US3234140A - Stabilization of peroxy solutions - Google Patents

Stabilization of peroxy solutions Download PDF

Info

Publication number
US3234140A
US3234140A US373072A US37307264A US3234140A US 3234140 A US3234140 A US 3234140A US 373072 A US373072 A US 373072A US 37307264 A US37307264 A US 37307264A US 3234140 A US3234140 A US 3234140A
Authority
US
United States
Prior art keywords
peroxy
bleaching
solution
solutions
amino tri
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US373072A
Inventor
Riyad R Irani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Priority to US373072A priority Critical patent/US3234140A/en
Priority to FR19014A priority patent/FR1449711A/en
Priority to DE1965M0065443 priority patent/DE1519484B2/en
Priority to GB23765/65A priority patent/GB1119221A/en
Priority to NL6507058A priority patent/NL6507058A/xx
Priority to LU48760D priority patent/LU48760A1/xx
Priority to BE665004A priority patent/BE665004A/xx
Application granted granted Critical
Publication of US3234140A publication Critical patent/US3234140A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D9/00Compositions of detergents based essentially on soap
    • C11D9/04Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
    • C11D9/22Organic compounds, e.g. vitamins
    • C11D9/34Organic compounds, e.g. vitamins containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/037Stabilisation by additives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/3804Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se) not used, see subgroups
    • C07F9/3808Acyclic saturated acids which can have further substituents on alkyl
    • C07F9/3817Acids containing the structure (RX)2P(=X)-alk-N...P (X = O, S, Se)
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/364Organic compounds containing phosphorus containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D9/00Compositions of detergents based essentially on soap
    • C11D9/04Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
    • C11D9/22Organic compounds, e.g. vitamins
    • C11D9/30Organic compounds, e.g. vitamins containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/10Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen
    • D06L4/12Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen combined with specific additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This invention relates tomethods for stabilizing aqueous peroxy solutions and, more particularly, to methods for bleaching cellulosic materials such as cotton, linen, jute, rayon, paper and the like, using aqueous peroxy solutions having dissolved therein novel stabilizing agents.
  • peroxide bleaching has supplanted chlorine bleaching to the extent that about 80% of cotton bleaching is done by use of peroxide as a bleaching agent. Also, about all .of the continuous bleaching methods use peroxide as the bleaching agent and about 90% of the cotton that is bleached with peroxide is bleached by continuous bleaching methods.
  • a stabilizing agent to minimize the decomposition'of the peroxy compound is well'established in the peroxy bleaching art, because, among other things, the-oxygen released by decomposition of the peroxy com pound in general has no bleaching action as contrasted with the normal autodecomposition of the peroxy com-- pound which does functionas a bleaching agent. In fact, the decomposition of the peroxy compound may be harmful. For example, cellulosic materials in strongly alkaline peroxy solutions are-attacked by the oxygen from decomposition with the result of loss of strength by the materials. In general, stabilizing agents are of various and diverse nature and the ability of a material to be an effective stabilizing agent is apparently unpredictable.
  • the stabilizing agents for peroxy solutions vary in their ability with changes in the prevailing conditions such as pH, temperature conditions and the like of the peroxy solutions.
  • the stabilizing agent should preferably be effective in alkaline solutions and under relatively high temperature condtions which are frequently'enco'untered in practice as well as being compatible with other additives usually present in the peroxy bleaching solutions such as optical whiteners, that is, brighteners of fluorescent White dyes, wetting agents and the like.
  • an object of this invention is to provide an improved method for stabilizing aqueous peroxy solutions.
  • Another object of this invention is to provide an improved method for bleaching cellulosic materials using :aqueous peroxy solutions having dissolved therein novel stabilizing agents.
  • X and Y represent hydrogen or a lower alkyl group 1-4 carbon atoms
  • X and Y represent hydrogen or a lower alkyl group 1-4 carbon atoms
  • Compounds illustrative of the invention are: amino tri(methylphdsphonic acid), amino tri(ethylidenephosphonic acid), amino tri(isopropylidenephosphonic acid), am no mono(methylphosphonic acid) di(ethylidene phosphonic acid, and amino tri(butylidene phosphonic aci 1
  • the free acids can be used, the water-soluble salts are preferred, especially the sodium salts of amino tri(lower alkylidenephosphonic acids) and in particular the penta sodium salt has proven to be quite effective.
  • Other alkali metal salts, such as potassium, lithium and the like, as well as mixtures of the alkali metal salts may be used.
  • any water-soluble salt such as the ammonium'salt (e.g., NCH PO '(NH );(CH PO HNH and the amine sa ts which exhibit the characteristics of the alkali metal salt may be also used to practice the invention.
  • ammonium'salt e.g., NCH PO '(NH );(CH PO HNH and the amine sa ts which exhibit the characteristics of the alkali metal salt
  • the stabilizing agents of the instant invention exhibit, .in addition to theirstabilizing ability, the highly beneficial properties of being highly water-soluble and hydrolytically stable, that is, having a substantial resistance to hydrolysis or degradation undervarious pH and temperature con.- ditions.
  • a 20 gram sample of penta sodium amino tri(methylphosphonate) was dissolved in ml. of Water A 25 ml. portion of the solution was added to a 25 ml. portion'of 12 M :I-ICl to give a 10% solution of the stabilizing agent in HCl. Another 25 ml. portion of the solution was added to a 25 ml.
  • Peroxy solutions which are capable of being stabilized in addition to hydrogen peroxide and its addition cornponnds, such as the peroxide of sodium and the super oxide of potassium, include urea percompounds, per- :borates, persulfates, and the peracids such as persulfnric acid, peracetic acid, peroxy monophosphoric acid and their water-soluble salt compounds such as sodium, potassium, ammonium and organic amine salts.
  • thep l-lio'f" the aqueous 'pe'roxy'solution' is usually adjusted with inorganic alkali metal basic materials, such as" sodium hydroxide, sodium carbonate, sodium silicate, diand tri-sodium phosphates and the like, including mixtures of these as well as the potassium forms of the foregoing materials, to a pH of between about 7.5 and about1'2.'5.”
  • inorganic alkali metal basic materials such as" sodium hydroxide, sodium carbonate, sodium silicate, diand tri-sodium phosphates and the like, including mixtures of these as well as the potassium forms of the foregoing materials.
  • concentration of 'perxoy solutions can vary depending upon, inter alia, the type of peroxy-compound, pH, temperature, type of bleaching desired and the like, however, normalconcentration's, i.e.,' from about 0.01
  • concentrations from about .2 to about 3% can be used with concentrations from about .2 to about 3% being preferred.
  • the stabilizing agents of the present invention may be dissolved in the peroxy solution which is ready for use or may be incorporated in a concentrated peroxy solution, such as a 35% solution of hydrogen peroxide, which is usually further diluted to form the peroxy solution for bleaching.
