Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3282955 A
Tipo de publicaciónConcesión
Fecha de publicación1 Nov 1966
Fecha de presentación29 Abr 1963
Fecha de prioridad29 Abr 1963
Número de publicaciónUS 3282955 A, US 3282955A, US-A-3282955, US3282955 A, US3282955A
InventoresSuer William M Le
Cesionario originalLubrizol Corp
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Reaction products of acylated nitrogen intermediates and a boron compound
US 3282955 A
Imágenes(9)
Previous page
Next page
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent 3,282,955 REACTION PRODUCTS OF ACYLATED NITROGEN INTERMEDIATES AND A BORON COMPOUND William M. Le Suer, Cleveland, Ohio, assignor to The Lubrizol Corporation, Wicklifie, Ohio, a corporation of Ohio No Drawing. Filed Apr. 29, 1963, Ser. No. 276,208 6 Claims. (Cl. 260-3263) This application is a continuation-in-part of co-pending application Ser. No. 132,305, filed August 18, 1961, now U.S. 3,087,963.

This invention relates to oil-soluble nitrogenand boroncontaining compositions and to the process of preparing the same. The compositions of this invention are useful as additives in lubricants, especially lubricants intended for use in internal combustion engines, gears, and power transmitting units.

One of the principal problems associated with present day automobile crankcase lubricants is that posed by the inevitable presence in the lubricant of foreign particles such as dirt, soot, water, and decomposition products resulting from breakdown of the lubricating oil. Even if there were none of this latter contaminant present the very nature of the design of the modern internal combustion engine is such that a significant amount of foreign matter will accumulate in the crankcase. Perhaps the most important of these contaminants is water because it seems to be responsible for the deposition of a mayonnaise-like sludge. It appears that if there were no water present the solid components of the mayonnaise-like sludge would circulate with the oil and be removed by the oil filter. It will be readily appreciated that the deposition of the sludge presents a serious problem with respect to the eflicient operation of the engine and that it is desirable to prevent such deposition of sludge-like material.

The presence of water and the precursors of sludge in a lubricating oil is dependent largely upon the operating temperature of the oil. If the oil is operated at a high temperature the water, of course, will be eliminated by evaporation about as fast as it accumulates. In the absence of water as stated above the other foreign particles will be removed by the filter. At low oil temperatures, on the other hand, water will accumulate and so consequently will sludge. It is apparent that the environment in which a crankcase lubricant is maintained will determine to a large extent the ultimate performance of that lubricant.

High operating temperatures are characteristic of a lubricant in an engine that is run at relatively constant high speed. Thus, in an engine that is run :at 60 miles per hour for a long period of time it is very unlikely that there will be any accumulation of Water and it is similarly unlikely that there will be any formation and deposition of sludge, but in ordinary stop-and-go driving such as is the case with taxicabs, delivery trucks, police cruisers, etc. the crankcase lubricant will be alternately hot and cold, an ideal environment for the accumulation of water. In such cases the formation of sludge is a serious problem. This problem has been with the automotive industry for many years and its solution has been approached by the use of known detergents such as metal phenates and sulfonates but without notable success. Although such known detergents are very elfective in solving the detergency problems associated with motor oils at high temperatures they have not been particularly effective in solving the problems associated with low temperature operatidn or, to put it better, those problems which are associated with crankcase lubricants in engines which are operated at alternating high and low temperatures.

"ice

It is accordingly a principal object of this invention to provide novel compositions of matter.

It is also an object of this invention to provide compositions which are adapted for use as additives in hydrocarbon oils.

It is also an object of this invention to provide compositions which are effective as detergents in lubricating compositions.

It is another object of this invention to provide a novel process for the preparation of products which are effective as dispersants in lubricant compositions.

It is another object of this invention to provide novel compositions which are effective dispersants in lubricant compositions intended for use in engines operated at alternating high and low temperatures.

It is another object of this invention to provide improved hydrocarbon oil compositions.

It is anther object of this invention to provide improved lubricating compositions.

It is another object of this invention to provide improved fuel compositions.

These and other objects are achieved in accordance with this invention by providing a process for preparing oilsoluble nitrogenand boron-containing compositions comprising forming an acylated nitrogen intermediate by the reaction of a substantially hydrocarbon-substituted succinic acid-producing compound having at least about 50 aliphatic carbon atoms in the substantially hydrocarbon substituent with at least about one-half equivalent of a hydroxyhydrocarbon amine having the structural formula H-N-R wherein R is selected from the class consisting of hydrogen, hydrocarbon, and hydroxy-hydrocarbon radicals, at least one of the two R radicals in said formula being a hydroxy-hydrocarbon radical, and reacting said acylated nitrogen intermediate with a boron compound selected from the class consisting of boron oxide, boron halides, boron acids, ammonium salts of boron acids, and esters of boron acids in an amount to provide from about 0.1 atomic proportion of boron for each mole of said acylated nitrogen intermediate to about 10 atomic proportions of boron for each atomic proportion of nitrogen of said acylated nitrogen intermediate.

The substantially hydrocarbon-substituted succinic acidproducing compounds from which the acylated nitrogen intermediates of the above process are derived are characterized by the presence Within their molecular structure of a substantially hydrocarbon group having at least about 50 aliphatic carbon atoms and at least one succinic acidproducing group.' They are illustrated by compounds having the structural formula O GHZ-ii-X wherein R is a substantially hydrocarbon radical having at least about 50 aliphatic carbon atoms and X is a halogen, hydroxy, hydrocarbon-oxy, or acyloxy radical.

The substantially hydrocarbon substituent of the succinic acid-producing compounds may contain polar groups provided, however, that the polar groups are not present in proportions sutficiently large to alter significantly the hydrocarbon character of the substituent. The polar groups are exemplified by chloro, bromo, keto, ethereal, aldehydo, and nitro, etc. The upper limit with respect to the proportion of such polar groups in the substituent is approximately 10% based on the weight of the hydrocarbon portion of the substituent.

The sources of the substantially hydrocarbon substitwater or steam to the corresponding acid.' Either the anuent include principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of monoolefins having from 2 to 30 carbon atoms. The especially useful polymers are the polymers of l-mono-olefins such as ethylene, propene, l-butene, isobutene, l-hexene, lcotene, 2-methyl-I-heptene, 3-cycl0hexyl-1-butene, and 2- methyl-S-propyl-l-hexene. Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. They are illustrated by Z-butene, 3-pentene, and 4-octene.

Also useful are the interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins. Such inter-polymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene with p-methyl styrene; 1-hexene with 1,3-hexa- 'diene; l-octene with l-hexene; 1-heptene with l-pentene; 3-methyl-1-butene with l-octene; 3,3-dimethyl-1 pentene with 1-hexene;'isobutene with styrene and piperylene; etc.

