US3287490A - Grooved coaxial cable - Google Patents

Grooved coaxial cable Download PDF

Info

Publication number
US3287490A
US3287490A US369198A US36919864A US3287490A US 3287490 A US3287490 A US 3287490A US 369198 A US369198 A US 369198A US 36919864 A US36919864 A US 36919864A US 3287490 A US3287490 A US 3287490A
Authority
US
United States
Prior art keywords
cable
sheath
coaxial cable
crest
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US369198A
Inventor
Wright Malor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Carr Inc
Original Assignee
United Carr Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Carr Inc filed Critical United Carr Inc
Priority to US369198A priority Critical patent/US3287490A/en
Priority to GB9779/65A priority patent/GB1077425A/en
Priority to BE662254D priority patent/BE662254A/xx
Priority to FR12730A priority patent/FR1440742A/en
Priority to CH558265A priority patent/CH440407A/en
Priority to NL6506340A priority patent/NL6506340A/xx
Priority to FR46003A priority patent/FR89411E/en
Priority to CH68266A priority patent/CH470733A/en
Application granted granted Critical
Publication of US3287490A publication Critical patent/US3287490A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • H01B11/1817Co-axial cables with at least one metal deposit conductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/225Screening coaxial cables

Description

M. WRIGHT Nov. 22, 1966 2 Sheets-Sheet 1 Filed May 21, 1964 Invenior. M4110? Wadi 5.133. by 7/ M. WRIGHT Nov. 22, 1966 2 Sheets$heet 2 Filed May 21, 1964 w wmwvfi \WMW an m a u M United States Patent M 3,287,490 GROOVED COAXIAL CABLE Malor Wright, Lexington, Mass., assignor to United-Carr Incorporated, Cambridge, Mass., a corporation of Delaware Filed May 21, 1964, Ser. No. 369,198 1 Claim. (Cl. 174102) This invention relates generally to the metaiizmg or plastics and more specifically to metalizing a plastic conduit or tube having a conducting core.
An object of the present invention is to provide a method of plating a plastic tube having a conducting core.
Another object of the present invention is to provide a method of forming flexible miniature precision coaxial cables.
A further object is to provide an article of commerce having a continuous sheet of outer conductor applied over a dielectric.
A still further object is to provide a method of applying a continuous sheet of material over a grooved dielectric.
Another object is to provide a method which permits the application of a continuous outer coat upon a bendable support.
Still another object of the present invention is to provide a tube, cylinder or square which is coated with a different material from that which comprises the tube, etc., and which can be bent to an arcuate configuration without destroying the continuity of the coating even if stressed to the point where some cracks will appear.
In the past, it was very diflicult to provide a microwave coaxial cable whose outer conductor would not develop cracks, when bent drastically, thereby disturbing or destroying proper electrical conductivity. The present invention by depositing a layer of various ductile metal plates or corrugations formed on the outer surface of a plastic support which provides stress reduction during bending and increases flexibility thereby alleviating the mentioned cracking and splitting. Flexibility is one of the major considerations in the design of miniature precision coaxial cables. During bending and flexing, the outer conductor is stressed much more than the inner conductor and should therefore be constructed to reduce the stresses.
In the drawings:
FIG.1 is a side elevation of the plastic core having the necessary convolutions formed therein prior to plating;
FIG. 2 is an end elevation of the plastic core shown in FIG. 1;
FIG. 3 is an expanded view of a portion of the cable shown in FIG; 1 with the sheath in section;
FIG. 4 is a figure similar to FIG. 3 with the plating applied;
FIG. 5 is a figure similar to FIG. 4 showing a portion of the cable under bending stress;
FIG. 6 is a side elevation of a variation of the cable shown in FIGS. 1 through 5; and
FIG. 7 is a section taken on line 7-7 of FIG. 6.
Referring to the drawings and particularly to FIGS. 1-5, there is shown a miniature cable comprising an inner conductor 10 and an outer insulating sheath 12, which is formed about the conductor 10 in an abutting relationship therewith. The sheath 12 has a series of grooves 14 formed in its external surface which are spaced from each other and which in horizontal cross section provide a configuration approximating a sinusoidal wave which is repeated for the length of the sheath 12. The root of each groove 14 is rounded as is the crest 16 of what may be referred to as the 3,287,490 Patented Nov. 272, 1966 thread which is formed between each groove. The inner conductor 10 is maintained at a constant diameter.
The outer conductor 18 comprises a thin layer of ductile metal or conductive material which is applied on to the plastic sheath 12 utilizing methods to be set forth hereinafter. The conductor 18 can be made very thin (for instance .001 inch) at a saving in cost over presently available methods. Any metal or semiconductor can be used as long as the material can be applied to the outer surface of the sheath 12. For best electrical performance, the sheath 12 may be formed of polytetrafluoroethylene, polyethylene, polypropylene or a copolymer of tetrafluoroethylene and heXafiuoro-' propylene.