  • the stabilizing agent can be incorporated in dry bleach compositions, such as perborate compositions, by admixing therewith, and the resulting composition dissolved in the aqueous system immediately preceding its end use application.
  • the stabilizing agent is intended to be used with the peroxy solution at the time of its use for bleaching purposes.
  • the concentration of the stabilizing agent of the present invention in the peroxy solution can vary depending upon, inter alia, concentration of the peroxy solution, type of peroxy-compound used, pH, temperature and the like, and usually for normal concentrations of peroxy solutions and with conventional bleaching methods, the stabilizing agent is preferably present in concentrations from about 0.001 to about 5% with from about 0.1% to about 1% being especially preferred.
  • the methods for bleaching using the peroxy solutions containing the stabilizing agents of the present invention vary widely, as for example, from using the peroxy solutions at normal temperatures, i.e., from about 20 C. to about 35 C. and contacting the cellulosic material by immersion for periods of time of several hours, i.e., from about 12 to about 36 hours, to using the peroxy solutions at temperatures from about 70 C. to about 100 C. for periods of time from about 30 minutes to about 6-8 hours, as well as continuous bleaching methods which entail the use of the peroxy solutions at normal temperatures, i.e., about 25 C. and contacting the cellulose material by saturation, removing the excess moisture and exposing the cellulose material to saturated steam at temperatures from about 100 C.-to about 135 C.
  • U.S. Patents 2,839,353, 2,960,383, and 2,983,568 are illustrative of being representative of continuous peroxy bleaching methods.
  • the amino tri(lower alkylidenephosphonic acids) and their salts may be prepared by various means, one of which comprises as a first step the preparation of the corresponding esters by reacting under reactive conditions ammonia, a compound containing a carbonyl group such as an aldehyde or ketone, and a dialkylphosphite.
  • the free amino tri(lower alkylidenephosphonic acids) and their salts may be prepared by hydrolysis of the esters.
  • EXAMPLE 1 Into a conventional 3-necked, 3-liter flask fitted with a reflux condenser, stirrer and thermometer was added 600 grams of diethyl phosphite and 127.5 grams of 29% aqueous ammonia solution. The flask was placed in an ice bath and after the mixture had become cooled to about 0 C. 325 grams of 37% aqueous formaldehyde solution was added. The flask was removed from the ice bath and heated with the reaction occurring at above 100 C. After the reaction was completed, the flask was allowed to cool to room temperature and the reaction products were extracted with benzene and separated by fractional distillation.
  • Hexaethyl amino tri- (methylphosphonate) distilled between l90"20() C. at a pressure of .1 mm. and was obtained in a quantity of 184 grams. The following are the results to enable a comparison between the calculated percent constituents and found percent constituents.
  • the free acid, amino tri(methylphosphonic acid), N(CH P(O) (OH) was prepared by hydrolysis of a portion of the foregoing prepared ester. In a flask similar to that described above 40 grams of the ester was refluxed with about 200 ml. of concentrated hydrochloric acid for a period of about 24 hours. The free acid, a sirupy liquid, crystallized on prolonged standing (about 1 week) in a desiccator. The yield was 20 grams. The equivalent weight of the free acid, by titration, was found to be 62 as compared with the calculated value of 59.8.
  • amino tri(lower alkylidene phosphonic acids) and their salts are effective stabilizing agents due to, inter alia, their ability to function as sequestering and deflocculating agents in alkaline peroxy solutions and at relatively high temperatures which are frequently encountered in the bleaching art, with the result of inactivating catalytically-active substances, such as iron, copper and manganese which greatly accelerate the decomposition of the peroxy-compound, as well as their ability to be only moderately oxidized by the peroxy solutions during normal periods of time under bleaching conditions frequently encountered.
  • catalytically-active substances such as iron, copper and manganese which greatly accelerate the decomposition of the peroxy-compound, as well as their ability to be only moderately oxidized by the peroxy solutions during normal periods of time under bleaching conditions frequently encountered.
  • the testing procedure used consisted of kinetic runs carried out in a suitable flask, stirred by a vibrating stirrer and thermostated at about C.
  • the flask initially contained one liter of solution of the following typical composition: 1.0% sodium silicate, 0.35% H 0 stabilizing agent as indicated, and 2.5 10- percent Cu++ (as CuSO The pH was adjusted to 10.0.
  • the run was started by adding 10 ml. of concentrated peroxide solution to 990 ml. of solution. At intervals, 10 ml. aliquots of solution were withdrawn by pipette, quenched in ml. H O, acidified with 1 ml. concentrated H 80 and the residual H 0 titrated with .1 N KMNO The following table illus trates the results of the test.
  • a stabilizing agent of the instant invention is effective in stabilizing the peroxy solutions at very low concentrations (from .001% to .01%) over periods of time from about 20- minutes up to about 2 hours, while the peroxy solution without the stabilizing agent exhibited no bleaching abilityafter about 15 minutes.
  • Cloth swatches were withdrawn after 15, 30, 16 and 120 minutes; rinsed well in distilled water, and air dried. The swatches were pressed and then reflectance measured vs. the original unbleached cloth on a Gardner refiectometer. Averages of four readings at diflerent cloth orientations are reported. Reflectance values for blue light were measured relative to a white ceramic plate as 100%. The test swatches were then cut into one inch strips and measured for tensile strength according to ASTM Designation D39-49, revised 1955 Standard General Methods of Testing Woven Fabrics, A Breaking Strength, 11. Raveled Strip method. The following tables illustrate the results of the test.
  • the peroxy solutions stabilized with a compound of the instant invention exhibited the ability to raise the brightness of the bleached cotton fabric from about 69% (before the foregoing bleaching treatment) to about 86 to 93%.
  • no substantial degradation of the fabric occurred as a result of bleaching with the stabilized peroxy solution as indicated in Table 5 with the tensile strengths of the bleached swatches comparing very favorably with the unbleached swatches.
  • peroxy solutions stabilized with the stabilizing agents of the present invention exhibit the ability to bleach cellulosic materials, such as cotton fabric, without impairing the material.
  • a peroxy solution in accordance with this invention need contain only a peroxy-compound and an amino tri(lower alkylidenephosphonic acid) or a salt thereof, it will be appreciated that the incorporation in the solution of additional ingredients commonly used in peroxy wherein X and Y are each selected from the group consisting of hydrogen and lower alkyl groups containing from 1 to 4 carbon atoms, and their water soluble salts selected from the group consisting of alkali metal salts, ammonium salts and amine salts.
  • X and Y are each selected from the group consist-ing of hydrogen and lower alkyl groups containing from 1 to 4 carbon atoms, and their Water soluble salts selected from the group consisting of alkali metal salts, ammonium salts and amine salts.

