US3236612A - Middle distillate composition of improved pour characteristics - Google Patents

Middle distillate composition of improved pour characteristics Download PDF

Info

Publication number
US3236612A
US3236612A US144027A US14402761A US3236612A US 3236612 A US3236612 A US 3236612A US 144027 A US144027 A US 144027A US 14402761 A US14402761 A US 14402761A US 3236612 A US3236612 A US 3236612A
Authority
US
United States
Prior art keywords
vinyl
copolymer
range
pour
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US144027A
Inventor
Ilnyckyj Stephan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US144027A priority Critical patent/US3236612A/en
Application granted granted Critical
Publication of US3236612A publication Critical patent/US3236612A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/1955Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by an alcohol, ether, aldehyde, ketonic, ketal, acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Description

United States Patent 3,236,612 MTDDLE DISTHLLATE COMPOSITTUN 0F 1M- PR'OVED POUR CHARACTERHSTKCS Stephan Iiinychyj, Sarnia, Ontario, Canada, assignor to lEsso Research and Engineering Company, a corporation of Delaware No Drawing. Filed Oct. 10, 1961, Ser. No. 144,027
9 Claims. (CI. 44-62) The present application is a continuation-in-part of US. Serial No. 26,407 filed May 3, 1960, entitled, A Copolymer Pour Point Depressant for Middle Distillates, inventor: Stephan Ilnyckyj, and now abandoned.
The present invention is concerned with improving the flow at low temperatures and the pour point characteristics of middle distillates. More particularly, the present invention relates to the preparation of improved low cold test hydrocarbon fuels, in particular heating oils and diesel fuels, kerosene, aviation turbo-jet fuels and other fuels that are subject to low temperatures. In accordance with the present invention, improved middle distillate fuel compositions of improved pour points are produced by using in conjunction with middle distillates a pour depressant comprising a copolymer of ethylene and a vinyl fatty acid ester wherein the vinyl ester contains from 7 to 14 carbon atoms per molecule. Particularly desirable compounds are copolymers of ethylene with vinyl octanoate, ethylene with vinyl valerate, ethylene with vinyl laurate, ethylene with vinyl hexanoate, ethylene with vinyl nonanoate, and ethylene with vinyl decanoate.
With the increase in the use of hydrocarbon fuels of all kinds, a serious problem has arisen in areas frequently subjected to low temperatures ,in the cold test characteristics of fuels. Particularly, serious problems have been encountered by heating oils and diesel and jet fuels that have too high a pour point, resulting either in distributional or operating difliculties or both. For example, the distribution of heating oils by pumping or synphoning is rendered diflficult or impossible at temperatures around or below the pour point of the oil. Furthermore, the flow of the oil at such temperatures through the filters cannot be maintained, leading to the failure of the equipment to operate.
Also the low temperature properties of petroleum distillate fuels boiling in the range between about 250 and about 800 F. have attracted increasing attention in recent years because of the growth of markets for such fuels in subarctic areas and because of the development of turbojet aircraft capable of operating at altitudes where temperatures of -50 F. or lower may be encountered.
It is, of course, well known to add pour depressants to lubricting oils to lower the pour point. These lube oil additives, mostly high molecular weight organic compositions formed by alkylation of benzene or naphthalene or derivatives thereof or by polymerization of lower molecular weightmethacrylates, or by condensation polymerization of various kinds, are not satisfactory in service with middle distillate and lighter fuels. Poor performance of these additives might possibly result from the structural differences between waxes occurring in lubricating oils and so-called middle distillates.
A wide varietyof compounds have been found to be effective as pour point depressants for lubricating oil. Among the best known are Paraflow, Santopour and Acryloid and their modifications. They are prepared either by condensing aromatic compounds with long chain paraflins, such as wax, or by condensing olefinic esters. It is generally considered that these pour depressants are effective in that in cooling an additive-containing oil, the hydrocarbon chain of the additive becomes incorporated into the crystal lattice of the separated wax, while the ice other part of the pour depressant molecule prevents the crystals from adhering together to form a gel structure. The failure of these additives to be effective in middle distillates may at least in part be due to the basic difference in the composition between the wax in lubricating oils and that in middle distillate fuels.