There are several methods of applying the plate to the plastic sheath. One which the applicant has found to be highly satisfactory is commenced with a series of steps for preparing the surface, including cleaning, which includes a chemical etch to make the surface hydrophilic, sensitising, which consists in having the sheath or surface absorb a material which is readily oxidised, and finally catalysing, which consists in exposing the absorbed material to the ions of a noble metal which is readily reduced, thereby reducing the noble metal on the surface, thus creating a catalytic surface for initiating further metal deposition. After surface preparation is completed, approximately one micro inch of silver is deposited on the catalysed surface from a 10 g.p.l. solution ammoniacal silver nitrate and a one percent solution of glyoxalin water. The final step is to deposit a thin copper layer on the silver layer. A solution of 250 g.p.l. copper sulphate, g./ liter sulphuric acid at a current density of 1 amp/dm. was found satisfactory as a: plating bath for this latter purpose.
Turning again to the physical construction of the grooves formed on the sheath 12, when the cable is bent stretching stresses which would occur in a cylindrical sheath, occur in the herein disclosed cable mostly as bending stresses somewhat akin to the bending of a beam along the flat area 20 which is formed on each side' of the thread from the crest 16 to the root of the groove 14. The flats 20 are in angular relationship to each other and also in angular relationship to the axis of the sheath 12. As shown in FIG. 3 the crest 16 and the root of the groove 14 are both arcuate in configuration.
The relationship of the pitch from crest 16 to c1 est 16 should be chosen as a function of the diameter of the cable and the depth of the grooving 14 should be chosen on the same basis for optimum results. Pitch from crest 16 to crest 16 should be approximately four times shorter than the shortest microwave that is to be propagated through the cable. When the plated core is bent around a mandrel, a tensile force or stress occurs at the outer surface. If a coaxial cable of a cylindrical section is bent over the mandrel, a series of downward force vectors result, which are all substantially equal and all directed toward the center of the mandrel thereby causing distortion of the dielectric, and there is also a stretching of the metal surface as mentioned heretofore. In these circumstances, the crests 16 of the herein disclosed cable tend to flatten and this flattening in turn relieves stresses thereby reducing strain amplitude. The maximum stretch will be at the crest and less stress will occur at the flat areas. Also as bending occurs the distance from crest to crest of the outside layer will increase. Since adherence between the metallic layer and the plastic layer is not percent perfect, the metallic layer will come up slightly from the root of the grooves 14.
There is shown in FIGS. 6 and 7 a variation of the cable shown in FIGS. 1-5. The threads or corrugations should be chosen to suit the particular application involved. If flexibility is the chief requirement, the depth 3 of the thread and the relationship of the size of the thread to each other would dictate for maximum results the configuration disclosed in FIGS. 6 and 7. The difference between this variation and the other embodiment is that the flats 20a of this variation are in substantially parallel relationship to each other. This particular configuration allows extremely deep grooves 14a, which in turn will increase the flexibility of the cable.
In general, metals will take a little more strain amplitude in compression than an extension or stretching. Therefore, we have been concerned mainly with the problerns regarding the extension caused by the bending of the cable. Furthermore, substantially as much strain is found in compression as in extension about the neutral axis, in other words, one type of strain may be considered pretty much the mirror image of the other type.
While there has been illustrated and described a pre ferred embodiment of the invention it should be understood that the invention is best defined by the following claim.
What is claimed:
A coaxial cable comprising a flexible inner conductor, a solid dielectric of homogeneous polymeric material having convolutions preformed on its outer surface, said dielectric surrounding said inner conductor, and a continuous uninterrupted electroless deposit of a conductive material on the external surface of said dielectric.
References Cited by the Examiner UNITED STATES PATENTS 2,663,754 12/1953 Bianco l74l02 2,690,496 9/1954 Perls 33396 2,808,450 10/1957 Peters 174102 2,890,263 6/1959 Brandes et al. 174l02 3,130,256 4/1964 Milkner 174-28 LEWIS H. MYERS, Primary Examiner.
H. HUBERFELD, Assistant Examiner.
US369198A 1964-05-21 1964-05-21 Grooved coaxial cable Expired - Lifetime US3287490A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US369198A US3287490A (en) 1964-05-21 1964-05-21 Grooved coaxial cable
GB9779/65A GB1077425A (en) 1964-05-21 1965-03-08 Coaxial cable
BE662254D BE662254A (en) 1964-05-21 1965-04-08
FR12730A FR1440742A (en) 1964-05-21 1965-04-09 Corrugated coaxial cable
CH558265A CH440407A (en) 1964-05-21 1965-04-22 Coaxial cable and method of making the same
NL6506340A NL6506340A (en) 1964-05-21 1965-05-19
FR46003A FR89411E (en) 1964-05-21 1966-01-14 Corrugated coaxial cable
CH68266A CH470733A (en) 1964-05-21 1966-01-19 Method of manufacturing a coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US369198A US3287490A (en) 1964-05-21 1964-05-21 Grooved coaxial cable