Description

United States Patent 3,234,140 STABLLIZATION OF PEROXY SOLUTIONS Rlyad R. Irani, St. Louis, Mo., assignor to Monsanto Company, St. Louis, Mo., a corporation of Delaware No Drawing. Filed June 5, 1964, Ser. No. 373,072 16 Claims. (Cl. 252-486) 'This is a conutinuation-in-part of co-pending patent application Ser. No. 231,596, filed October 18, 1962. i
This invention relates tomethods for stabilizing aqueous peroxy solutions and, more particularly, to methods for bleaching cellulosic materials such as cotton, linen, jute, rayon, paper and the like, using aqueous peroxy solutions having dissolved therein novel stabilizing agents. I It has been reported that peroxide bleaching has supplanted chlorine bleaching to the extent that about 80% of cotton bleaching is done by use of peroxide as a bleaching agent. Also, about all .of the continuous bleaching methods use peroxide as the bleaching agent and about 90% of the cotton that is bleached with peroxide is bleached by continuous bleaching methods.
The use of a stabilizing agent to minimize the decomposition'of the peroxy compound is well'established in the peroxy bleaching art, because, among other things, the-oxygen released by decomposition of the peroxy com pound in general has no bleaching action as contrasted with the normal autodecomposition of the peroxy com-- pound which does functionas a bleaching agent. In fact, the decomposition of the peroxy compound may be harmful. For example, cellulosic materials in strongly alkaline peroxy solutions are-attacked by the oxygen from decomposition with the result of loss of strength by the materials. In general, stabilizing agents are of various and diverse nature and the ability of a material to be an effective stabilizing agent is apparently unpredictable.
Forexample, although a few sequestering agents such as sodium :pyrophosphate can be considered as stabilizing agents, the majority of sequestering agents are not considered to be effective stabilizing. agents while such non- ,sequestering materials as sodium stannate and sodium silicate have been reported as being effective stabilizing agents. Therefore, due to their unpredictability and their diverse nature, the stabilizing agents for peroxy solutions vary in their ability with changes in the prevailing conditions such as pH, temperature conditions and the like of the peroxy solutions. For todays bleaching conditions the stabilizing agent should preferably be effective in alkaline solutions and under relatively high temperature condtions which are frequently'enco'untered in practice as well as being compatible with other additives usually present in the peroxy bleaching solutions such as optical whiteners, that is, brighteners of fluorescent White dyes, wetting agents and the like.
Therefore, an object of this invention is to provide an improved method for stabilizing aqueous peroxy solutions.
Another object of this invention is to provide an improved method for bleaching cellulosic materials using :aqueous peroxy solutions having dissolved therein novel stabilizing agents.
Other objects will become apparent from a leading of the following detailed description.
It has been found that amino tri(lower alkylidene- .phosphonic acids) or. their salts, said acids being of the following formula:
wherein X and Y represent hydrogen or a lower alkyl group 1-4 carbon atoms), are eifective stabilizing agents for peroxy solutions as will be more fully discussed hereinafter.
Compounds illustrative of the invention are: amino tri(methylphdsphonic acid), amino tri(ethylidenephosphonic acid), amino tri(isopropylidenephosphonic acid), am no mono(methylphosphonic acid) di(ethylidene phosphonic acid, and amino tri(butylidene phosphonic aci 1 It is to be understood that although the free acids can be used, the water-soluble salts are preferred, especially the sodium salts of amino tri(lower alkylidenephosphonic acids) and in particular the penta sodium salt has proven to be quite effective. Other alkali metal salts, such as potassium, lithium and the like, as well as mixtures of the alkali metal salts may be used. In addition, any water-soluble salt, such as the ammonium'salt (e.g., NCH PO '(NH );(CH PO HNH and the amine sa ts which exhibit the characteristics of the alkali metal salt may be also used to practice the invention.
The stabilizing agents of the instant invention exhibit, .in addition to theirstabilizing ability, the highly beneficial properties of being highly water-soluble and hydrolytically stable, that is, having a substantial resistance to hydrolysis or degradation undervarious pH and temperature con.- ditions. For example, a 20 gram sample of penta sodium amino tri(methylphosphonate) was dissolved in ml. of Water A 25 ml. portion of the solution was added to a 25 ml. portion'of 12 M :I-ICl to give a 10% solution of the stabilizing agent in HCl. Another 25 ml. portion of the solution was added to a 25 ml. portion of 1 0% NaOl-I to give a 1.0% solution of the stabilizing agent in a 5% solution of NaOH. The foregoing 10% solutions were boiled for a period of four hours, at the end of which bot-h solutions exhibited no change in physical properties. Nuclear magnetic resonance spectra showed the two 10% solutions to be identical with a fresh 10% solutionof the stabilizing agent in water, thereby establishing the resistance of the stabilizing agent to hydrolysis or degradation under "severe temperature and pH conditions. It should be noted that all known polyphosphates, whether in the acid, salt or ester form, would hydrolyze or degrade completely under the foregoing conditions.
Peroxy solutions which are capable of being stabilized in addition to hydrogen peroxide and its addition cornponnds, such as the peroxide of sodium and the super oxide of potassium, include urea percompounds, per- :borates, persulfates, and the peracids such as persulfnric acid, peracetic acid, peroxy monophosphoric acid and their water-soluble salt compounds such as sodium, potassium, ammonium and organic amine salts.
Depending upon, interalia, the particular peroxy-compound used, thep l-lio'f" the aqueous 'pe'roxy'solution' is usually adjusted with inorganic alkali metal basic materials, such as" sodium hydroxide, sodium carbonate, sodium silicate, diand tri-sodium phosphates and the like, including mixtures of these as well as the potassium forms of the foregoing materials, to a pH of between about 7.5 and about1'2.'5." Usually if the pH is higher than about 12.5 rapid bleaching occurs 'and'the peroxycompounds rapidly decompose so that it is difficult to control a' reper bleaching rate without undue damage to the fibersi At pH'values' lower than about 7.5, the rate of bleaching in most cases is slow to the extent of being uneconomica'l for bleaching.
The concentration of 'perxoy solutions can vary depending upon, inter alia, the type of peroxy-compound, pH, temperature, type of bleaching desired and the like, however, normalconcentration's, i.e.,' from about 0.01
to about 5% can be used with concentrations from about .2 to about 3% being preferred.
The stabilizing agents of the present invention may be dissolved in the peroxy solution which is ready for use or may be incorporated in a concentrated peroxy solution, such as a 35% solution of hydrogen peroxide, which is usually further diluted to form the peroxy solution for bleaching. In addition, the stabilizing agent can be incorporated in dry bleach compositions, such as perborate compositions, by admixing therewith, and the resulting composition dissolved in the aqueous system immediately preceding its end use application. In any event, the stabilizing agent is intended to be used with the peroxy solution at the time of its use for bleaching purposes.
The concentration of the stabilizing agent of the present invention in the peroxy solution can vary depending upon, inter alia, concentration of the peroxy solution, type of peroxy-compound used, pH, temperature and the like, and usually for normal concentrations of peroxy solutions and with conventional bleaching methods, the stabilizing agent is preferably present in concentrations from about 0.001 to about 5% with from about 0.1% to about 1% being especially preferred.
The methods for bleaching using the peroxy solutions containing the stabilizing agents of the present invention vary widely, as for example, from using the peroxy solutions at normal temperatures, i.e., from about 20 C. to about 35 C. and contacting the cellulosic material by immersion for periods of time of several hours, i.e., from about 12 to about 36 hours, to using the peroxy solutions at temperatures from about 70 C. to about 100 C. for periods of time from about 30 minutes to about 6-8 hours, as well as continuous bleaching methods which entail the use of the peroxy solutions at normal temperatures, i.e., about 25 C. and contacting the cellulose material by saturation, removing the excess moisture and exposing the cellulose material to saturated steam at temperatures from about 100 C.-to about 135 C. for periods of time from a few seconds (about 20) to about 1 hour and even longer in some cases. U.S. Patents 2,839,353, 2,960,383, and 2,983,568 are illustrative of being representative of continuous peroxy bleaching methods.
The amino tri(lower alkylidenephosphonic acids) and their salts may be prepared by various means, one of which comprises as a first step the preparation of the corresponding esters by reacting under reactive conditions ammonia, a compound containing a carbonyl group such as an aldehyde or ketone, and a dialkylphosphite. The free amino tri(lower alkylidenephosphonic acids) and their salts may be prepared by hydrolysis of the esters.