It is, therefore, the principal object of the present invention to set forth an improved pour depressant for middle distillate and lighter fuels. In general, these oils boil in the range from about 250 to 750 F.
It is a still further object of the present invention to rovide heating oils, diesel fuel oils, kerosenes and jet fuels having low pour points. Such fuels include aviation turbo-jet fuels, kerosenes, diesel fuels, and heating oils. Aviation turbo-jet fuels in which the polymers may be used normally boil between about 250 and about 550 F. and are used in both military and civilian aircraft. Such fuels are more fully defined by US. Military Specifications MlLF-5624C, MIL-F-25554A, M1LF-25558A, and amendments thereto. Kerosenes and heating oils will normally have boiling ranges between about 300 and about 750 F. and are more fully described in ASTM Specification D-396-48T and supplements thereto, where they are referred to as No. l and No. 2 fuel oils. Diesel fuels in which the polymers may be employed are described in detail in ASTM Specification D97553T and later versions of the same specification.
The polymeric pour depressants may, in accordance with the invetion, be employed in conjunction with a variety of other additives commonly used in fuels such as those set forth above. Typical of such additives are rust inhibitors, anti-emulsifying agents, corrosion inhibitors, anti-oxidants, dispersants, dyes, dye stabilizers, haze inhibitors, antistatic agents and the like. It will frequently be found convenient to prepare additive concentrates for use in the various types of fuels and thus add all of the additives simultaneously.
Other and further objects of the present invention will appear more clearly hereinafter.
The pour point depressants of the present invention comprise a copolymer of ethylene and a vinyl fatty acid ester. The vinyl ester is secured preferably by reacting acetylene and a fatty acid which contains from 5 to 12 carbon atoms in the fatty acid molecule. Thus, the fatty acid ester will contain from 7 to 14 carbon atoms in the molecule. It is preferred that the parts by weight of ethylene in the copolymer be in the range from about to 50% and that the parts by weight of the vinyl fatty acid ester be in the range from about 30% to 50%.
The molecular weights of the ethylene-vinyl fatty acid ester copolymer are critical and should be in the range from about 1000 to 3500, preferably in the range from 1500 to 3000. The molecular weights are determined by K. Rasts method (Ben, 55, 1051, 3727 (1922)).
The ethylene-vinyl fatty acid ester copolymer as described above is used in a concentration in the range from about .002 to .5 by Weight. It is preferred that the maximum amount used not exceed about .2% by weight, and a particularly desirable concentration is in the range from about .01 to .05 by weight.
With respect tothe above, if the copolymer is a copolymer of ethylene and vinyl octanoate, the amount of vinyl ester is preferably in the range from about 42% to 48% by weight and the molecular weight is in the range from about 1800 to 2600. If the copolymer is a copolymer of ethylene and vinyl valerate,it-is preferred that the amount of vinyl ester present inthe copolymer be in the range from about 30% to 35% and the molecular weight range from about 1900 to 2400. If the copolymer is a copolymer of ethylene and vinyl l-aurate, it is preferred that the weight percent of ester present in the molecule range from about 35% to 45% and that the molecular weight be in the range from about 1000 to 1500. On the other hand, if the ester is a copolymer of ethylene and vinyl hexanoate, it is preferred that the concentration of the ester present in the molecule range from about 40 to 50 weight percent and that the molecular weight be in the range from about 1000 to 1500.
