 0.9 for the reflecting material used, the maximum light output will occur at an aperture extending over only 60 of the 360' surface of the tube.
The aperture lamp of this invention with a suitable reflector or a refractor is especially suitable as a headlight for an automobile, because it gives a wide beam in which the upward component can be made as small or as large as desired, a type of beam which has been long sought in the automobile industry.
Other objects, advantages and features of the invention will be apparent from the following specification taken in connection with the accompanying drawings in which:
FIGURE 1 is a cross-sectional view of a lamp having an aperture in a fluorescent coating;
FIGURE 2 is a cross-sectional view of such a lamp having a reflector coating under the fluorescent coating;
FIGURE 3 is a cross-sectional view of a lamp with two spaced apertures;
FIGURE 4 is a cross-sectional view of a lamp with two apertures spaced apart, with a fluorescent coating without a reflecting coating between apertures;
FIGURE 5 is a schematic view of a lamp with an external reflector to direct the light from the aperture; and
FIGURE 6 is a cross-sectional view of a lamp having an opaque coating over the lamp except at the aperture.
In FIGURE 1, the glass tube 1 has the coating 2 of phosphor particles on its inside surface, the coating 2 having a gap 3 between its two ends 4, 5 in order to provide an aperture through which light from the inside surface of the coating 2 can be directly emitted, or emitted after internal reflection, without passing through the coating 2 itself.
The fluorescent coating should be thick enough to reflect into the tube 1 a large portion of the light emitted in the coating 2. The phosphor particles of the coating 2 t are preferably of a small size, averaging less than about 3 microns, to enhance the reflection. The coating can be applied in the customary manner for coating fluorescent lamps, over the entire surface if desired, and then scraped off the portion or gap 3 which is to be free of coating.
The brightness of the light emitted through the aperture can be greatly increased by adding a reflecting coating 6 between glass tube 1 and phosphor coating 2, as shown in FIGURE 2. The reflecting coating 6 can be of powdered materials of good reflectivity, such as magnesium oxide, zinc oxide, or titanium dioxide. The particle size can be small. for example an average size of 1 micron is quite effective. The reflector coating can be applied in the same manner as the phosphor coating. or in some other manner, if desired, and the phosphor coating then applied over it in the manner previously mentioned.
The brightness obtained through the gap or aperture 3 will be greater if a metal surface, preferably a specular reflecting surface, is used for the reflecting coating 6. The metal coating can be applied in any manner customary in the art, for example as shown in US. Patent 2,064,- 369 to O. H. Biggs. Aluminum and silver are especially effective as reflecting materials, and can be applied by evaporation. Silver can also be applied chemically, by the usual mirror deposition methods, if desired.
Although the reflector coating has been shown inside the bulb, it can also be placed on the outside of the bulb if desired, although then there will be additional losses in the glass between the phosphor and the reflector, with a smaller increase in brightness.
In some cases, more than one aperture may be present, as shown in FIGURE 3. In that case, the glass tube 1 and the coatings 2 and 6 can be the same as before, but part of the gap 3 between them will be covered by the additional reflecting coating 7 and the additional phosphor coat 8, thereby in effect producing two apertures 9, 10. Such a lamp is especially useful as a street-light, mounted several feet, perhaps as high even as twenty feet, above the street, the axis of the lamp being perpendicular to the street or the center line thereof.
As shown by the arrows 11, 12, light would then emerge from the apertures 9, 10 in two different directions, part being directed toward the street on one side of the lamp, and part toward the street on the other side.
A refractor or series of longitudinal or linear lenses, parallel to the axis of the tube can be used on each side of the tube 1 to direct the light wherever desired.
In some cases, some direct light from the lamp may be desired on the street directly below tube 1, and that may be achieved by omitting the reflecting coating 7 between the two apertures 9, 10, as shown in FIGURE 4, so that some direct light from the outside surface of phosphor coating 8 will fall on the roadway.