To illustrate the invention, the following examples are presented.
EXAMPLE 1 Into a conventional 3-necked, 3-liter flask fitted with a reflux condenser, stirrer and thermometer was added 600 grams of diethyl phosphite and 127.5 grams of 29% aqueous ammonia solution. The flask was placed in an ice bath and after the mixture had become cooled to about 0 C. 325 grams of 37% aqueous formaldehyde solution was added. The flask was removed from the ice bath and heated with the reaction occurring at above 100 C. After the reaction was completed, the flask was allowed to cool to room temperature and the reaction products were extracted with benzene and separated by fractional distillation. Hexaethyl amino tri- (methylphosphonate) distilled between l90"20() C. at a pressure of .1 mm. and was obtained in a quantity of 184 grams. The following are the results to enable a comparison between the calculated percent constituents and found percent constituents.
Calculated: 36.78% C., 7.30% H, 3.53% N, 20.01% P. Found: 38.54% C, 7.76% H, 3.00% N, 18.89% P.
The free acid, amino tri(methylphosphonic acid), N(CH P(O) (OH) was prepared by hydrolysis of a portion of the foregoing prepared ester. In a flask similar to that described above 40 grams of the ester was refluxed with about 200 ml. of concentrated hydrochloric acid for a period of about 24 hours. The free acid, a sirupy liquid, crystallized on prolonged standing (about 1 week) in a desiccator. The yield was 20 grams. The equivalent weight of the free acid, by titration, was found to be 62 as compared with the calculated value of 59.8.
EXAMPLE 2 Penta sodium amino tri (methylphosphonate) N(CH P(0) Na ,(CI-I P(O) HNa), was prepared by dissolving the free acid obtained in Example 1 in 140 ml. of 10% NaOH solution and evaporating the aqueous solution to dryness at about 140 C. with the anhydrous form of the salt being formed.
It is believed that the amino tri(lower alkylidene phosphonic acids) and their salts are effective stabilizing agents due to, inter alia, their ability to function as sequestering and deflocculating agents in alkaline peroxy solutions and at relatively high temperatures which are frequently encountered in the bleaching art, with the result of inactivating catalytically-active substances, such as iron, copper and manganese which greatly accelerate the decomposition of the peroxy-compound, as well as their ability to be only moderately oxidized by the peroxy solutions during normal periods of time under bleaching conditions frequently encountered.
In order to illustrate the stabilizing ability of the compounds of the instant invention, the following tests were made with the indicated results. The testing procedure used consisted of kinetic runs carried out in a suitable flask, stirred by a vibrating stirrer and thermostated at about C. The flask initially contained one liter of solution of the following typical composition: 1.0% sodium silicate, 0.35% H 0 stabilizing agent as indicated, and 2.5 10- percent Cu++ (as CuSO The pH was adjusted to 10.0. The run was started by adding 10 ml. of concentrated peroxide solution to 990 ml. of solution. At intervals, 10 ml. aliquots of solution were withdrawn by pipette, quenched in ml. H O, acidified with 1 ml. concentrated H 80 and the residual H 0 titrated with .1 N KMNO The following table illus trates the results of the test.
Table 1 (percent) Cgrltrol (no stabilizing agent) 15 0 1 Amino tri(methylphosphonio acid).
As can be observed from the above table, a stabilizing agent of the instant invention is effective in stabilizing the peroxy solutions at very low concentrations (from .001% to .01%) over periods of time from about 20- minutes up to about 2 hours, while the peroxy solution without the stabilizing agent exhibited no bleaching abilityafter about 15 minutes.
In order to illustrate the bleaching ability of a peroxy solution stabilized with the compounds of the instant invention, the following tests were made with the iudiqateq results. Four 5" x 6 swatches of unbleached desized sheeting were prewet with distilled water and placed in a suitable stirrer flask containing 1 liter of a bleaching solution of the following initial composition: 0.35% H 1% sodium silicate, .25 ppm. Cu(II) (as CuSO and stabilizing agent as indicated. The temperature was thermostated at about 90 C. At intervals of about 15 minutes, 10 ml. aliquots of solution were withdrawn by pipette and residual H 0 determined by permanganate titration. Cloth swatches were withdrawn after 15, 30, 16 and 120 minutes; rinsed well in distilled water, and air dried. The swatches were pressed and then reflectance measured vs. the original unbleached cloth on a Gardner refiectometer. Averages of four readings at diflerent cloth orientations are reported. Reflectance values for blue light were measured relative to a white ceramic plate as 100%. The test swatches were then cut into one inch strips and measured for tensile strength according to ASTM Designation D39-49, revised 1955 Standard General Methods of Testing Woven Fabrics, A Breaking Strength, 11. Raveled Strip method. The following tables illustrate the results of the test.
Table 2 Stabilizing Agent concentration Bleaching Residual Reflectance percent Times 2 2 (blue light) (min.) (percent) percent 1 Amino tri (methylphosphonic acid).
Table 3 Swatches bleached with stabilizing agent 1 Bleaching Breaking in concentratiln as indicated (percent) Time Strength (min.) (lbs.)
Control (unbleached) 47. 7 0.01 15 50 1 Amino tri(methylphosphonic acid).
As can be observed from the above tables, the peroxy solutions stabilized with a compound of the instant invention exhibited the ability to raise the brightness of the bleached cotton fabric from about 69% (before the foregoing bleaching treatment) to about 86 to 93%. In addition, no substantial degradation of the fabric occurred as a result of bleaching with the stabilized peroxy solution as indicated in Table 5 with the tensile strengths of the bleached swatches comparing very favorably with the unbleached swatches. As can be appreciated, therefore, peroxy solutions stabilized with the stabilizing agents of the present invention exhibit the ability to bleach cellulosic materials, such as cotton fabric, without impairing the material.
While a peroxy solution in accordance with this invention need contain only a peroxy-compound and an amino tri(lower alkylidenephosphonic acid) or a salt thereof, it will be appreciated that the incorporation in the solution of additional ingredients commonly used in peroxy wherein X and Y are each selected from the group consisting of hydrogen and lower alkyl groups containing from 1 to 4 carbon atoms, and their water soluble salts selected from the group consisting of alkali metal salts, ammonium salts and amine salts.
'2. The method of claim 1, wherein said peroxy concentration is from about 0.01 to about 5 weight percent.
3. The method of claim 2, wherein said stabilizing agent concentration is from about 0.001 to about 5 weight percent.
4. The method of claim 3, wherein said peroxy solution has a pH of from about 7.5 to about 12.5 and said stabilizing agent is an amino tri(lower alkylidene phosphonic acid).
5. The method of claim 4, wherein said amino tri- (lower alkylidenc phosphonic acid) is amino tri(methyl phosphonic acid).
6. The method of claim 3, wherein said peroxy solution has a pH of from about 7.5 to about 12.5 and said stabiliz ing agent is a water-soluble salt of an amino tri(lower alkyl-idene phosphonic acid).
7. The method of claim 6, wherein the water-soluble salt of an amino tri(lower alkylidene phosphonic acid) is pentasodium amino tri(methyl phosphonate).
8. The method of claim 5, wherein said peroxy solution is a solution of hydrogen peroxide.
9. The method of claim 7, wherein said peroxy solution is a solution of hydrogen peroxide.
10. The method of claim 14, wherein said peroxy solution is a solution of hydrogen peroxide.
11. The method of claim 16, wherein said peroxy solution is a solution of hydrogen peroxide.
12. In the method for bleaching cellulosic material by contacting said material with a peroxy solution, the improvement which comprises carrying out said bleaching with said peroxy solution having concentrations of from about 0.01 to about 5 weight percent stabilized against decomposition by having dissolved therein in concentrations of from about 0.001 to about 5 weight percent a stabilizing agent selected from the group consisting of amino tri(lower alkylideneph'os-phonic) acids having the formula:
wherein X and Y are each selected from the group consist-ing of hydrogen and lower alkyl groups containing from 1 to 4 carbon atoms, and their Water soluble salts selected from the group consisting of alkali metal salts, ammonium salts and amine salts.
13. The method of claim 12, wherein said peroxy solution has a pH of from about 7.5 to about 12.5 and said stabilizing agent is an amino tri(lower al'kylidene phosphonic acid).
7 8 14. The method of claim 13, wherein said amino tri- References Cited by the Examiner gixgioiliyggelrie phosphonic acid) is amino tri(methy1 UNITED STATES PATENTS 15. The method of claim 12, wherein said peroxy solu- 2,917,528 12/1959 Ramsey et a1 260-500 tion has a pH of from about 7.5 to about 12.5 and said 5 3,122,417 2/1964 Blazer et 252-136 X stabilizing agent is a water-soluble salt of an amino tri- (lower alkylidene phosphonic acid). OTHER REFERENCES 16. The method of claim 15, wherein the Water-soluble Petrov et al.: Chem. Abst. vol. 54, col. 260 (1960). salt of an amino tri(1ower alkylidene phosphonic acid) is pentasodium amino tri(methyl phosphonate). 1O JULIUS GREENWALD, Primary Examiner-