Publications (1)

Publication Number Publication Date
US3287490A true US3287490A (en) 1966-11-22

Family

ID=23454497

Family Applications (1)

Application Number Title Priority Date Filing Date
US369198A Expired - Lifetime US3287490A (en) 1964-05-21 1964-05-21 Grooved coaxial cable

Country Status (6)

Country Link
US (1) US3287490A (en)
BE (1) BE662254A (en)
CH (1) CH440407A (en)
FR (1) FR1440742A (en)
GB (1) GB1077425A (en)
NL (1) NL6506340A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3429982A (en) * 1967-03-02 1969-02-25 United Carr Inc Sintered coaxial cable
US3452434A (en) * 1966-03-31 1969-07-01 Kabel Metallwerke Ghh Method of making heat resistant electric cable
US3557301A (en) * 1967-05-23 1971-01-19 Pirelli Sheathing of electrical cables
US3581250A (en) * 1968-04-12 1971-05-25 Technitrol Inc Delay line having non planar ground plane, each loop bracketing two runs of meandering signal line
US3639674A (en) * 1970-06-25 1972-02-01 Belden Corp Shielded cable
US3691488A (en) * 1970-09-14 1972-09-12 Andrew Corp Radiating coaxial cable and method of manufacture thereof
US4368350A (en) * 1980-02-29 1983-01-11 Andrew Corporation Corrugated coaxial cable
US4533784A (en) * 1983-07-29 1985-08-06 Minnesota Mining And Manufacturing Co. Sheet material for and a cable having an extensible electrical shield
US4866212A (en) * 1988-03-24 1989-09-12 W. L. Gore & Associates, Inc. Low dielectric constant reinforced coaxial electric cable
US5239134A (en) * 1991-07-09 1993-08-24 Flexco Microwave, Inc. Method of making a flexible coaxial cable and resultant cable
US20030201116A1 (en) * 2002-04-24 2003-10-30 Andrew Corporation Low-cost, high performance, moisture-blocking, coaxial cable and manufacturing method
US6825418B1 (en) 2000-05-16 2004-11-30 Wpfy, Inc. Indicia-coded electrical cable
US7954530B1 (en) 2009-01-30 2011-06-07 Encore Wire Corporation Method and apparatus for applying labels to cable or conduit
US8362359B1 (en) 2009-07-27 2013-01-29 Superior Essex Communications Lp Surface modified drop cable, method of making same, and drop cable assembly
US8826960B1 (en) 2009-06-15 2014-09-09 Encore Wire Corporation System and apparatus for applying labels to cable or conduit
US9409668B1 (en) 2007-06-04 2016-08-09 Encore Wire Corporation Method and apparatus for applying labels to cable
US11319104B1 (en) 2009-01-30 2022-05-03 Encore Wire Corporation System and apparatus for applying labels to cable or conduit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2206725A (en) * 1987-07-10 1989-01-11 Enryb Enterprises Limited Microwave transmission coaxial cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2663754A (en) * 1950-07-18 1953-12-22 Joseph F Bianco Slotted dielectric coaxial line and process for making same
US2690496A (en) * 1952-09-26 1954-09-28 William G Soprano Toaster
US2808450A (en) * 1950-11-22 1957-10-01 Melville F Peters Electric cables and the method of making the same
US2890263A (en) * 1952-11-18 1959-06-09 Hackethal Draht & Kabelwerk Ag Coaxial cables
US3130256A (en) * 1960-07-04 1964-04-21 Mildner Raymond Charles Cables for transmitting high-frequency currents