The relative proportions of the mono-olefins to the other monomers in the interpolymers influence the stability and oil-solubility of the final products derived from such interpolymers. Thus, for reasons of oil-solubility and stability the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably at least about 95 on a weight basis of units derived from the aliphatic monoolefins and no more than about 5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of olefinic linkages should be lessthan about 2% of the total number of carbon-tocar-bon covalent linkages.

Specific examples of such inter-polymers include copolymer of 95% (by weight) of isobutene with 5% of styrene; terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; terpolymer of 95% of isobutene with 2% of l-butene and 3% of l-hexene; terpolymer of 80% of isobutene with 20% of l-pentene and 20% of 1-octene;copolymer of 80% of l-hexene and 20% of l-heptene; terpolymer of 90% of isobutene with 2% of cyclohexene and 8% of propene; and copolymer of 80% of ethylene and 20% of propene. "Another source of the substantially hydrocarbon radical comprises saturated aliphatic hydrocarbon such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular weight olefinic substances.

The use of olefin polymers having molecular weight of about 750-5000 is preferred. Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart also viscosity index improving properties to the final products of this invention. The use of such higher molecular weight olefin polymers often is desirable.

The substantially saturated, aliphatic hydrocarbon-substituted succinic acids and anhydrides are especially preferred for use as the acid-producing reactant of this process for reasons of the particular effectiveness of the products obtained from such compounds as additives in hydrocarbon oils. The succinic compounds are readily available from the reaction of maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as the olefin polymer described hereinabove. The reaction involves merely heating the two reactants at a temperature'about 100200 C. The product from such a reaction is an alkenyl succinic anhydride. The alkenyl group may be hydrogenated to an alkyl group. The anhydride may be hydrolyzed by treatment with hydride or the acid may be converted to the corresponding acid halide or ester by reaction with, e.g., phosphorus halide, phenols, or alcohols.

In lieu of the olefins or chlorinated hydrocarbons, other hydrocarbons containing an activating polar substituent, i.e., a substituent which is capable of activating the hydrocarbon molecule in respect to reaction with maleic acid or anhydride, may be used in the. above-illustrated reaction for preparing the succinic compounds.

. Such polar substituents may be illustrated by sulfide, di-

sulfide, nitro, mercaptan, bromine, ketone, or aldehyde radicals. Examples of such polar-substituted hydrocarbons include polypropene sulfide, di-polyisobutene disulfide, nitrated mineral oil, di-polyethylene sulfide, bromin ated polyethylene, etc. Another methoduseful for preparing the succinic acids and anhydrides involves the reaction of itaconic acid with a high molecular weight. olefin or a polar-substituted hydrocarbon at a temperature usually within the range from about 100 C. to about 200 C.

The acid halides of the succinic acids can be prepared by the reaction of the acids or their anhydrideswith a halogenation agent such as phosphorus tri-bromide, phosphorus pentachloride or thionyl chloride. The esters of such acids can be prepared simply by the reaction of the acids or their anhydrides with an alcohol or a phenolic compound such as methanol, ethanol, octadeconal, cyclohexanol, phenol, naphthol, ootylphenol, etc. The esterification is usually promoted by the use of an alkaline catalyst such as sodium hydroxide or sodium alkoxide or an acidic catalyst such. as sulfuric acid. The nature of the alcoholic or phenolic portion of the ester radical appears to have little influence on the utility of such ester as reactant in the process described hereinabove.

The hydroxy-hydrocarbon amines useful in preparing the acylated nitrogen intermediates of the process of this invention are primary and secondary mono-amines conforming for the most part to the structural formula wherein R designates a hydrogen, an inert hydrocarbon, or a hydroxy-hydrocarbon radical and at least one of the two R radicals in the formula is a hydroxy-hydrocarbon radical. Where the R radical is a hydrocarbon radical it may be aromatic, aliphatic, .or cycloaliphatic. It is illustrated by aryl, alkyl, arylalkyl, alkaryl, and cycloalkyl radicals. It will be noted that by an inert hydrocarbon radical is meant a radical which is substantially hydrocarbon in character, i.e., it may contain an inert, polar substituent such as chloro, bromo, iodo, alkoxy, aryloxy, nitro, keto, or aldehyde group insofar as the presence of I such polar substituent does not alter substantially the hydrocarbon character. of the radical. In most instances there should be no more than one such polar substituent in a hydrocarbon radical.

Specific examples of the hydrocarbon radicals are:

methyl, ethyl, isopropyl, n-butyl, isobutyl, n-pentyl, dodecyl, polyisobutene radical (molecular weight of 1500), cyclohexyl, cyclopentyl, 2-heptyl-cyclohexyl, phenyl, naphthyl, p-heptylphenyl, 2,6-di-tertiary-butylphenyl, benzyl, phenylethyl, 3,5-di-dodecylphenyl, chlorophenyl,

alpha-methoxy-beta-naphthyl, p-nitrophenyl, p-phenoxy-,

phenyl, 2-bromoethyl, 3-chlorocyclohexyl, and polypropylene (molecular weight of 300) -substituted phenyl radi- I cal. Alkyl radicals having less than about 30 carbon atoms are especially preferred.

The hydroxy-hydrocarbon radicals include principally the mono-hydroxy-substituted derivatives of the hydro- The hydroxy-alkyl radicals having less than about 8 carbon atoms are pre-,,'

carbon radicals illustrated above.

ferred. Examples of such radicals are hydroxy-methyl, hydroxy-ethyl, 2-hydroxy-propyl, 3-hydroxypropyl, 2-hydroxy-cyclohexyl, Z-hydroxy-cyclopentyl, 2-hydroxy-1- octyl, 1-hydroxy-3-octyl, 1-hydroxy-2-octyl, 2-hydroxy-3- phenyl-cyclohexyl, l-hydroxy-Z-phenylethyl, Z-hydroxy-lphenylethyl, 2-hydroxy-l-p-tolylethyl and 2-hydroxy-3- butyl radicals. Other hydroxy-substituted hydrocarbon radicals are exemplified by 2,5-dihydroxy-phenyl, alphahydroxybeta-naphthyl, 1-hydroxy-4-dodecyl, 3-hydroxy- 6-octadecyl, and p-(p-hydroxy-phenyl)-phenyl radicals.

For reasons of their particular utility in preparing the .acylated nitrogen intermediates useful in the process of this invention, the mono-(hydroxy-alkyl) amines and the di-(hydroxysalkyl) amines having less than about 8 carbon atoms in each 'alkyl group are especially desirable. They are illustrated by ethanolamine (i.e., 2hydroxyethy'l amine) diethan-olamine (i.e., di-(Z-hydroxyethyl) amine), N-hydroxy-propyl octylamine, N-hydroxy-methyl dodecylamine, 9-hydroxy-stearylamine, N-hydroxy-ethyl octadecylami-ne, N-hydroxy-butyl behenylamine, N 'hydroxy-pentyl triacontanylamine, di-(lfl-hydroxy-decyl) amine, etc. Other amines are exemplified by N-hydroxyethyl aniline, N-(hydroxy-p'henyl) methylalmine, N-(ohydroxyphenyl) pchoroaniline, N-hydroxy-ethyl cyclohexylamine, di-(Z hydroxycyclohexyl)amine.