Surprisingly, these low molecular weight copolymers have no effect upon the pour points of lubricating oils, thus emphasizing the difference in structure between the wax associated on the one hand with lube oils and on the other with middle distillates. The low molecular weight copolymers may be prepared by any peroxide process. In some instances, it may be desirable to first prepare a higher average molecular weight copolymerization product and then recover from that product material having a molecular weight within the range between about 1000 and about 3500. Since such copolymerization products normally consist of a smear of copolymers whose molecular weights vary over a wide range, an effective method for recovering the 1500 to 3000 molecular weight portion therefrom is to extract the product with a solvent such as normal heptane or methyl-ethyl ketone. Other methods for obtaining the low molecular weight materials include thermal degradation of the high molecular weight polymer or treatment of the high molecular weight copolymer with ozone in order to break the polymer chains. Still other methods also useful will be apparent to those skilled in the art.
A very desirable method is to conduct copolymerization in a benzene solution using di-tertiary-butylperoxide as an initiator at a temperature in the range from about 260 to 400 F. The preferred temperature is in the range from 290 F. to 325 F. as for example about 300 F. The pressure is in the range from about 600 to 1500 pounds, preferably 800 to 1000 pounds such as 900 pounds. The autoclave or similar equipment containing the solvent, initiator and vinyl octanoate is purged about three times with nitrogen, twice with ethylene and then charged with a sufiicient amount of ethylene to yield the desired pressure when heated to the reaction temperature. During the copolymerization, additional ethylene is added whenever the pressure drops by about 100 p.s.i.g. Copolymerization is considered complete when it is less than 50 p.s.i.g. pressure drop per hour. The product is stripped free of solvent and unreacted vinyl octanoate under vacuum.
In general the class of depressants comprise a copolymer of ethylene and a vinyl fatty acid ester wherein the ester group contains from 7 to 14 carbon atoms in the molecule and wherein the weight percent of the ester present in the copolymer is in the range from 30 to 50%. Satisfactory fatty acid esters are, for example, vinyl n-octanoate, vinyl 2-ethyl-hexanoate, vinyl nonanoate, vinyl decanoate, vinyl butyrate, vinyl laurate, and vinyl valerate.
A typical distillate fuel boiling in the range from 250 to 750F. to which the present additives may be added are middle distillate heating oils. These fuels are of commercial grade and have typical properties as follows: Composition:
The improvements obtained by adding the additives in accordance with the present invention are set forth in the 4 following table. All pour points quoted hereafter were obtained by ASTM Method D-97-47.
A number of tests were conducted using various copolymers in a 5050 blend of virgin gas oil and cracked gas oil. The virgin gas oil boiled in the range from about 350 to 700 F., and the cracked gas oil boiled in the range from about 350 to 650 F. The blend had a pour of 20 F. The various copolymers were prepared under varying pressure and other varying operating conditions. As pointed out theretofore, the critical factors with respect to desirable copolymers are molecular weights and the concentration of the vinyl octanoate in the copolymer.
The results of these tests are shown in the following table:
TABLE I.SYNTHESIS AND POUR DEPRESSING POTENCY OF COPOLYMERS OF ETHYLENE AND VINYL OCTANO- ATES [Synthesis conditions: 900 p.s.i.g., 300 F., in 655 ml. of benzene, one
gallon reactor] Operation 1 2 1 3 4 Vinyl ester Vinyl ester, g 200 200 200 277 Vinyl ester, g./rnin 1. 66 1. G6 1. 66 2.3 Di-t-butyl peroxide, g 11. 9 11. 9 11.9 11.9 Di-t-butyl peroxide, g./rnin 0. 066 0. 066 0. 066 0. 066 Copolymerization time, hr 3. 5 3. 5 3. 5 3. 5 Product:
Yield, g 423 573 401 548 Copolymer gJperoxide, g 35.5 48. 2 38. 7 46. Vinyl octanoate, wt. percent 47. 3 50. 43.0 34. 9 Molecular weight 1,780 3,570 2, 657 3,030 Dsplpession of ASTM pour pointy 0.015% copolymer 15 -5 5 +10 0.025% copolymer -50 25 1 1,200 p.s.i.g. 2 n-Octnnoate.
3 2-ctl1yl-hexauoatc. 4 /50 blend of straight run and cracked gas oils, ASTM pour point +20 F.
From the above it is apparent that the most potent pour depressants were the copolymers 1 and 3. In a concentration of 0.025 wt. percent copolymer 1 which contained 47.3 wt. percent of vinyl n-octanoate depressed the pour point of the reference oil from +20 F. to -50 F. A similar potency was shown by copolymer 3 containing 43 wt. percent of vinyl 2-ethyl-hexanoate. It will be noted that the copolymer of ester of the branched acid had a molecular weight of 2650 and prepared under similar conditions the copolymer of ester of the straight chain acid had a molecular weight of 1780. The copolymer 2 containing 50.5 wt.- percent of vinyl 2-ethylhexanoate respectively showed for lower potency in depressing the pour point of the reference oil.