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2663754A (en) * 1950-07-18 1953-12-22 Joseph F Bianco Slotted dielectric coaxial line and process for making same
US2808450A (en) * 1950-11-22 1957-10-01 Melville F Peters Electric cables and the method of making the same
US2690496A (en) * 1952-09-26 1954-09-28 William G Soprano Toaster
US2890263A (en) * 1952-11-18 1959-06-09 Hackethal Draht & Kabelwerk Ag Coaxial cables
US3130256A (en) * 1960-07-04 1964-04-21 Mildner Raymond Charles Cables for transmitting high-frequency currents

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452434A (en) * 1966-03-31 1969-07-01 Kabel Metallwerke Ghh Method of making heat resistant electric cable
US3429982A (en) * 1967-03-02 1969-02-25 United Carr Inc Sintered coaxial cable
US3557301A (en) * 1967-05-23 1971-01-19 Pirelli Sheathing of electrical cables
US3581250A (en) * 1968-04-12 1971-05-25 Technitrol Inc Delay line having non planar ground plane, each loop bracketing two runs of meandering signal line
US3639674A (en) * 1970-06-25 1972-02-01 Belden Corp Shielded cable
US3691488A (en) * 1970-09-14 1972-09-12 Andrew Corp Radiating coaxial cable and method of manufacture thereof
US4368350A (en) * 1980-02-29 1983-01-11 Andrew Corporation Corrugated coaxial cable
US4533784A (en) * 1983-07-29 1985-08-06 Minnesota Mining And Manufacturing Co. Sheet material for and a cable having an extensible electrical shield
US4866212A (en) * 1988-03-24 1989-09-12 W. L. Gore & Associates, Inc. Low dielectric constant reinforced coaxial electric cable
US5239134A (en) * 1991-07-09 1993-08-24 Flexco Microwave, Inc. Method of making a flexible coaxial cable and resultant cable
US6825418B1 (en) 2000-05-16 2004-11-30 Wpfy, Inc. Indicia-coded electrical cable
US20050016754A1 (en) * 2000-05-16 2005-01-27 Wpfy, Inc., A Delaware Corporation Indicia-marked electrical cable
US7465878B2 (en) 2000-05-16 2008-12-16 Wpfy, Inc. Indicia-marked electrical cable
US8278554B2 (en) 2000-05-16 2012-10-02 Wpfy, Inc. Indicia-coded electrical cable
US20030201116A1 (en) * 2002-04-24 2003-10-30 Andrew Corporation Low-cost, high performance, moisture-blocking, coaxial cable and manufacturing method
US6693241B2 (en) * 2002-04-24 2004-02-17 Andrew Corporation Low-cost, high performance, moisture-blocking, coaxial cable and manufacturing method
US6912777B2 (en) 2002-04-24 2005-07-05 Andrew Corporation Method of manufacturing a high-performance, water blocking coaxial cable
US10046879B1 (en) 2007-06-04 2018-08-14 Encore Wire Corporation Method and apparatus for applying labels to cable
US10272616B1 (en) 2007-06-04 2019-04-30 Encore Wire Corporation Method and apparatus for applying labels to cable
US11827409B1 (en) 2007-06-04 2023-11-28 Encore Wire Corporation Method and apparatus for applying labels to cable
US11667085B1 (en) 2007-06-04 2023-06-06 Encore Wire Corporation Method and apparatus for applying labels to cable
US11498715B1 (en) 2007-06-04 2022-11-15 Encore Wire Corporation Method and apparatus for applying labels to cable
US9409668B1 (en) 2007-06-04 2016-08-09 Encore Wire Corporation Method and apparatus for applying labels to cable
US11247404B1 (en) 2007-06-04 2022-02-15 Encore Wire Corporation Method and apparatus for applying labels to cable
US9452856B1 (en) 2007-06-04 2016-09-27 Encore Wire Corporation Method and apparatus for applying labels to cable
US10759558B1 (en) 2007-06-04 2020-09-01 Encore Wire Corporation Method and apparatus for applying labels to cable
US9446877B1 (en) 2009-01-30 2016-09-20 Encore Wire Corporation System and apparatus for applying labels to cable or conduit
US7954530B1 (en) 2009-01-30 2011-06-07 Encore Wire Corporation Method and apparatus for applying labels to cable or conduit
US10035618B1 (en) 2009-01-30 2018-07-31 Encore Wire Corporation System and apparatus for applying labels to cable or conduit
US10654607B1 (en) 2009-01-30 2020-05-19 Encore Wire Corporation System and apparatus for applying labels to cable or conduit
US9950826B1 (en) 2009-01-30 2018-04-24 Encore Wire Corporation Method for applying labels to cable or conduit
US10906685B1 (en) 2009-01-30 2021-02-02 Encore Wire Corporation Method for applying labels to cable or conduit
US11319104B1 (en) 2009-01-30 2022-05-03 Encore Wire Corporation System and apparatus for applying labels to cable or conduit
US9321548B1 (en) 2009-01-30 2016-04-26 Encore Wire Corporation Method for applying labels to cable or conduit
US11673702B1 (en) 2009-01-30 2023-06-13 Encore Wire Corporation Method for applying labels to cable or conduit
US8454785B1 (en) 2009-01-30 2013-06-04 Encore Wire Corporation Method for applying labels to cable or conduit
US11851233B1 (en) 2009-01-30 2023-12-26 Encore Wire Corporation System and apparatus for applying labels to cable or conduit
US8826960B1 (en) 2009-06-15 2014-09-09 Encore Wire Corporation System and apparatus for applying labels to cable or conduit
US8362359B1 (en) 2009-07-27 2013-01-29 Superior Essex Communications Lp Surface modified drop cable, method of making same, and drop cable assembly