Methods for preparing the hydroxy-hydrocarbon amines are well-known. For instance, they are obtained by the reaction of an epoxide uch as ethylene oxide,

propylene oxide or epichloro'hydrin with ammonia or an amine such as methylamine, aniline, or dodecylamine. They may "also be obtained from the corresponding halohydrocarbon amines such as 2-c'hloroethyl amine by hydrolysis or other means of converting the 'halo radical to the hydroxy radical. Still other methods are available.

The process of forming the acylated nitrogen intermediate by reacting the substantially hydrocarbon substituted succinic acid-producing compound with the hydroxyhydrocarbon amine compound is usually carried out by heating a mixture of the acid-producing compound and the hydroxy hydrocar-bon amine compound at a temperature above about 80 C., preferably within the range from about 100 C. to about 250 C. However, when an acid or anhydride is employed, the process often may be carried out at a lower temperature such as room temperature. The use of a solvent such as benzene, toluene,

naphtha, mineral oil, xylene, n-hexane, or the like is often desirable in the above process to facilitate the control of the reaction temperature.

The relative proportions of the acidproducing compound and the hydroxy-hydrocarbon amine reactant to be used in the :above process are such that at least about one-half of stoichiometrically equivalent amount of the hydroxy-hydrocarbon amine reactant is used for each equivalent of the acid-producing compound used. In this regard it will be noted that the equivalent weight of the hydroxy-[hydlrocarbon amine reactant is its molecular weight. The equivalent weight of the acid-producing compound is based upon the number of the acid-producing radicals define-d by the structural configuration JLX Thus, ethanol amine has one equivalent per mole; and a succinic acid or ester has two equivalents per mole, etc.

The upper limit of the useful amount of the hydroxyhydrocarbon amine reactant appears to be about 2 moles for each equivalent of the acid-producing compound used. Such amount is required, for instance, in the formation of products having predominantly amidine linkages. On the other hand, the lower limit is about one-half equivalent of the hydroxy-hydrocarbon amine reactant used for each equivalent of the acid-producing compound. This lower limit is based upon the stoichiometry for the formation of products having predominantly imide linkages or mixed acid-amide linkages. In most instances, the preferred amount of the nit-rogencontaining reactant is at least about one equivalent for each equivalent of the acid-producing compound used.

6 The boron compounds useful in reaction with the, acylated nitrogen intermediate include boron oxide, boron oxide hydrate, boron trifluoride, boron tribromide, boron trichloride, HBF boron acids such as boronic acid (erg,

alkyl-B (OH) 2 or aryl-B (0H) boric acid, (i.e., H BO tetraboric acid (i.e., H2B407) ,metaboric acid (i.e., HBO amides of such boron acids, and esters of such boron acids. The use of complexes of a boron trihalide with others, organic acids, inorganic acids, or hydrocarbons is a convenient means of introducing the boron reactant into the reaction mixture. Such complexes are known and are exemplified =by boron tr-ifluoride-diethyl ether, boron trifluoride-phenol, boron trifiuoride-phosphoric acid, boron trichloiide-chloroacetic acid, boron tribromide-dioxane, and boron trifluoride methyl ethyl ether.

Specific examples of boronic acids include methyl boroni-c acid, phenyl-boronic acid, cyclohexyl boronic acid, p-heptylphenyl boronic acid and dodecyl boronic acid.

The boron acid esters include especially mono-, di-, and tri-organic esters of boric acid with alcohols or phenols such as, e.g., methanol, ethanol, isopropanol, cyclohexanol, cyclopentanol l-octanol, 2-octanol, dodecanol, behenyl alcohol, oleyl alcohol, stearyl alcohol, benzyl alcc hol, 2-butyl cyclohexanol, ethylene glycol propylene glycol, trimethylene glycol, 1,3-butanediol,2,4-hexanediol, 1,

2-cyclohexanediol, 1,3-octanediol, glycerol, pentaerythritol, diethylene glycol, carbitol, cellosolve, triethylene glycol, tripropylene glycol, phenol, naphthol, p-butylphenol, o,p-dil1eptylphenol, n-cyclohexylphenol, 2,2-bis- (-p-hydroxyphenyUpropa-ne, .polyisobutene (molecular weight of 1500)-substituted phenol, ethylenechlorohydrin, o-ohlorophenol, m-nitrophenol, 6-br-omo-octanol, and 7-keto-decanol. Lower alcohols, 1,2-glycols, and -1,3 tglycols, i.e., those having less than about 8 carbon atoms are especially useful for preparing the boric acid esters for the purpose of this invention.

Methods for preparing the esters of boron acid are known and disclosed in the art (such as Chemical Reviews pages 959-1064, volume 56). Thus, one method involves the reaction of boron trichloride with 3 moles of an alcohol or a phenol to result in a tri-organic borate. Another method involves the reaction of boric oxide with an alcohol or a phenol. Another method involves the direct e'sterification of tetra boric acid with 3 moles of an alcohol or a phenol. Still another method involves the direct esterification of boric acid with a glycol to form, e.g., a cyclic alkylene borate. 5

The ammonium salts of boron acids include principally the salts of boric acid with ammonia or lower alkyl amines, i.e., mono-, di-, .or tri-alkyl amines having less than 12 carbon atoms in each alkyl radical. Salts of ammonia or such amines with any other boron acid illustrated above are also useful. It is often desirable to use a mixture of an ammonium salt and at least a molar amount of Water. Water tends to cause at least a partial hydrolysis of the salt so as to liberate a boron acid.

water; trimet-hylamine salt of boric acid; dicyclo,-hexyl amine salt of boric acid, etc.

The reaction of the acylated nitrogen intermediate with the 'boron compounds r'esults in a product containing boron and substantially all of the nitrogen originally present in the nitrogen reactant. The nature of the product is not clearly understood. Inasmuch as the precise stoichiometry of the reaction is not known, the relative proportions of the reactants to be used in the process are bas'ed primarily upon the consideration of utility of the products for the purposes of this invention. In this regard, useful products are obtained from reaction mixtures in which the reactants are present in relative proportions as to provide from about 0.1 atomic proportion of boron for each mole of the acylated nitrogen intermediate used to about 10 atomic proportions of boron for each atomic proportion of nitrogen of said acylated nitrogen intermediate used. The preferred amounts of r'eactants are such as to provide from about 0.5 atomic proportion of boron for each mole of the acylated nitrogen intermediate to about 2 atomic proportions of boron for each atomic proportion of nitrogen used. To illustrate, the amount of a boron compound having one boron atom p'er molecule to be used with one mole of an acylated nitrogen intermediate ha'vinlg five nitrogen atoms per molecule is within the range from about 0.1 mole to about 50 moles, preferably from about 0.5 to about 10 moles. The atomic proportion may be defined by a mathematical equation such as the following 1 gram-atomic-proportion= Molecular weight of the compound in grams Number of the atoms of the element in question in the molecular structure of the compound The following examples are illustrative of the process for preparing the nitrogenand boron-containing compos'itions of this invention.