Claims (2)

1. A METHOD FOR STABILIZING PEROXY SOLUTIONS HAVING CONCENTRATIONS OF AT LEAST ABOUT 0.01 WEIGHT PERCENT FROM DECOMPOSITION WHICH COMPRISES DISSOLVING THEREIN IN CONCENTRATIONS OF AT LEAST ABOUT .001 WEIGHT PERCENT A STABILIZING AGENT SELECTED FROM THE GROUP CONSISTING OF AMINO TRI(LOWER ALKYLIDENEPHOSPHONIC) ACIDS HAVING THE FORMULA:
12. IN THE METHOD FOR BLEACHING CELLULOSIC MATERIAL BY CONTACTING SAID MATERIAL WITH A PEROXY SOLUTION, THE IMPROVEMENT WHICH COMPRISES CARRYING OUT SAID BLEACHING WITH SAID PEROXY SOLUTION HAVING CONCENTRATIONS OF FROM ABOUT 0.01 TO ABOUT 5 WEIGHT PERCENT STABILIZED AGAINST DECOMPOSITION BY HAVING DISSOLVED THEREIN IN CONCENTRATIONS OF FROM ABOUT 0.001 TO ABOUT 5 WEIGHT PERCENT A STABILIZING AGENT SELECTED FROM THE GROUP CONSISTING OF AMINO TRI(LOWER ALKYLIDENEPHOSPHONIC) ACIDS HAVING THE FORMULA:
US373072A 1964-06-05 1964-06-05 Stabilization of peroxy solutions Expired - Lifetime US3234140A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US373072A US3234140A (en) 1964-06-05 1964-06-05 Stabilization of peroxy solutions
FR19014A FR1449711A (en) 1964-06-05 1965-06-01 Improved process for stabilizing solutions of peroxide compounds
DE1965M0065443 DE1519484B2 (en) 1964-06-05 1965-06-02 STABILIZERS FOR SOLUTIONS OF PEROXY COMPOUNDS
GB23765/65A GB1119221A (en) 1964-06-05 1965-06-03 Stabilized peroxy compositions and their use
NL6507058A NL6507058A (en) 1964-06-05 1965-06-03
LU48760D LU48760A1 (en) 1964-06-05 1965-06-03
BE665004A BE665004A (en) 1964-06-05 1965-06-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US373072A US3234140A (en) 1964-06-05 1964-06-05 Stabilization of peroxy solutions