One type of fixture which is effective with an aperture lamp is shown in FIGURE 5. In this the phosphor coating 2 is shown schematically, with its ends 4, 5 shown as dots for emphasis. A reflecting parabola, which can be of specular metal, is placed with its axis tangent to the circle of coating 2 at one end 5 thereof, with the other end 4 of the coating 2 off the axis 13 of the parabola 14. Only one side 15-16 of the parabola is present in the actual reflector, and the lamp is on the other side of the axis 13 than the portion 15-16 of the parabola 14. One edge 5 of the coating 2 is tangent to the axis of the parabola, as previously stated, and at the focus of the parabola. The other edge 4 of coating 2 is off the axis of the parabola and nearer to the apex 15 thereof.
As shown by the schematic ray of light 17, all rays from edge 5 will be reflected parallel to the axis 13, and all other rays, for example a ray 18 from edge 4, will be reflccted below ray 18 in the figure, that is, in a direction nearer to the parabola 14 itself.
This reflector-lamp combination is therefor especially eifective where it is desired to place the longitudinal axis of the lamp horizontally and to insure that all rays emanating from the fixture will be directed at or below the horizontal. If it is desired to have all rays below the horizontal, for example to have them just slightly below the horizontal when illuminating a runway or roadway from a region vertically close to the edge of the runway or roadway, then the whole unit, lamp plus reflector, can be tilted the desired amount.
If a glass or plastic window is used in front of the unit, then a non-reflecting black region can be used between the forward end 16 of reflector l4 and the window, as shown in co-pending US. patent application Serial No. 712,203, filed January 30, 1958, by Biggs, Spencer and Peek.
Because the lamp used with the reflector has an aperture, the fixture of the present invention can be made much smaller than that shown in the application mentioned above.
In the fixture of FIGURE 4, an opaque coating can be used over the reflecting portion of the bulb in order to prevent any stray light passing through the reflector from reaching the reflector or the object to be eliminated. In that way, a sharp cut-off of the beam will be achieved.
A lamp having such an opaque coating 20 is shown in FIGURE 6.
The width of the beam can be adjusted by varying the distance 15-5, that is, the distance along the axis 13 between points 15 and 5.
In the foregoing description only the new features in the lamps were described, and the old features were not. However, it is clear that the tube 1 is a sealed envelope, containing a filling of inert gas and a small amount of mercury vapor, with an electrode, preferably of the thermionic type, at each end of the lamp, in the manner customary in the art. These features can be the same as in the so-called Very High Output" lamps, with an input of about 25 watts or more, such as shown in US. patent application Serial No. 742,928, filed June 18, 1958, by Waymouth et al., now Patent No. 2,961,566.
This application is a division of copending application Serial No. 825,915, filed July 9, 1959, now Patent No. 3,115,309.
What we claim is:
1. A fluorescent lamp comprising a sealed elongated tube, a coating of phosphor inside said tube and subtending the major portion of the angle around the axis of said tube, a portion of the tube being free from phosphor coating and subtending a minor portion of said angle, said phosphor coating being thick enough to reflect back into the tube substantially all light falling on the coating.
2. The combination of claim 1, in which the phosphor coating is composed chiefly of particles of sizes below about 3 microns in order to have high reflectivity and low transmission.
3. The lamp of claim 1, and a protective coating over the otherwise uncoated portion of the lamp tube.
4. A fluorescent lamp comprising a sealed elongated tube, a coating of phosphor inside said tube and subtending the major portion of the angle around the axis of said tube, a portion of the tube being free from phosphor coating and subtending a minor portion of said angle, and a protective light-transmissive coating of material diflerent from that of the phosphor coating over the otherwise uncoated portion of the lamp tube.
References Cited by the Examiner UNITED STATES PATENTS 2,407,379 9/1946 Morehouse 313109 2,440,832 5/ 1948 Pennybacker 3l31 13 2,854,600 9/1958 Van De Weijeret a]. 313-409 10 GEORGE N. WESTBY, Primary Examiner.
3',225,241 December 21', 19.65
Patent No. Dated Inventor(s) Domina Eberle Spencer et a1 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Insert sheet 2 as part of Letters Patent 3,225 ,241
Signed and sealed this 16th day of April 1974 (SEAL) Attest:
EDWARD M.FLETCHER,JR. C. MARSHALL DANN Attesting Officer Commissioner of Patents