' Example 1 A polyisobutene substituted succinic anhydride is prepared by the reaction .of a chlorinated .polyistobutene with maleic anhydride at 200 C. The polyisobu-ten'e radical has an average molecular Weight of 850 and the resulting alkenyl succinic anhydride has an acid number of 100 (corresponding to an equivalent weight of 560). To a mixture of 2000 grams (3.6 equivalents) of this anhydride and 1040 grams of mineral oil and toluene there is added at 120-140 C. diethanolamine (380 grams, 3.6 equivalents). The mixture is heated at 160 180 C. for 6 hours wlh'ereupon 66 grams of water is distilledolf. The residue is cooled to 120 C. and mixed with boric acid (450 grams, 7.3 equivalents). The mixture is heated at 130-150". C. for 6 hours whereupon 140 grams of water is distilled oif. The mixture is then heated to 160 C./ mm. and the residue filtered. The

filtrate has a nitrogen content of 1.2% and a boron content of 2.1%

Example 2 An acylated nitrogen intermediate is obtained by reacting one equivalent of the polyisobutene-substituted succinic anhydride of Example 1 and one equivalent of eth-anolamine at 160 C. in the presence of toluene'as the solvent. A mixture of this acylated nitrogen intermediate and boric acid in relative proportions such as to provide one atomic proportion of boron per atomic proportion of nitrogen is heated at 150 C. for 5 hours and then at 160 C./1 mm. The residue is the nitrogenand boron-containing product.

Example 3 A nitrogenand boron-containing product is obtained by the procedure of Example 2 except that N hydroxyethyl aniline replaces the ethanolami-ne on a nitrogen equivalent basis.

Example 4 A nitrogenand boron-containing product is obtained Example 6 The procedure of Example 2 is repeated except that the acylated nitrogen intermediate is obtained by the reaction of one equivalent of di-(Z-hydroxyoctyl) amine and one equivalent of polypropene (molecularweight of 3000)-substituted succinic anhydride.

Example 7 cluding pesticides, plasticizers, rust-inhibiting agents for treatment of metals, corrosion-inhibiting agents, extreme pressures agents, anti-Wear agents, and detergents.

A principal utility of such products is as additives in lubricants. It has been discovered in accordance with this invention that when used for such purpose the effectiveness of the nitrogenand boron-containing products to impart a specific property to a lubricant is closely related to the size of the substantially hydrocarbon substituent in the succinic radical of acylated nitrogen composition from which such products are derived. More particularly it has been found that products in which the substantially hydrocarbon substituent contains more than about 50 aliphatic carbon atoms are effective to impart oxidation-inlhibiting, corrosion-inhibiting, and detergent properties to a lubricant. It has also been found that the detergent properties of the products diminish sharply with a decrease in the size of the substantially bydrocarbon substituent having less than about '50 aliphatic carbon atoms so that products having less than 35 aliphatic carbon atoms in this substituent are ineffective as detergent additives in lubricants.

The lubricating oils in which the compositions of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oi-ls belonging to one of the other three groups may be preferred. For instance, synthetic polyester oils such as didodecyl adipate and di-2-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally the lubricating oils preferred will be fluid oils, ranging in vis-v cosity from about 40 Saybolt Universal Seconds at F. to about 200 Saybolt Universal Seconds at 210 F.

The concentration of the nitrogenand boron-containing compositions as additives in lubricants usually ranges fromabout 0.1% to about 10% by Weight. The optimum concentrations for a particular application depend to a large measure upon the type of service to which the lubricants is to be subjected. Thus, for example, lubricants for use in gasoline internal combustion engines may contain from about 0.5 to about 5% of the additive, whereas lubricating compositions for use in gears and diesel engines may contain as much as 10% or even more of the addi carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular Weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium, and barium.

The term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass. The use of 'a promoter in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl-beta-naphthylamine, and dodecylaniine. A particularly eflective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60200 C.

The preparation of a basic sulfonate detergent is illustrated as follows: A mixture of 490 parts (by weight) of a mineral oil, 110 parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to 150 C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25%.

The preparation of a basic barium salt of a phosphorus acid is illustrated as follows: A polyisobutene having a molecular weight of 50,000 is mixed with by weight of phosphorus pentasulfide at 200 C. for 6 hours. The resulting product is hydrolyzed by treatment with steam at 160 C. to produce an acidic intermediate. The acidic intermediate is then converted to a basic salt by mixing with twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonating the mixture at 150 C. to produce a fluid product.

Furthermore, the oil-soluble, nitrogenand boron-containing compositions of this invention have the unique effectiveness in enhancing the extreme pressure and corrosion-inhibiting properties of a certain class of additives employed to impart these properties to a lubricant. More specifically, the additives which are so benefited are metal dithiocarbamates, xanthates, the Group II metal phos-.

phorodithioates and their 'epoxide adducts, hindered phenols, sulfurized cycloalkanes, di-alkyl polysulfides, sulturized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids.

The Group 11 metal phosphorodithioates are the salts of acids having the formula R1 S P Rz \SE{ in which R and R are substantially hydrocarbon radicals. The metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium. The barium and zinc phosphorodithioates are especially preferred. The substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group. Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl alcohols, n-hexyl, methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc. Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc. Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals. Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc. Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.

The availability of the phosphorodithioic acids from which the Group 11 metal salts of this invention are prepared is well known. They are prepared by the reaction of phosphorus pentasulfide with an alcohol or phenol. The reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50 C. to about 200 C. Thus the preparation of 0,0-di-n-hexyl phosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid. The preparation of the zinc or barium salt of this acid may be effected by reaction with zinc oxide or barium oxide. Simply mixing and heating these two reactants is sufficient to cause the reaction to take place and the resulting product is sufficiently pure for the purposes of this invention.

Especially useful Group 11 metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols. The use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids. Thus a mixture of isopropyl and .hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate. For the same reason mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.

Another class of the phosphorothioate additives contemplated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphoro' dithioates described above with an epoxide. The metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates. The epoxides may be alkylene oxides or arylalkylene oxides. The arylalkylene oxides are exemplified by styrene oxide, pethylstyrene oxide, alpha-me-thylstyrene oxide, 3-betanaphthyl-l,3-butylene oxide, m-dodecyls-tyrene oxide, and p-chlorostyrene oxide. The alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms. Examples of such lower alkylene oxides are ethylene oxide, propylene oxide, 1,2-butene oxide, trimethylene oxide, tetramethylene oxide, butadiene monoepoxide, 1,2-hexene oxide, and propylene epichlorohydrin. Other epoxides useful herein include, for example, butyl 9,10-epoxy-stearate, epoxidized soya bean oil, epoxidized tung oil, and epoxidized copolymer of styrene with butadiene.