TABLE II.POUR DEPRESSING POTENCY 0F COPOLY- MERS 0F ETHYLENE WITH VINYL VALERATE [Synthesis conditions: 900 p.s.i.g., 300 F., in 655 ml. of
benzene, one gallon reactor] 50/50 blend of straight run and cracked 21s il A pourpoint +20 F. g 0 STA Thus, from the above, a potent copolymer contained 29.7 wt. percent of vinyl valerate. In 0.025 wt. percent concentration, it lowered the pour point of the same refer-.
ence fuel to 65 F. The copolymers had a molecular weight of about 2,300.
TABLE III.SYNTHESIS AND POUR DEPRESSING PO- TENCY OF COIOLYMERS OF ETHYLENE AND VINYL LAURATE [Conditions of copolymerization: 900 p.s.i.g., 300 F., in 655 mls. of
benzene, one gallon reactor] 1 Reference oil: 50/50 blend of straight run and cracked gas oils, ASTM pour +20 F.
From the above, it is apparent that the copolymers of the present invention are very effective pour depressants for middle distillates. It is also apparent that the weight percent of vinyl laurate present is critical, for example, with 24 wt. percent of the vinyl laurate present and when utilizing 0.025 wt. percent of the copolymer, the pour was reduced from +20 F. to l P. On the other hand, when the concentration wt. percent of the vinyl laurate was 39% when utilizing only .015 wt. percent, the pour was reduced to --35 and when utilizing .025 wt. percent, the pour is reduced to below -70 F.
TABLE IV.SYNTHESIS AND POUR DEPRESSING PO- TENGY OF COPOLYMERS OF ETHYLENE WITH VINYL ESTERS [Conditions of copolymerization: 900 p.s.i.g., 300 F., in 655 mls. of benzene, one gallon reactor] Operation A B O 1 D Vinyl ester Vinyl ester, g 50 150 300 88 Vinyl ester, g./rnin 0. 42 1. 25 2. 0.73 Di-t-butylperoxide, g 11.9 11. 9 11.9 11.9 Di-t-butylperoxide, gJmin. 0. 066 0. 066 0. 066 0. 060 Copoly-merization time, hr--- 3. 5 3. 5 3. 5 3. 5 Product:
Yield, g- 306 373 459 301 copolymer, gJperoxidc, g 25. 7 31. 3 38. 6 25. 3 Vinyl ester, wt. percent 9. 9 25. 4 45. 6 15. 6 Molecular weight 1 740 1, 620 1, 155 1, 390 ASTM pour point, F.:
0.015 wt. percent copolymer 0 0 +5 0.025 wt. percent copolymen. +5 +50 10 1 Hexanote. 5 nzDecanoate. 3 Reference oil: 50/50 blend of straight run and cracked gas oils, ASTM pour point, 20 F. 7
From the above, it is apparent that excellent pour depressant results are secured by the copolymers of the present invention having the molecular weights and molecular structure as set forth hereinbefore.
What is claimed is:
1. A petroleum distillate composition having an improved pour which comprises a distillate fuel boiling in the range between about 250 F. and about 800 F. which has been improved with respect to pour point by the incorporation therein of a pour depressing effective amount in the range from about .01 to .5 by weight of an oil soluble copolymer of ethylene and a vinyl fatty acid ester having from about 7 to about 14 carbon atoms in the ester, said copolymer having a molecular weight in the range from about 1000 to 3500, said copolymer being further characterized by containing from about 30% to about 50% by weight of said vinyl fatty acid ester.
2. Composition defined by claim 1 wherein the distillate fuel contains from about .0 1 to about .1% by Weight of said copolymer.
3. Composition as defined by claim 1 wherein said distillate fuel contains from about .01 to about .05% by weight of said copolymer.
4. Composition as defined by claim 1 wherein said vinyl fatty acid ester comprises vinyl octanoate present in said distillate fuel in a concentration in the range from about .01 to about .05 by weight.
5. Composition as defined by claim 1 wherein said fatty acid ester comprises vinyl valerate present in a concentration in said distillate fuel in the range from about .01 to .05 by weight and wherein the molecular weight of said copolymer is in the range from about 1500 to 2500.
6. Composition as defined by claim 3 wherein said fatty acid ester comprises vinyl laurate and wherein the molecular weight is in the range from about 1000 to 2000.
7. Composition as defined by claim 3 wherein said fatty acid ester comprises vinyl nonanoate.
8. Composition as defined by claim 3 wherein said fatty acid ester comprises vinyl decanoate.
9. Composition as defined by claim 3 wherein said fatty acid ester comprises vinyl hexanoate.
References Cited by the Examiner UNITED STATES PATENTS 2,020,714 11/1935-Wultf et al. 25256 2,379,728 7/1945 Lieber et al. 44-62 2,499,723 3/ 1950 Coffman et a1 25256 2,656,340 10/ 1953 Sparks et al. 44--62 2,723,259 11/1955 Kurtz 25256 2,913,439 11/1959 Bondi et al. 4470 2,920,067 1/1960 Mortimer 260--86.7
FOREIGN PATENTS 569,927 6/ 1945 Great Britain.
DANIEL E. WYMAN, Primary Eraminer.