Publications (1)

Publication Number Publication Date
US3234140A true US3234140A (en) 1966-02-08

Family

ID=23470796

Family Applications (1)

Application Number Title Priority Date Filing Date
US373072A Expired - Lifetime US3234140A (en) 1964-06-05 1964-06-05 Stabilization of peroxy solutions

Country Status (7)

Country Link
US (1) US3234140A (en)
BE (1) BE665004A (en)
DE (1) DE1519484B2 (en)
FR (1) FR1449711A (en)
GB (1) GB1119221A (en)
LU (1) LU48760A1 (en)
NL (1) NL6507058A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387939A (en) * 1966-07-06 1968-06-11 Du Pont Stannate stabilizer compositions containing an alkylidene diphosphonic acid, their preparation and hydrogen peroxide solutions stabilized therewith
US3394172A (en) * 1965-02-25 1968-07-23 Henkel & Cie Gmbh Perhydrates of nitrogen-containing phosphonic acids and process for their manufacture
US3395113A (en) * 1966-03-29 1968-07-30 Monsanto Co Polymeric compositions
US3429914A (en) * 1964-09-03 1969-02-25 Monsanto Co Organo-phosphono-amine oxides
US3455675A (en) * 1968-06-25 1969-07-15 Monsanto Co Aminophosphonate herbicides
US3470243A (en) * 1964-09-03 1969-09-30 Monsanto Co Tetrakis(dihydrogen phosphono methyl)-ethylene diamine,n,n'-dioxide and related compounds
US3470244A (en) * 1964-09-03 1969-09-30 Monsanto Co Methyl bis(dihydrogen phosphono methyl)-amine oxide and related compounds
US3474133A (en) * 1964-09-03 1969-10-21 Monsanto Co Tris(phosphono-lower alkylidene) amine oxides
US3475293A (en) * 1964-09-22 1969-10-28 Monsanto Co Electrodeposition of metals
US3542918A (en) * 1965-11-24 1970-11-24 Therachemie Chem Therapeut Aminopolyphosphonic acids and polyphosphonic acids and derivatives for the protection of hair
US3645670A (en) * 1970-03-03 1972-02-29 Monsanto Co Processes for scouring textiles
DE2226784A1 (en) * 1971-06-03 1972-12-14
DE2405214A1 (en) * 1973-02-02 1974-08-08 Fmc Corp STABILIZATION OF AQUATIC ACID HYDROGEN PEROXIDE SOLUTIONS
JPS49106994A (en) * 1973-02-02 1974-10-11
US3860391A (en) * 1972-03-10 1975-01-14 Benckiser Knapsack Gmbh Bleaching of cellulose containing textile fiber material with a silicate-free stabilized peroxide bleaching bath
US4179391A (en) * 1977-04-22 1979-12-18 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Phosphate-free textile detergent, especially for washing at temperatures of over 75° C.
US4401509A (en) * 1982-09-07 1983-08-30 Fmc Corporation Composition and process for printed circuit etching using a sulfuric acid solution containing hydrogen peroxide
EP0097305A1 (en) * 1982-06-14 1984-01-04 FMC Corporation Stabilization of high purity hydrogen peroxide
US4497725A (en) * 1980-04-01 1985-02-05 Interox Chemicals Ltd. Aqueous bleach compositions
US4534945A (en) * 1984-05-03 1985-08-13 Fmc Corporation Stabilization of high purity hydrogen peroxide
US4614646A (en) * 1984-12-24 1986-09-30 The Dow Chemical Company Stabilization of peroxide systems in the presence of alkaline earth metal ions
US4849198A (en) * 1987-06-19 1989-07-18 Degussa Aktiengesellschaft Method of reducing the tendency of particulate active oxygen compounds to cake
US4889689A (en) * 1986-10-14 1989-12-26 Ciba-Geigy Corporation Method of disinfecting a soft contact lens with a diethylene triamine penta(methylenephosphonic acid) stabilized hydrogen peroxide solution
US4900468A (en) * 1985-06-17 1990-02-13 The Clorox Company Stabilized liquid hydrogen peroxide bleach compositions
US5023376A (en) * 1989-07-17 1991-06-11 Interox America Reduction of nitrosamine formation
US5180514A (en) * 1985-06-17 1993-01-19 The Clorox Company Stabilizing system for liquid hydrogen peroxide compositions
US5302311A (en) * 1991-02-28 1994-04-12 Mitsubishi Gas Chemical Company, Inc. Cleaning solution of semiconductor substrate
US5324857A (en) * 1992-04-28 1994-06-28 Solvay Interox Inhibition of the formation of nitrosamines
US5326494A (en) * 1990-11-05 1994-07-05 U.S. Borax Inc. Liquid persalt bleach compositions containing tartrazine as the stabilizer
US5609821A (en) * 1993-07-22 1997-03-11 Chemoxal S.A. Process for the treatment of an article and a new aqueous hydrogen peroxide solution
US5736256A (en) * 1995-05-31 1998-04-07 Howard A. Fromson Lithographic printing plate treated with organo-phosphonic acid chelating compounds and processes relating thereto
US5855622A (en) * 1996-11-05 1999-01-05 Clariant International Ltd. Hydrogen peroxide-containing bleach liquor and bleaching method thereby
US5864003A (en) * 1996-07-23 1999-01-26 Georgia-Pacific Resins, Inc. Thermosetting phenolic resin composition
US5962603A (en) * 1996-07-23 1999-10-05 Georgia-Pacific Resins, Inc. Intumescent composition and method
US20030095917A1 (en) * 2001-07-27 2003-05-22 Debra Wilcox Chemical composition and process
US20040101461A1 (en) * 2002-11-22 2004-05-27 Lovetro David C. Chemical composition and method
US20040247755A1 (en) * 2001-09-21 2004-12-09 Solvay Interox Gmbh Stabilized hydrogen peroxide
US20060020102A1 (en) * 2004-07-26 2006-01-26 Georgia-Pacific Resins, Inc. Phenolic resin compositions containing etherified hardeners
US20100261636A1 (en) * 2007-12-13 2010-10-14 Bonislawski David J Stabilized hydrogen peroxide solutions
CN101597305B (en) * 2009-06-14 2012-03-28 常州姚氏同德化工有限公司 Preparation process for a solid aminotrimethylenephosphonic acid (ATMP) or 1-hydoxy ethyidene-1.1-diphosphonic acid
EP2662329A1 (en) 2012-05-11 2013-11-13 Creachem SA Peroxygen release compositions and method for producing them
WO2014114703A1 (en) * 2013-01-24 2014-07-31 Mks-Devo Kimyevi Mad. San. Tic. A.S. Bleaching compositions with improved performance and stability
US20210363008A1 (en) * 2018-08-02 2021-11-25 Evonik Corporation Process for preparing a stabilized aqueous hydrogen peroxide solution
US11659844B1 (en) 2016-08-12 2023-05-30 Zee Company I, Llc System for increasing antimicrobial efficacy in a poultry processing tank
US11839858B1 (en) 2016-02-17 2023-12-12 Zee Company I, Llc Peracetic acid concentration and monitoring and concentration-based dosing system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1392284A (en) * 1971-03-30 1975-04-30 Unilever Ltd Stabilisation of active oxygen releasing compounds
DE2622458C3 (en) * 1976-05-20 1985-04-25 Peroxid-Chemie GmbH, 8023 Höllriegelskreuth Method of stabilizing sodium percarbonate
DE3914827C2 (en) * 1989-05-05 1995-06-14 Schuelke & Mayr Gmbh Liquid disinfectant concentrate
EP0496605B1 (en) * 1991-01-24 2001-08-01 Wako Pure Chemical Industries Ltd Surface treating solutions for semiconductors
IT1290070B1 (en) * 1997-03-13 1998-10-19 3V Sigma Spa COMPOSITIONS FOR THE PAPER WHITENING
PT1903081E (en) 2006-09-19 2015-04-07 Poligrat Gmbh Stabiliser for acid, metallic polishing baths