The adduct may be obtained by simply mixing the phosphorodithioate and the epoxide. The reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C. Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction. The reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.

phorus sesquisulfide, or phosphorus heptasulfide;

The chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkyle-ne oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.

The hindered phenols are those in which the carbon atoms at both ortho positions to the phenolicgroup contain substantially large substituents so as to cause hinderance of the phenolic group. The common substituents are the secondary and tertiary alkyl radicals such as isopropyl, tert-butyl, tert-pentyl, sec-pentyLcyclohexyl, and tert-octyl radicals. They likewise may be aryl radicals or large polar radicals such as bromo or nitro radicals. Examples of the hindered phenols include 2,6-di-sec-bu-tylphenol, 2,4 di-tert-butylphenol, 2,6 di-tert-octyl-4-sec-pentylphen'ol, 2-tert-pentyl-6-tert-hexylphenol, 2-tert-butyl-6-cyclovhexyl-6-heptylphenol, 4,4'-bis-methylene-(2,6-di-tert-butylphenol) 4,4-methylene-bis 2tert-butyl-6-sec-butylphen-ol), 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butyl-6- methylphenol, and bis-(3,5-di-tert-butyl-4-hydroxybenzyl) sulfide.

The sulfurized esters of the fatty acids are obtained by the treatment of the esters with a sulfurizing agent such as sulfur or a sulfur halide, e.g., sulfur monochloride or sulfur dichloride. The esters are exemplified by methyl oleate, methyl stearate, allyl stearate, isopropyl myristate, cyclohexyl ester of tall oil acid, ethyl pa-lmita-te', isooctyl laurate, diester of ethylene glycol with stearic acid, tetraester of pen-taerythritol with stearic acid, etc. Likewise useful are esters of higher alcohols or commercial alcohol mixtures such as octadecyl alcohol and sperm oil alcohol, and phenols such as phenol, naphthol, p-cresol, and o,pdihexylphenol. The sulfurization is effected most conven-. iently at temperatures between 100 C. and 250 C. More than one atom of sulfur can be incorporated into the ester by the use of an excess of the sulfurizing agent. For the purpose of this invention sulfurized esters having as many as 4 or 5 atoms of sulfur per molecule have been found to be useful. Examples include sulfurized sperm oil having a sulfur content of 5%, sulfurized tall oil having a sulfur content of 9%, sulfurized methyl oleate having a sulfur content of 3%, and sulfurized stearyl stearate having a sulfur content of 15%. I

Still another class of the fatty compounds consists of the phosphosulfurized fatty acid ester mentioned above. They are obtained by the treatment of the esters with a phosphorus sulfide, such as phosphorus pentasulfide, phos- The treatment is illustrated by mixing an ester with from about 0.5% to 25% of a phosphorus sulfide at a temperature within the range from 100 C. to 250 C. The product.

contains both phosphorus and sulfur but the precise chemical constitution of such a product is not clearly understood. These and other methods for preparing the sulfurized esters and phosphosulfurized esters are known in the art.

The polysulfides include principally aliphatic and cycloaliphatic disulfides, trisulfides, tetrasulfides, pentasulfides, or higher polysulfides. The term polysulfide designates a compound in which two substantially hydrocarbon radicals are joined to a group consisting of at least 2 sulfur atoms. It is represented for the most part by any of the structural formulas below:

wherein R and R are alkyl or cycloalkyl radicals and n is an integer usually less than 6. The nature of the linkage between the sulfur atoms is not clearly understood. It is believed, however, that such linkage may be described by a single covalent bond, a double bond, or a coordinate.

covalent bond. The polysulfides containing at least about 6 carbon atoms per molecule have greater oil-solubility.

' closed in the art including, for example, the reaction of a chlorohydrocarbon with an alkaline metal polysulfide, the reaction of a mercaptan with sulfur and/or sulfur halide, the reaction of saturated and unsaturated hydrocarbons with sulfur and/or sulfur halides, the reaction of a hydrocarbon monosulfide with sulfur, etc.

The phosphites useful herein are the diand tri-hydrocarbon esters of phosphorous acid. Examples of the phosphites are: dibutyl phosphite, diheptylphosphite, dicyclohexylphosphite, tri (pentylphenyDphosphite, tris- (dipentylphenyl)phosphite, didecyl phosphite, di-stearyl phosphite, tris-(hexa-propylene-substituted phenyl)phosphite, tri-hexyl phosphite, di-heptyl phenyl phosphite, and

tri (m-chloro-p-heptylphenyl) phosphite.

The alkaline earth metal salts of the alkylated phenols include principally the salts of magnesium, barium, calcium, and strontium with phenolic substances containing an alkyl substituent having at least about 7 carbon atoms. The phenols are exemplified by alkyl phenols, alkyl naphthols, sulfurized alkyl phenols, and the condensation products of alkyl phenols with an aldehyde. Specific examples include magnesium octylphenate, barium polypropylene-substituted phenate in which the polypropylene;

substituent has a molecular weight of 500, calcium salt of alpha-dodecyl-beta-naphthyl, barium salt of bis(heptylphenol) sulfide, calcium salt of bis(nonylphenoDsulfide, calcium salt of the condensation product of two moles of heptylphenol with formaldehyde, barium dodecylphenate, and strontium polyisobutene-substituted phenate in which the polyisobutene substitutent has a molecular weight of 350.

The esters of the phosphorodithioic acids include the;

aryl and the alkyl esters of the phosphorodithioic acids described hereinabove. A particularly useful group of the esters is obtained by the addition of the, phosphorodithioic acids to an olefinic compound such as an alkene or an aralkene. They are obtained, for example, by the addition of diisopropylphosphorodithioic acid with styrene, propene, isobutene, cyclohexene, l-octene, methyl cyclohexene, isoprene, butadiene, dipentene, or the like.

The, following examples are illustrative of the lubricatmg compositions of this invention: (all percentages are by weight).

Example! SAE 20 mineral lubricating oil containing 0.5% of the product of Example 1.

Example 11 SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.

Example III SAE 10W-3O mineral lubricating oil containing 0.4%

of the product of Example 3.

Example IV SAE mineral lubricating oil containing 0.1% of the product of Example 4 and 0.15% of the zinc'saltof an equimolar mixture of di-cyclohexylphosphorodithioic' acid and di-isobutyl phosphorodithioic acid.

13 Example V SAE 30 mineral lubricating oil containing 2% of the product of Example 4.

Example VI SAE 20W-30 mineral lubricating oil containing 5% of the product of Example 2.

Example VII SAE lW-30 mineral lubricating oil containing 1.5%

of the product of Example and 0.05% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorous pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of n-pentyl alcohol.

Example VIII SAE 50 mineral lubricating oil containing 3% of the product of Example 5 and 0.1% of phosphorus as the calcium salt of di-hexylphosphorodithioate.