Claims (1)

1. A PETROLEUM DISTILLATE COMPOSITION HAVING AN IMPROVED POUR WHICH COMPROSES A DISTILLATE FUEL BOILING IN THE RANGE BETWEEN ABOUT 250*F. AND ABOUT 800*F. WHICH HAS BEEN IMPROVED WITH RESPECT TO POUR POINT BY THE INCORPORATION THEREIN OF A POUR DEPRESSING EFFECTIVE AMOUNT IN THE RANGE FROM ABOUT .01 TO .5% BY WEIGHT OF AN OIL SOLUBLE COPOLYMER OF ETHYLENE AND A VINYL FATTY ACID ESTER HAVING FROM ABOUT 7 TO ABOUT 14 CARBON ATOMS IN THE ESTER, SAID COPOLYMER HAVING A MOLECULAR WEIGHT IN THE RANGE FROM ABOUT 1000 TO 3500, SAID COPOLYMER BEING FURTHER CHARACTERIZED BY CONTAINING FROM ABOUT 30% TO ABOUT 50% BY WEIGHT OF SAID VINYL FATTY ACID ESTER.
US144027A 1961-10-10 1961-10-10 Middle distillate composition of improved pour characteristics Expired - Lifetime US3236612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US144027A US3236612A (en) 1961-10-10 1961-10-10 Middle distillate composition of improved pour characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US144027A US3236612A (en) 1961-10-10 1961-10-10 Middle distillate composition of improved pour characteristics