Claims (1)

1. A FLUORESCENT LAMP COMPRISING A SEALED ELONGATED TUBE, A COATING OF PHOSPHOR INSIDE SAID TUBE AND SUBTENDING THE MAJOR PORTION OF THE ANGLE AROUND THE AXIS OF SAID TUBE, A PORTION OF THE TUBE BEING FFREE FROM PHOSPHOR COATING AND SUBTENDING A MINOR PORTION OF SAID ANGLE, SAID PHOSPHOR COATING BEING THICK ENOUGH TO REFLECT BACK INTO THE TUBE SUBSTANTIALLY ALL LIGHT FALLING ON THE COATING.
US197211A 1959-07-09 1962-05-02 Aperture fluorescent lamp Expired - Lifetime US3225241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US197211A US3225241A (en) 1959-07-09 1962-05-02 Aperture fluorescent lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US825915A US3115309A (en) 1959-07-09 1959-07-09 Aperture fluorescent lamp
US197211A US3225241A (en) 1959-07-09 1962-05-02 Aperture fluorescent lamp

Publications (1)

Publication Number Publication Date
US3225241A true US3225241A (en) 1965-12-21

Family

ID=26892651

Family Applications (1)

Application Number Title Priority Date Filing Date
US197211A Expired - Lifetime US3225241A (en) 1959-07-09 1962-05-02 Aperture fluorescent lamp

Country Status (1)

Country Link
US (1) US3225241A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275872A (en) * 1963-07-12 1966-09-27 Gen Electric Reflector fluorescent lamp
US3295003A (en) * 1963-11-18 1966-12-27 Gen Electric Grooved reflector lamp
US3442582A (en) * 1966-12-07 1969-05-06 Ibm Lamp arrangement for document scanning and modified lamp
US3504819A (en) * 1966-02-21 1970-04-07 Owens Illinois Inc Lamp envelopes
US3767956A (en) * 1969-12-24 1973-10-23 Xerox Corp Aperture fluorescent lamp for copying machines
US3875454A (en) * 1972-11-25 1975-04-01 Philips Corp Low-pressure mercury vapour discharge lamp and method of manufacturing said lamp
US3875455A (en) * 1973-04-18 1975-04-01 Gen Electric Undercoat for phosphor in reprographic lamps having titanium dioxide reflectors
DE2611894A1 (en) * 1975-03-24 1976-10-14 Gte Sylvania Inc UV LUMINOUS DISCHARGE LAMP WITH REFLECTOR FILM INSIDE
US3995182A (en) * 1974-11-14 1976-11-30 U.S. Philips Corporation Low-pressure sodium vapor discharge lamp
DE2644821A1 (en) * 1975-10-06 1977-04-14 Gte Sylvania Inc FLUORESCENT LAMP WITH REFLECTIVE LAYER
DE2648602A1 (en) * 1975-11-04 1977-05-12 Philips Nv METHOD OF APPLYING A LAYER OF SUSPENSION AND / OR SOLUTION TO THE INSIDE WALL OF A TUBULAR LAMP
US4117378A (en) * 1977-03-11 1978-09-26 General Electric Company Reflective coating for external core electrodeless fluorescent lamp
US4119889A (en) * 1975-08-13 1978-10-10 Hollister Donald D Method and means for improving the efficiency of light generation by an electrodeless fluorescent lamp
US4224553A (en) * 1977-10-07 1980-09-23 Licentia Patent-Verwaltungs-G.M.B.H. Gas discharge indicator device
EP0033652A1 (en) * 1980-02-04 1981-08-12 Xerox Corporation Low pressure electric discharge lamp
US4287231A (en) * 1975-01-20 1981-09-01 Westinghouse Electric Corp. Method of spray-reflectorizing electric lamp envelopes
EP0040547A1 (en) * 1980-05-19 1981-11-25 Xerox Corporation Illumination system including a low pressure arc discharge lamp
US4341979A (en) * 1980-02-14 1982-07-27 Leo Gross Fluorescent lamp with rotating magnetic field arc spreading device
FR2502844A1 (en) * 1981-03-30 1982-10-01 Fuji Photo Optical Co Ltd ELECTRIC DISCHARGE TUBE AND ELECTRONIC FLASH IMPLEMENTING IT
US4363997A (en) * 1979-09-21 1982-12-14 Hitachi, Ltd. Fluorescent lamp having reflective layer
DE3400385A1 (en) * 1983-01-13 1984-07-19 N.V. Philips' Gloeilampenfabrieken, Eindhoven LOW PRESSURE MERCURY STEAM DISCHARGE LAMP
US5003220A (en) * 1987-06-22 1991-03-26 Gte Products Corporation Integral lamp for tri-color picture element
US5116272A (en) * 1990-07-03 1992-05-26 Gte Products Corporation Method and apparatus for forming apertures in fluorescent lamps
US5142191A (en) * 1990-07-03 1992-08-25 Gte Products Corporation Aperture fluorescent lamp with press seal configuration
WO1994022160A1 (en) * 1993-03-22 1994-09-29 Heflin Edward G Light plus
US5552664A (en) * 1994-06-29 1996-09-03 Light Sources, Inc. Fluorescent lamps with imprinted color logos and method of making same
US5726528A (en) * 1996-08-19 1998-03-10 General Electric Company Fluorescent lamp having reflective layer
US6108965A (en) * 1998-04-03 2000-08-29 Brandenburg Limited Trap for catching insects
US20040095059A1 (en) * 2002-06-14 2004-05-20 Laudano Joseph D. Discharge lamp having overlaid fluorescent coatings and methods of making the same
US6777702B2 (en) 2002-02-15 2004-08-17 Voltarc Technologies, Inc. Discharge lamp having multiple intensity regions
US6943361B2 (en) 2002-02-15 2005-09-13 Voltarc Technologies Inc. Tanning lamp having grooved periphery
US20080007968A1 (en) * 2006-07-07 2008-01-10 Innolux Display Corp. Double-layer lamp and backlight module having same field of the invention
US20080049421A1 (en) * 2006-05-31 2008-02-28 Jenn-Wei Mii Luminescent assembly with an increased brightness