Example IX SAE W-30 mineral lubricating oil containing 2% of the product of Example 4, 0.06% of phosphorus as zinc di-n-octylphosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.

Example X SAE 10VV-30 mineral lubricating oil containing 6% of the product of Example 2, 0.075% of phosphorus as zinc di-n-octylphosphorodithioate, and 5% of the barium 7 salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular weight of 60,000 with 100 parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product with steam at 150 C.

Example XII SAE 10 mineral lubricating oil containing 2% of the product of Example 4, 0.075% of phosphorus as the adduct of zinc di-cyclohexylphosphorodithioate treated with 0.3 mole of ethylene oxide, 2% of a sulfurized sperm oil having a sulfur content of 10%, 3.5% of a poly-(alkyl methacrylate) viscosity index improver, 0.02% of a poly- (alkyl methacrylate) pour point depressant, 0.003% of a poly-(alkyl siloxane) anti-foam agent.

Example XIII SAE 10 mineral lubricating oil containing 1.5% of the product of Example 6, 0.075 of phosphorus as the adduct obtained by heating zinc dinonylphosphorodithioate with 0.25 mole of 1,2-hexene oxide at 120 C., a sulfurized methyl ester of tall oil acid having a sulfur content of 15%, 6% of a polybutene viscosity index improver, 0.005% of a poly-(alkyl methacrylate) antifoam agent, and 0.5% of lard oil.

Example XIV SAE 20 mineral lubricating oil containing 1.5% of the product of Example 7, 0.5% of di-dodecyl phosphite, 2% of the sulfurized sperm oil having a sulfur content of 9%, a basic calcium detergent prepared by carbonating a mixture comprising mineral oil, calcium mahogany sulfonate and 6 moles of calcium hydroxide in the presence of an equi-molar mixture (10% of the mixture) of methyl alcohol and n-butyl alcohol as the promoter at the reflux temperature.

Example XV SAE 10 mineral lubricating oil containing 2% of the product of Example 2, 0.07% of phosphorus as zinc dioctylphosphorodithioate, 2% of a barium detergent prepared by neutralizing with barium hydroxide the hydrolyzed reaction product of a prolypropylene (molecular weight 2000) with 1 mole of phosphorus pentasulfide and 1 mole of sulfur, 3% of a barium sulfonate detergent prepared by carbonating a mineral oil solution of mahogany acid, and a 500% stoichiometrically excess amount of barium hydroxide in the presence of phenol as the promoter at 180 C., 3% of a supplemental ashless detergent prepared by copolymerizing a mixture of 95% (weight) of decyl-methacrylate and 5% (Weight) of diethylaminoethylacrylate.

Example XVI SAE mineral lubricating oil containing 2% of the product of Example 1, 0.1% of phosphorus as zinc di-nhexylphosphorodithioate, 10% of a chlorinated parafiin wax having a chlorine content of 40%, 2% of di-butyl tetrasulfide, 2% of sulfurized dipentene, 0.2% of oleyl amide, 0.003% of an anti-foam agent, 0.02% of a pour point depressant, and 3% of a viscosity index improver.

Example XVII SAE 10 mineral lubricating oil containing 3% of the product of Example 1, 0.075 of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equimolar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol,

2 moles of barium oxide, and a small amount of water at 150 C.

Example XVIII SAE 20 mineral lubn'cating'oil coutaining'2% of the product of Example 2 and 0.07% of phosphorus as zinc di-n-octylphosphorodithioate.

Example XIX SAE 30 mineral lubricating oil containing 3% of the product of Example 7 and 0.1% of phosphorus as zinc di-(isobutylpheuyl)-phosphorodithioate.

Example XX SAE 50 mineral lubricating oil containing 2% of the product of Example 7.

Example XXI SAE mineral lubricating oil containing 3% of the product of Example 6 and 0.2% of phosphorus as the reaction product of 4 moles of turpentine with 1 mole of phosphorus pentasulfide.

Example XXII SAE 90 mineral lubricating oil containing 3% of the product of Example 2 and 0.2% of 4,4'-bis-methylene- (2,6-di-tert-butyl phenol) Example XXIII SAE 30 mineral lubricating oil containing 2% of the product of Example 2 and 0.1% of phosphorus as phenylethyl di-cyclohexylphosphorodithioate.

Example XXIV SAE 90 mineral lubricating oil containing 5% of the product of Example 3 and 1% of the calcium salt of the sulfurized phenol obtained by the reaction of 2 moles of heptylphenol with 1 mole of sulfur.

The above lubricants are merely illustrative and the scope of invention includes the use of all of the additives 15 previously illustrated as well as others within the broad concept of this invention described herein.

The effectiveness of the nitrogenand boron-containing compositions as additives in lubricants is illustrated by the results obtained from a test in which a 350 cc. sample of a lubricant containing 0.001% of iron naphthenate and 1.5% by -weight of the additive to be tested is heated at 300 F. for 96 hours in a 2 x 15" borosilicate tube. Air is bubbled through the lubricant at the rate of liters per hour. The oxidized sample is allowed to cool to 122 F. whereupon 0.5% (by volume) of water is added and dispersed into the sample. The sample is allowed to stand for hours at room temperature and then filtered through dry No. 1 Whatman paper (double thickness) under slightly reduced pressure. The precipitant is washed with naphtha to constant weight and reported as milligrams of sludge per 100 ml. of oil. The quantity of sludge is an indication of the ability of the additive to alkyl amine is a mono- (hydroxy-alkyl)amine.

prevent the formation of harmful deposits. The lubris cant base employed in the test is a Mid-Continent, conventionally refined mineral oil having a viscosity of about 200 Saybolt Universal Seconds at 100 F. By this test, the base oil gives from 800-900 milligrams of sludge whereas the oil containing 1.5 by weight of the product prepared by the reactionof the polyisobutene-substituted succinic anhydride (1 equivalent) with diethanolamine (1 equivalent) and boric acid (1.8 atomic proportions of boron per atomic proportion of nitrogen) gives a result of 250-300 milligrams of sludge.

Further illustration of the usefulness of the additive of this invention in lubricants is gained from a modified version (the modification consists of extending the test period from the usual 96 hours to 144 hours) of the CRC-EX-3 engine test. This test is recognized in the field as an important test by which lubricants can be evaluated for use under light-duty service conditions.

What is claimed is:

1. An oil-soluble, nitrogenand boron-containing composition prepared by the process comprising for'ming an acylated nitrogen intermediate by the reaction of one equivalent of a substantially hydrocarbon-substituted succinic acid-producing compound having at least about 50 aliphatic carbon atoms in the substantially hydrocarbon substituent with at least about one-half equivalent of a hydroxy-hydrocarbon amine having the structural formula wherein R is selected from the class consisting of hydrogen, inert hydrocarbon, hydroxy-hydrocarbon radicals, at least one of the two R radicals in said formula being a hydroXy-hydrocarbon radical and reacting said acylated nitrogen intermediate with a boron compound selected from the class consisting of boron oxide, boron halides, boron acids, ammonium salts of boron acids, and esters of boron acids in an amount to provide from about 0.1 gram-atomic-weight of boron for each mole of said acylated nitrogen intermediate to about 10 gram-atomic- 16 weight of boron for each gram-atomic-weight of nitrogen of said acylated nitrogen intermediate.