Publications (1)

Publication Number Publication Date
US3236612A true US3236612A (en) 1966-02-22

Family

ID=22506741

Family Applications (1)

Application Number Title Priority Date Filing Date
US144027A Expired - Lifetime US3236612A (en) 1961-10-10 1961-10-10 Middle distillate composition of improved pour characteristics

Country Status (1)

Country Link
US (1) US3236612A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444082A (en) * 1966-02-07 1969-05-13 Chevron Res Acid-amide pour point depressants
US3620696A (en) * 1968-09-17 1971-11-16 Exxon Research Engineering Co Fuel oil with improved flow properties
US3638349A (en) * 1968-04-01 1972-02-01 Exxon Research Engineering Co Oil compositions containing copolymers of ethylene and vinyl esters of c{11 to c{11 monocarboxylic acid ethylenically unsaturated
US3660057A (en) * 1969-03-17 1972-05-02 Exxon Research Engineering Co Increasing low temperature flowability of middle distillate fuel
DE2156425A1 (en) * 1970-11-16 1972-05-18 Esso Research And Engineering Co., Linden, N.J. (V.St.A.) Heating or fuel oil mixture
US3790359A (en) * 1969-03-17 1974-02-05 Exxon Research Engineering Co Middle distillate fuel having increased low temperature flowability
JPS5036246B1 (en) * 1969-09-15 1975-11-22
US4559155A (en) * 1982-08-09 1985-12-17 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
FR2925909A1 (en) * 2007-12-26 2009-07-03 Total France Sa Copolymer comprising units derived from ethylene and/or propylene, ester units and ethanol units, useful e.g. in hydrocarbon distillate, which is useful in diesel fuel and heavy fuel oil
WO2020141126A1 (en) * 2019-01-04 2020-07-09 Total Marketing Services Use of specific copolymers for lowering the cold filter plugging point of fuels

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2020714A (en) * 1932-10-12 1935-11-12 Ig Farbenindustrie Ag Lubricating hydrocarbon product
GB569927A (en) * 1942-07-31 1945-06-14 Du Pont Interpolymers of ethylene and vinyl organic esters
US2379728A (en) * 1941-10-24 1945-07-03 Standard Oil Dev Co Methods of preparing polymerization products
US2499723A (en) * 1947-07-28 1950-03-07 Du Pont Lubricants containing copolymers of ethylene and vinyl acetate
US2656340A (en) * 1950-07-27 1953-10-20 Standard Oil Dev Co Aromatic-alkene copolymers of less than 5 per cent aromatic content
US2723259A (en) * 1953-01-28 1955-11-08 Sun Oil Co Vinyl naphthenate polymer
US2913439A (en) * 1955-12-01 1959-11-17 Shell Dev Hydroxy-containing copolymers and their preparation
US2920067A (en) * 1958-08-11 1960-01-05 Monsanto Chemicals Polymerization of ethylene

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2020714A (en) * 1932-10-12 1935-11-12 Ig Farbenindustrie Ag Lubricating hydrocarbon product
US2379728A (en) * 1941-10-24 1945-07-03 Standard Oil Dev Co Methods of preparing polymerization products
GB569927A (en) * 1942-07-31 1945-06-14 Du Pont Interpolymers of ethylene and vinyl organic esters
US2499723A (en) * 1947-07-28 1950-03-07 Du Pont Lubricants containing copolymers of ethylene and vinyl acetate
US2656340A (en) * 1950-07-27 1953-10-20 Standard Oil Dev Co Aromatic-alkene copolymers of less than 5 per cent aromatic content
US2723259A (en) * 1953-01-28 1955-11-08 Sun Oil Co Vinyl naphthenate polymer
US2913439A (en) * 1955-12-01 1959-11-17 Shell Dev Hydroxy-containing copolymers and their preparation
US2920067A (en) * 1958-08-11 1960-01-05 Monsanto Chemicals Polymerization of ethylene