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2407379A (en) * 1941-12-22 1946-09-10 Morehouse Walter Bertram Combination bactericidal and illuminating lamp
US2440832A (en) * 1945-05-29 1948-05-04 Pennybacker Miles Gas discharge lamp
US2854600A (en) * 1955-08-26 1958-09-30 Philips Corp Low-pressure mercury-vapour discharge lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2407379A (en) * 1941-12-22 1946-09-10 Morehouse Walter Bertram Combination bactericidal and illuminating lamp
US2440832A (en) * 1945-05-29 1948-05-04 Pennybacker Miles Gas discharge lamp
US2854600A (en) * 1955-08-26 1958-09-30 Philips Corp Low-pressure mercury-vapour discharge lamp

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275872A (en) * 1963-07-12 1966-09-27 Gen Electric Reflector fluorescent lamp
US3295003A (en) * 1963-11-18 1966-12-27 Gen Electric Grooved reflector lamp
US3504819A (en) * 1966-02-21 1970-04-07 Owens Illinois Inc Lamp envelopes
US3442582A (en) * 1966-12-07 1969-05-06 Ibm Lamp arrangement for document scanning and modified lamp
US3767956A (en) * 1969-12-24 1973-10-23 Xerox Corp Aperture fluorescent lamp for copying machines
US3875454A (en) * 1972-11-25 1975-04-01 Philips Corp Low-pressure mercury vapour discharge lamp and method of manufacturing said lamp
US3875455A (en) * 1973-04-18 1975-04-01 Gen Electric Undercoat for phosphor in reprographic lamps having titanium dioxide reflectors
US3995182A (en) * 1974-11-14 1976-11-30 U.S. Philips Corporation Low-pressure sodium vapor discharge lamp
US4287231A (en) * 1975-01-20 1981-09-01 Westinghouse Electric Corp. Method of spray-reflectorizing electric lamp envelopes
DE2611894A1 (en) * 1975-03-24 1976-10-14 Gte Sylvania Inc UV LUMINOUS DISCHARGE LAMP WITH REFLECTOR FILM INSIDE
US4119889A (en) * 1975-08-13 1978-10-10 Hollister Donald D Method and means for improving the efficiency of light generation by an electrodeless fluorescent lamp
DE2644821A1 (en) * 1975-10-06 1977-04-14 Gte Sylvania Inc FLUORESCENT LAMP WITH REFLECTIVE LAYER
US4061946A (en) * 1975-10-06 1977-12-06 Gte Sylvania Incorporated Fluorescent lamp having zero back brightness
DE2648602A1 (en) * 1975-11-04 1977-05-12 Philips Nv METHOD OF APPLYING A LAYER OF SUSPENSION AND / OR SOLUTION TO THE INSIDE WALL OF A TUBULAR LAMP
US4117378A (en) * 1977-03-11 1978-09-26 General Electric Company Reflective coating for external core electrodeless fluorescent lamp
US4224553A (en) * 1977-10-07 1980-09-23 Licentia Patent-Verwaltungs-G.M.B.H. Gas discharge indicator device
US4363997A (en) * 1979-09-21 1982-12-14 Hitachi, Ltd. Fluorescent lamp having reflective layer
US4317066A (en) * 1980-02-04 1982-02-23 Xerox Corporation Gaseous discharge lamp having novel electrode mountings
EP0033652A1 (en) * 1980-02-04 1981-08-12 Xerox Corporation Low pressure electric discharge lamp
US4341979A (en) * 1980-02-14 1982-07-27 Leo Gross Fluorescent lamp with rotating magnetic field arc spreading device
EP0040547A1 (en) * 1980-05-19 1981-11-25 Xerox Corporation Illumination system including a low pressure arc discharge lamp
FR2502844A1 (en) * 1981-03-30 1982-10-01 Fuji Photo Optical Co Ltd ELECTRIC DISCHARGE TUBE AND ELECTRONIC FLASH IMPLEMENTING IT