2. An oil-soluble, nitrogenand boron-containing composition prepared by the process comprising forming an acrylated nitrogen intermediate by the reaction of one equivalent of a substantially aliphatic olefin polymer-substituted succinic anhydride having at least about 50 aliphatic carbon atoms in the olefin polymer substitutent with at least about one-half equivalent of a hydroxy-alkyl amine having less than about 30 carbon atoms and react:

ing said acylated nitrogen intermediate with boric, acid in.

an amount to provide about 1 gram-atomic-weigh t of boron for each gram-atomic-weight of nitrogen of the acylated nitrogen intermediate.

3. The composition of claim 2 wherein the hydroxy- 4. The composition of claim 2 wherein the hydroxyalkyl amine is a di-(hydroxy-alkyDamine.

5. An oil-soluble nitrogenand boron-containing composition prepared by the process comprising forming an acylated nitrogen intermediate by the reaction at a temperature between about C. and 250 Got one equivalent of a polyisobutene-substituted succinic anhydride having from about 50 to 250 carbon atoms in the polyisobutene substitutent with about an equivalent amount of "a di-(hydroxyalkyl) amine having less than about 8 carbon atoms in each alkyl group and reacting said acylated nitrogen intermediate with boric acid in an amount to provide about 1 gram-atomic-Weight of boron for each gram-atomic-weight of nitrogen of the acylated nitrogen intermediate at a temperature between about C. and

6. An oil-soluble nitrogenand boron-containing composition prepared 'by the process comprising forming an acylated nitrogen intermediate by the reaction at a tem- UNITED STATES PATENTS 2,052,192 8/1936 Piggott 260-404 2,216,618 10/1940 Katz 260401 2,234,581 3/1941 Rosen 252 51 2,611,746 9/1952 Kipp 252 49.6 3,087,936 4/1963 Le Suer 252 515 XR ALEX MAZEL, Primary Examiner. DANIEL E. WYMAN, HENRY R; JILES, Examiners.

PATRICK P. GARVIN, JOSE TOVAR,

Assistant Examiners.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,282,955 November 1, 1966 William M. Le Suer It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.

Column 1, line 12, for "3,087,963" read 3,087,936 column 2, line 18, for "anther" read another column 4, line 28, for "octadeconal" read octadecanol column 7, line 29, for "polyistobutene" read polyisobutene column 8, line 18, for "pressures" read pressure line 36, after "than" insert about column 12, line 12, for "di(omega-bromopenyl)trisulfide" read di(omegabromopentylJtrisulfide column 13, line 13, for "phosphorous" read phosphorus column 14, line 9, for "prolypropylene" read polypropylene column 16, line 5, for "acrylated" read acylated Signed and sealed this 24th day of December 1968.

(SEAL) Attest:

EDWARD M.FLETCHER,JR. EDWARD J. BRENNER Attesting Officer Commissioner of Patents