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444082A (en) * 1966-02-07 1969-05-13 Chevron Res Acid-amide pour point depressants
US3638349A (en) * 1968-04-01 1972-02-01 Exxon Research Engineering Co Oil compositions containing copolymers of ethylene and vinyl esters of c{11 to c{11 monocarboxylic acid ethylenically unsaturated
US3620696A (en) * 1968-09-17 1971-11-16 Exxon Research Engineering Co Fuel oil with improved flow properties
US3660057A (en) * 1969-03-17 1972-05-02 Exxon Research Engineering Co Increasing low temperature flowability of middle distillate fuel
US3790359A (en) * 1969-03-17 1974-02-05 Exxon Research Engineering Co Middle distillate fuel having increased low temperature flowability
JPS5036246B1 (en) * 1969-09-15 1975-11-22
DE2156425A1 (en) * 1970-11-16 1972-05-18 Esso Research And Engineering Co., Linden, N.J. (V.St.A.) Heating or fuel oil mixture
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4559155A (en) * 1982-08-09 1985-12-17 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
FR2925909A1 (en) * 2007-12-26 2009-07-03 Total France Sa Copolymer comprising units derived from ethylene and/or propylene, ester units and ethanol units, useful e.g. in hydrocarbon distillate, which is useful in diesel fuel and heavy fuel oil
WO2009106743A2 (en) * 2007-12-26 2009-09-03 Total Raffinage Marketing Difunctional additives for liquid hydrocarbons, obtained by grafting from copolymers of ethylene and/or propylene and vinyl esters
WO2009106743A3 (en) * 2007-12-26 2009-11-26 Total Raffinage Marketing Use of copolymers of ethylene and/or propylene and vinylic esters modified by grafting as difunctional lubricant and cold resistant additives for liquid hydrocarbons
US20100275508A1 (en) * 2007-12-26 2010-11-04 Total Raffinage Marketing Bifunctional additives for liquid hydrocarbons obtained by grafting starting with copolymers of ethylene and/or propylene and vinyl ester
CN101910218B (en) * 2007-12-26 2013-02-13 道达尔炼油与销售部 Difunctional additives for liquid hydrocarbons, obtained by grafting from copolymers of ethylene and/or propylene and vinyl esters
EA019963B1 (en) * 2007-12-26 2014-07-30 Тоталь Рафинаж Маркетинг Use of copolymers of ethylene and/or propylene and vinyl esters obtained by grafting as difunctional additive for liquid hydrocarbons for enhancing low-temperature resistance and lubricity
WO2020141126A1 (en) * 2019-01-04 2020-07-09 Total Marketing Services Use of specific copolymers for lowering the cold filter plugging point of fuels
FR3091539A1 (en) * 2019-01-04 2020-07-10 Total Marketing Services Use of specific copolymers to lower the limit filterability temperature of fuels or combustibles

Similar Documents

Publication Publication Date Title
US3048479A (en) Ethylene-vinyl ester pour depressant for middle distillates
US3236612A (en) Middle distillate composition of improved pour characteristics
US3627838A (en) Process for manufacturing potent pour depressants
CA2453966C (en) Fuel oils having improved cold flow properties
US3341309A (en) Terpolymer pour point depressant and method of manufacture
US3642459A (en) Copolymers of ethylene with unsaturated esters and oil compositions containing said copolymers
US3660057A (en) Increasing low temperature flowability of middle distillate fuel
US4932980A (en) Polymeric fluidizer for middle distillates
US3069245A (en) Synergistic mixture of pour depressants for middle distillates
US3288577A (en) Fuel oil composition of improved pumpability
CA2045155A1 (en) Terpolymers of ethylene, their preparation and their use as additives for mineral oil distillates
US3640691A (en) Enhancing low-temperature flow properties of fuel oil
US3850587A (en) Low-temperature flow improves in fuels
US3037850A (en) Middle distillate pour point depressants
CA1269535A (en) Ethylene-unsaturated, ester-substituted olefin terpolymer flow improvers
US3260728A (en) Process for polymerizing ethylene with lauryl methacrylate and n-vinyl-2-pyrrolidone
US3131168A (en) Process for the manufacture of pour depressants for middle distillate fuels
US3309181A (en) Transesterification product
US3166387A (en) Ammonium carboxylate pour point depressants for fuel oil composition
US3915668A (en) Crude oils and residual fuel oils containing a terpolymer of ethylene, vinyl ester, and dialkylvinyl carbinol
US3812034A (en) Pour point depression
EP0524977B1 (en) Fuel oil additives and compositions
US3397970A (en) Pour point depressant additive
US3773478A (en) Middle distillate fuel containing additive combination to increase low temperature flowability
US3814679A (en) Preparation of fuels for supersonic aircraft