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2917528A (en) * 1956-08-24 1959-12-15 Victor Chemical Works Alkanolaminealkanephosphonic acids and salts thereof
US3122417A (en) * 1959-06-03 1964-02-25 Henkel & Cie Gmbh Stabilizing agent for peroxy-compounds and their solutions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2917528A (en) * 1956-08-24 1959-12-15 Victor Chemical Works Alkanolaminealkanephosphonic acids and salts thereof
US3122417A (en) * 1959-06-03 1964-02-25 Henkel & Cie Gmbh Stabilizing agent for peroxy-compounds and their solutions

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470244A (en) * 1964-09-03 1969-09-30 Monsanto Co Methyl bis(dihydrogen phosphono methyl)-amine oxide and related compounds
US3429914A (en) * 1964-09-03 1969-02-25 Monsanto Co Organo-phosphono-amine oxides
US3474133A (en) * 1964-09-03 1969-10-21 Monsanto Co Tris(phosphono-lower alkylidene) amine oxides
US3470243A (en) * 1964-09-03 1969-09-30 Monsanto Co Tetrakis(dihydrogen phosphono methyl)-ethylene diamine,n,n'-dioxide and related compounds
US3475293A (en) * 1964-09-22 1969-10-28 Monsanto Co Electrodeposition of metals
US3394172A (en) * 1965-02-25 1968-07-23 Henkel & Cie Gmbh Perhydrates of nitrogen-containing phosphonic acids and process for their manufacture
US3542918A (en) * 1965-11-24 1970-11-24 Therachemie Chem Therapeut Aminopolyphosphonic acids and polyphosphonic acids and derivatives for the protection of hair
US3395113A (en) * 1966-03-29 1968-07-30 Monsanto Co Polymeric compositions
US3387939A (en) * 1966-07-06 1968-06-11 Du Pont Stannate stabilizer compositions containing an alkylidene diphosphonic acid, their preparation and hydrogen peroxide solutions stabilized therewith
US3455675A (en) * 1968-06-25 1969-07-15 Monsanto Co Aminophosphonate herbicides
US3645670A (en) * 1970-03-03 1972-02-29 Monsanto Co Processes for scouring textiles
DE2226784A1 (en) * 1971-06-03 1972-12-14
US3740187A (en) * 1971-06-03 1973-06-19 Monsanto Co Processes for bleaching textiles
US3860391A (en) * 1972-03-10 1975-01-14 Benckiser Knapsack Gmbh Bleaching of cellulose containing textile fiber material with a silicate-free stabilized peroxide bleaching bath
JPS49106994A (en) * 1973-02-02 1974-10-11
DE2405214A1 (en) * 1973-02-02 1974-08-08 Fmc Corp STABILIZATION OF AQUATIC ACID HYDROGEN PEROXIDE SOLUTIONS
JPS5734201B2 (en) * 1973-02-02 1982-07-21
US4179391A (en) * 1977-04-22 1979-12-18 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Phosphate-free textile detergent, especially for washing at temperatures of over 75° C.
US4497725A (en) * 1980-04-01 1985-02-05 Interox Chemicals Ltd. Aqueous bleach compositions
EP0097305A1 (en) * 1982-06-14 1984-01-04 FMC Corporation Stabilization of high purity hydrogen peroxide
US4401509A (en) * 1982-09-07 1983-08-30 Fmc Corporation Composition and process for printed circuit etching using a sulfuric acid solution containing hydrogen peroxide
US4534945A (en) * 1984-05-03 1985-08-13 Fmc Corporation Stabilization of high purity hydrogen peroxide
US4614646A (en) * 1984-12-24 1986-09-30 The Dow Chemical Company Stabilization of peroxide systems in the presence of alkaline earth metal ions
US4900468A (en) * 1985-06-17 1990-02-13 The Clorox Company Stabilized liquid hydrogen peroxide bleach compositions
US5180514A (en) * 1985-06-17 1993-01-19 The Clorox Company Stabilizing system for liquid hydrogen peroxide compositions
US4889689A (en) * 1986-10-14 1989-12-26 Ciba-Geigy Corporation Method of disinfecting a soft contact lens with a diethylene triamine penta(methylenephosphonic acid) stabilized hydrogen peroxide solution
US4849198A (en) * 1987-06-19 1989-07-18 Degussa Aktiengesellschaft Method of reducing the tendency of particulate active oxygen compounds to cake
US5023376A (en) * 1989-07-17 1991-06-11 Interox America Reduction of nitrosamine formation
US5326494A (en) * 1990-11-05 1994-07-05 U.S. Borax Inc. Liquid persalt bleach compositions containing tartrazine as the stabilizer
US5302311A (en) * 1991-02-28 1994-04-12 Mitsubishi Gas Chemical Company, Inc. Cleaning solution of semiconductor substrate
US5324857A (en) * 1992-04-28 1994-06-28 Solvay Interox Inhibition of the formation of nitrosamines
US5609821A (en) * 1993-07-22 1997-03-11 Chemoxal S.A. Process for the treatment of an article and a new aqueous hydrogen peroxide solution
US5817253A (en) * 1993-07-22 1998-10-06 Chemoxal, S.A. Process for the treatment of an article and a new aqueous hydrogen peroxide solution
EP0635273B2 (en) 1993-07-22 2005-08-17 Arkema Process for treating an article
US5736256A (en) * 1995-05-31 1998-04-07 Howard A. Fromson Lithographic printing plate treated with organo-phosphonic acid chelating compounds and processes relating thereto
US5738943A (en) * 1995-05-31 1998-04-14 Howard A. Fromson Lithographic printing plate treated with organo-phosphonic acid chelating compounds and processes related thereto
US5738944A (en) * 1995-05-31 1998-04-14 Howard A. Fromson Lithographic printing plate treated with organo-phosphonic acid chelating compounds and processes related threreto
US5864003A (en) * 1996-07-23 1999-01-26 Georgia-Pacific Resins, Inc. Thermosetting phenolic resin composition
US5962603A (en) * 1996-07-23 1999-10-05 Georgia-Pacific Resins, Inc. Intumescent composition and method
US5855622A (en) * 1996-11-05 1999-01-05 Clariant International Ltd. Hydrogen peroxide-containing bleach liquor and bleaching method thereby
US20030095917A1 (en) * 2001-07-27 2003-05-22 Debra Wilcox Chemical composition and process
US20040247755A1 (en) * 2001-09-21 2004-12-09 Solvay Interox Gmbh Stabilized hydrogen peroxide
US8021609B2 (en) * 2001-09-21 2011-09-20 Solvay Chemicals Gmbh Stabilized hydrogen peroxide
US7459005B2 (en) * 2002-11-22 2008-12-02 Akzo Nobel N.V. Chemical composition and method
US20040101461A1 (en) * 2002-11-22 2004-05-27 Lovetro David C. Chemical composition and method
US20040129295A1 (en) * 2002-11-22 2004-07-08 Lovetro David C. Chemical composition and method
US7087703B2 (en) 2004-07-26 2006-08-08 Georgia-Pacific Resins, Inc. Phenolic resin compositions containing etherified hardeners
US20060020102A1 (en) * 2004-07-26 2006-01-26 Georgia-Pacific Resins, Inc. Phenolic resin compositions containing etherified hardeners
US20100261636A1 (en) * 2007-12-13 2010-10-14 Bonislawski David J Stabilized hydrogen peroxide solutions
US8802613B2 (en) 2007-12-13 2014-08-12 Akzo Nobel N.V. Stabilized hydrogen peroxide solutions
CN101597305B (en) * 2009-06-14 2012-03-28 常州姚氏同德化工有限公司 Preparation process for a solid aminotrimethylenephosphonic acid (ATMP) or 1-hydoxy ethyidene-1.1-diphosphonic acid
EP2662329A1 (en) 2012-05-11 2013-11-13 Creachem SA Peroxygen release compositions and method for producing them
WO2013167752A1 (en) 2012-05-11 2013-11-14 Creachem Sa Peroxygen release compositions and method for producing them
WO2014114703A1 (en) * 2013-01-24 2014-07-31 Mks-Devo Kimyevi Mad. San. Tic. A.S. Bleaching compositions with improved performance and stability
US11839858B1 (en) 2016-02-17 2023-12-12 Zee Company I, Llc Peracetic acid concentration and monitoring and concentration-based dosing system
US11659844B1 (en) 2016-08-12 2023-05-30 Zee Company I, Llc System for increasing antimicrobial efficacy in a poultry processing tank
US20210363008A1 (en) * 2018-08-02 2021-11-25 Evonik Corporation Process for preparing a stabilized aqueous hydrogen peroxide solution