DE3400385A1 (en) * 1983-01-13 1984-07-19 N.V. Philips' Gloeilampenfabrieken, Eindhoven LOW PRESSURE MERCURY STEAM DISCHARGE LAMP
FR2539555A1 (en) * 1983-01-13 1984-07-20 Philips Nv DISCHARGE LAMP IN LOW PRESSURE MERCURY STEAM
GB2135505A (en) * 1983-01-13 1984-08-30 Philips Nv Low-pressure mercury vapour discharge lamp
US5003220A (en) * 1987-06-22 1991-03-26 Gte Products Corporation Integral lamp for tri-color picture element
US5116272A (en) * 1990-07-03 1992-05-26 Gte Products Corporation Method and apparatus for forming apertures in fluorescent lamps
US5142191A (en) * 1990-07-03 1992-08-25 Gte Products Corporation Aperture fluorescent lamp with press seal configuration
WO1994022160A1 (en) * 1993-03-22 1994-09-29 Heflin Edward G Light plus
US5552664A (en) * 1994-06-29 1996-09-03 Light Sources, Inc. Fluorescent lamps with imprinted color logos and method of making same
US5726528A (en) * 1996-08-19 1998-03-10 General Electric Company Fluorescent lamp having reflective layer
US6108965A (en) * 1998-04-03 2000-08-29 Brandenburg Limited Trap for catching insects
US6777702B2 (en) 2002-02-15 2004-08-17 Voltarc Technologies, Inc. Discharge lamp having multiple intensity regions
US6943361B2 (en) 2002-02-15 2005-09-13 Voltarc Technologies Inc. Tanning lamp having grooved periphery
US20040095059A1 (en) * 2002-06-14 2004-05-20 Laudano Joseph D. Discharge lamp having overlaid fluorescent coatings and methods of making the same
US6919676B2 (en) 2002-06-14 2005-07-19 Voltarc Technologies Inc. Discharge lamp having overlaid fluorescent coatings and methods of making the same
US20080049421A1 (en) * 2006-05-31 2008-02-28 Jenn-Wei Mii Luminescent assembly with an increased brightness
US7530715B2 (en) * 2006-05-31 2009-05-12 Jenn-Wei Mii Luminescent assembly with shortwave and visible light source
US20080007968A1 (en) * 2006-07-07 2008-01-10 Innolux Display Corp. Double-layer lamp and backlight module having same field of the invention

Similar Documents

Publication Publication Date Title
US3225241A (en) Aperture fluorescent lamp
US3115309A (en) Aperture fluorescent lamp
US5130904A (en) Automotive headlamp waving no ultraviolet output
US3944320A (en) Cold-light mirror
US3931536A (en) Efficiency arc discharge lamp
GB1463939A (en) Incandescent lamps
JPH01292740A (en) Metal halide lamp having vacuum shroud
US5568967A (en) Electric lamp with reflector
US4039878A (en) Electric reflector lamp
US2854600A (en) Low-pressure mercury-vapour discharge lamp
US4987343A (en) Vehicle headlamp
US4173778A (en) Lighting fixtures and glass enclosure having high angle anti-reflection coating
US3767956A (en) Aperture fluorescent lamp for copying machines
GB2097997A (en) Electric reflector lamp
GB1594899A (en) Sodium vapour lamp
US3253504A (en) Projection lamp
US3654455A (en) Luminaire
US3162785A (en) Projection lamp
US3354343A (en) Dual beam electric lamp
US4174487A (en) Mirror condenser lamp
US5041755A (en) Gas-discharge lamp
US2181291A (en) Reflector bulb lamp
JPS60218761A (en) Lighting equipment
GB1039215A (en) Improvements in and relating to electric incandescent lamps
US2219510A (en) Reflecting electric lamp