Also Published As

Publication number Publication date
FR1440742A (en) 1966-06-03
CH440407A (en) 1967-07-31
GB1077425A (en) 1967-07-26
BE662254A (en) 1965-08-02
NL6506340A (en) 1965-11-22

Similar Documents

Publication Publication Date Title
US3287490A (en) Grooved coaxial cable
US4423282A (en) Flat cable
JP4493595B2 (en) Foamed coaxial cable and manufacturing method thereof
JPH01251805A (en) Microstrip antenna
JP3678179B2 (en) Double horizontal winding 2-core parallel micro coaxial cable
US6218624B1 (en) Coaxial cable
JP3900864B2 (en) 2-core parallel micro coaxial cable
US20180108455A1 (en) Parallel pair cable
CN105474329A (en) Transmission line
US3634597A (en) Conductor system for superconducting cables
US2585484A (en) Method of making high-frequency transmission line
JP2929161B2 (en) Semi-rigid coaxial cable with easy termination and method of manufacturing the same
JP3010336B2 (en) Coaxial cable and method of manufacturing the same
US2695329A (en) Electrical conductor
JP7340384B2 (en) Small diameter coaxial cable with excellent flexibility
JP2008004275A (en) Two-core parallel coaxial cable
JP4137255B2 (en) coaxial cable
JP2003031046A (en) Two-core parallel extra-file coaxial cable with longitudinally added deposited tape
JP5910519B2 (en) Shielded cable
JP4405337B2 (en) Ultra-fine coaxial cable and manufacturing method thereof
WO2022130801A1 (en) Multicore parallel cable and method for manufacturing same
JP2021190403A (en) coaxial cable
JP2003031045A (en) Double-core parallel extra-fine coaxial cable with longitudinally attached deposited tape
US3768049A (en) Helical waveguide
JP2021125327A (en) Coaxial cable having good terminal workability