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US2052192 *23 Oct 193525 Ago 1936Ici LtdBoric acid esters
US2216618 *10 Ago 19391 Oct 1940Jacob KatzSurface active anionic boric acid ester compounds of amino alcohols
US2234581 *30 Sep 193711 Mar 1941Standard Oil Dev CoHydrocarbon composition containing organic boron compounds
US2611746 *17 Dic 194923 Sep 1952Aluminum Co Of AmericaLubricating composition
US3087936 *18 Ago 196130 Abr 1963Lubrizol CorpReaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3449362 *8 Mar 196510 Jun 1969Standard Oil CoAlkenyl hydrocarbon substituted succinimides of polyamino ureas and their boron-containing derivatives
US3676346 *19 Feb 197011 Jul 1972Exxon Research Engineering CoLubricating oil compositions containing improved sludge inhibiting additives
US3903151 *4 Feb 19742 Sep 1975Chevron ResReaction products of alkali metal meborate and hydrocarbon substituted succinimide
US4071548 *16 Ago 197631 Ene 1978Toa Nenryo Kogyo Kabushiki KaishaLubricating oil additive, process for the synthesis thereof and lubricating oil additive composition
US4092127 *20 Dic 197630 May 1978Exxon Research & Engineering Co.Anti-dieseling additive for spark ignition engines
US4120887 *21 Nov 197717 Oct 1978Toa Nenryo Kogyo Kabushiki KaishaLubricating oil additive, process for the synthesis thereof and lubricating oil additive composition
US4173540 *3 Oct 19776 Nov 1979Exxon Research & Engineering Co.Lubricating oil composition containing a dispersing-varnish inhibiting combination of polyol ester compound and a borated acyl nitrogen compound
US4338205 *25 Ago 19806 Jul 1982Exxon Research & Engineering Co.Lubricating oil with improved diesel dispersancy
US4579674 *28 Dic 19811 Abr 1986Texaco Inc.Hydrocarbylsuccinimide of a secondary hydroxyl-substituted polyamine and lubricating oil containing same
US4873009 *28 Jun 198810 Oct 1989Amoco CorporationBorated lube oil additive
US4915857 *11 May 198710 Abr 1990Exxon Chemical Patents Inc.Amine compatibility aids in lubricating oil compositions
US5049290 *10 Abr 199017 Sep 1991Exxon Chemical Patents Inc.Amine compatibility aids in lubricating oil compositions
US5225093 *3 Dic 19926 Jul 1993Ethyl Petroleum Additives, Inc.Gear oil additive compositions and gear oils containing the same
US5328619 *21 Jun 199112 Jul 1994Ethyl Petroleum Additives, Inc.Oil additive concentrates and lubricants of enhanced performance capabilities
US5334329 *7 Oct 19882 Ago 1994The Lubrizol CorporationLubricant and functional fluid compositions exhibiting improved demulsibility
US5583099 *16 May 199610 Dic 1996The Lubrizol CorporationBoronated compounds
US5629434 *25 Sep 199513 May 1997Exxon Chemical Patents IncFunctionalization of polymers based on Koch chemistry and derivatives thereof
US5643859 *17 Jun 19941 Jul 1997Exxon Chemical Patents Inc.Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5646332 *17 Jun 19948 Jul 1997Exxon Chemical Patents Inc.Batch Koch carbonylation process
US5650536 *17 Jun 199422 Jul 1997Exxon Chemical Patents Inc.Continuous process for production of functionalized olefins
US5652201 *11 Jul 199529 Jul 1997Ethyl Petroleum Additives Inc.Lubricating oil compositions and concentrates and the use thereof
US5696064 *23 Ago 19959 Dic 1997Exxon Chemical Patents Inc.Functionalization of polymers based on Koch chemistry and derivatives thereof
US5698722 *6 Jun 199516 Dic 1997Exxon Chemical Patents Inc.Functionalization of polymers based on Koch chemistry and derivatives thereof
US5703256 *16 Dic 199630 Dic 1997Exxon Chemical Patents Inc.Functionalization of polymers based on Koch chemistry and derivatives thereof
US5717039 *6 Jun 199510 Feb 1998Exxon Chemical Patents Inc.Functionalization of polymers based on Koch chemistry and derivatives thereof
US5767046 *15 May 199716 Jun 1998Exxon Chemical CompanyFunctionalized additives useful in two-cycle engines
US636213626 Mar 199626 Mar 2002The Lubrizol CorporationCompositions for extending seal life, and lubricants and functional fluids containing the same
US648927120 Ago 19963 Dic 2002The Lubrizol CorporationCombination of a sulfur compound and specific phosphorus compounds and their use in lubricating compositions, concentrates and greases
US65732234 Mar 20023 Jun 2003The Lubrizol CorporationLubricating compositions with good thermal stability and demulsibility properties
US662758428 Ene 200230 Sep 2003Ethyl CorporationAutomatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US66897235 Mar 200210 Feb 2004Exxonmobil Chemical Patents Inc.Sulfide- and polysulfide-containing lubricating oil additive compositions and lubricating compositions containing the same
US748573428 Ene 20053 Feb 2009Afton Chemical CorporationSeal swell agent and process therefor
US769553419 May 200513 Abr 2010Ecr Technologies, Inc.Chemical synthesis methods using electro-catalysis
US774994827 Feb 20076 Jul 2010The Lubrizol CorporationNitrogen-containing dispersant as an ashless TBN booster for lubricants
US783395328 Ago 200616 Nov 2010Afton Chemical CorporationLubricant composition
US787977514 Jul 20061 Feb 2011Afton Chemical CorporationLubricant compositions
US788829913 Ene 200415 Feb 2011Afton Chemical Japan Corp.Extended drain, thermally stable, gear oil formulations
US790213314 Jul 20068 Mar 2011Afton Chemical CorporationLubricant composition
US79282603 Sep 200819 Abr 2011Afton Chemical CorporationSalt of a sulfur-containing, phosphorus-containing compound, and methods thereof
US794763627 Feb 200424 May 2011Afton Chemical CorporationPower transmission fluids
US82990039 Mar 200630 Oct 2012Afton Chemical CorporationComposition comprising a sulfur-containing, phosphorus-containing compound, and/or its salt, and uses thereof
US854631110 Mar 20091 Oct 2013Volkswagen AktiengesellsschaftMethod for lubricating a clutch-only automatic transmission component requiring lubrication
US855775222 Mar 200615 Oct 2013Afton Chemical CorporationLubricating compositions
DE2755199A1 *10 Dic 197722 Jun 1978Exxon Research Engineering CoBenzin mit einem das nachdieseln von ottomotoren enthaltendem zusatz
DE102009001301A13 Mar 200924 Sep 2009Audi AgVerfahren zum Schmieren einer Komponente nur für die Kupplung eines automatischen Getriebes, welche Schmierung erfordert
DE102009012567A111 Mar 20091 Oct 2009Afton Chemical Corp.Getriebeöle mit sehr wenig Schwefel nur für Kupplung
EP0399764A121 May 199028 Nov 1990Ethyl Petroleum Additives LimitedLubricant compositions
EP0558835A130 Ene 19928 Sep 1993Albemarle CorporationBiodegradable lubricants and functional fluids
EP0683220A218 May 199522 Nov 1995Ethyl CorporationLubricant additive compositions
EP0695798A22 Ago 19957 Feb 1996The Lubrizol CorporationLubricating compositions, concentrates, and greases containing the combination of an organic polysulfide and an overbased composition or a phosphorus or boron compound
EP1669436A18 Dic 200514 Jun 2006Afton Chemical CorporationOxidation stable gear oil compositions
EP2017329A117 Abr 200821 Ene 2009Afton Chemical CorporationEnvironmentally-Friendly Lubricant Compositions
EP2230292A18 Nov 200422 Sep 2010Afton Chemical CorporationMethods of lubricating transmissions
EP2302023A22 Oct 200330 Mar 2011R.T. Vanderbilt Company, Inc.Synergistic organoborate compositions and lubricating compositions containing same
EP2366762A12 Oct 200321 Sep 2011R.T. Vanderbilt Company Inc.Synergistic organoborate compositions and lubricating compositions containing same
EP2371933A11 Feb 20075 Oct 2011The Lubrizol CorporationTartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof
EP2420553A117 Abr 200822 Feb 2012Afton Chemical CorporationEnvironmentally-Friendly Lubricant Compositions
EP2436753A12 Oct 20034 Abr 2012R.T. Vanderbilt Company Inc.Synergistic organoborate compositions and lubricating compositions containing same
EP2460870A12 Oct 20036 Jun 2012R.T. Vanderbilt Company, Inc.Synergistic organoborate compositions and lubricating compositions containing same
WO1986004601A129 Ene 198614 Ago 1986Lubrizol CorpSulfur-containing compositions, and additive concentrates and lubricating oils containing same
WO2003095595A17 May 200320 Nov 2003Lubrizol CorpContinuously variable transmission fluids comprising a combination of calcium- and magnesium-overbased detergents
WO2009045979A130 Sep 20089 Abr 2009Lubrizol CorpLubricants that decrease micropitting for industrial gears
WO2010096325A111 Feb 201026 Ago 2010The Lubrizol CorporationAmine derivatives as friction modifiers in lubricants
WO2011066142A117 Nov 20103 Jun 2011The Lubrizol CorporationStabilized blends containing friction modifiers
WO2011066144A117 Nov 20103 Jun 2011The Lubrizol CorporationStabilized blends containing friction modifiers
WO2011066145A117 Nov 20103 Jun 2011The Lubrizol CorporationStabilized blends containing friction modifiers
WO2011143051A16 May 201117 Nov 2011The Lubrizol CorporationTartaric acid derivatives in hths fluids
WO2012033668A130 Ago 201115 Mar 2012The Lubrizol CorporationHydroxychroman derivatives as engine oil antioxidants
WO2012154708A18 May 201215 Nov 2012The Lubrizol CorporationAromatic imides and esters as lubricant additives
WO2012162020A115 May 201229 Nov 2012The Lubrizol CorporationStabilized blends containing antioxidants
WO2012162027A115 May 201229 Nov 2012The Lubrizol CorporationStabilized blends containing friction modifiers
WO2013012987A119 Jul 201224 Ene 2013The Lubrizol CorporationOverbased friction modifiers and methods of use thereof
WO2013013026A119 Jul 201224 Ene 2013The Lubrizol CorporationCarboxylic pyrrolidinones and methods of use thereof
WO2013151911A11 Abr 201310 Oct 2013The Lubrizol CorporationBearing lubricants for pulverizing equipment