Also Published As

Publication number Publication date
NL6507058A (en) 1965-12-06
LU48760A1 (en) 1965-12-03
GB1119221A (en) 1968-07-10
BE665004A (en) 1965-10-01
DE1519484A1 (en) 1970-11-26
FR1449711A (en) 1966-08-19
DE1519484B2 (en) 1973-03-15

Similar Documents

Publication Publication Date Title
US3234140A (en) Stabilization of peroxy solutions
US3740187A (en) Processes for bleaching textiles
EP0103416B1 (en) Peroxyacid bleach compositions
CA1101614A (en) Peroxyacid bleach composition
CA1235881A (en) Stabilization of peroxide systems in the presence of alkaline earth metal ions
US4294575A (en) Peroxide stabilization
US4337214A (en) N-(Hydroxy methyl)-1-amino alkane-1,1-diphosphonic acids, process of making same, and composition for and method of using same as stabilizing agents in peroxide-containing bleaching baths
US4880566A (en) Silicate-and magnesium-free stabilizer mixtures
CA2175738C (en) Phosphorus free stabilized alkaline peroxygen solutions
US4239643A (en) Peroxide stabilization
US4496472A (en) Process for bleaching cellulosic fibre materials using oligomers of phosphonic acid esters as stabilizers in alkaline, peroxide-containing bleaching liquors
US2988514A (en) Bleaching composition and method
US4751023A (en) Aqueous alkaline, silicate-containing composition for bleaching cellulosic fibre materials in the presence of per compounds
CA1219594A (en) Magnesium complexes of oligomeric phosphonic acid esters, a process for their preparation and their use as stabilisers in alkaline, peroxide-containing bleach liquors
US5000874A (en) Concentrated compositions and their use as stabilizers for peroxide-containing alkaline liquors
US4959075A (en) Silicate- and magnesium-free stabilizer hydrogen peroxide mixtures for bleaching processes
JPH0434595B2 (en)
EP0369711B1 (en) Phosphate composition and uses thereof
JPH0545640B2 (en)
JPS5858466B2 (en) Bleaching of textile materials with hydrogen peroxide
DE1519484C3 (en) Stabilizers for solutions of peroxy compounds
US3379493A (en) Activated inorganic bleaches
JPS5858461B2 (en) Bleaching of textile materials with hydrogen peroxide
DD144073A1 (en) PROCESS FOR PRODUCING STABILIZED PEROXIDE-CONTAINING SOLUTIONS
DE2843126A1 (en) PROCEDURE FOR BLEACHING DIRTY FABRICS AT LOW TEMPERATURE