US3314884A - Fuels and lubricants containing inclusion compounds - Google Patents

Fuels and lubricants containing inclusion compounds Download PDF

Info

Publication number
US3314884A
US3314884A US335422A US33542264A US3314884A US 3314884 A US3314884 A US 3314884A US 335422 A US335422 A US 335422A US 33542264 A US33542264 A US 33542264A US 3314884 A US3314884 A US 3314884A
Authority
US
United States
Prior art keywords
additive
compound
inclusion
compounds
host
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US335422A
Inventor
Richard E Cover
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Priority to US335422A priority Critical patent/US3314884A/en
Application granted granted Critical
Publication of US3314884A publication Critical patent/US3314884A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/061Carbides; Hydrides; Nitrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/081Inorganic acids or salts thereof containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/082Inorganic acids or salts thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/105Silica
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/16Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/18Ammonia
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/08Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/122Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/24Epoxidised acids; Ester derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/12Polysaccharides, e.g. cellulose, biopolymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/04Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
    • C10M2211/044Acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/08Halogenated waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/064Thiourea type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • C10N2040/13Aircraft turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/135Steam engines or turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • additives are used to improve the oxidation stability, anti-wear and extreme pressure characteristics, pour point, viscosity index, etc. of lubricants, as well as to improve the combustion properties, rust-resistance, oxidation stability and other properties of petroleum-derived fuels.
  • these additives in their active state are admixed with the particular composition sometime prior to the time of ultimate use. This is often a significant disadvantage since it means that the additive may precipitate out or may be subject to degradation and deterioration prior to the complete use of the fuel or lubricant composition. As a result the effectiveness of the additive is frequently lessened or eliminated during the period when it is most needed. It would therefore be desirable to provide a means whereby the effectiveness of the additives could be regulated and controlled.
  • the above mentioned disadvantages are largely overcome by employing the fuel or lubricant additives in the form of certain types of inclusion compounds wherein the additive is contained within the frame work of another compound.
  • inclusion compounds of the present invention are formed by combining the chemical additive, e.g., antioxidant, E.P. agent, combustion improver etc. which is herein referred to as the guest compound with a selected compound, i.e., the host, which because of its stereochemical properties and/ or polarity, has the ability to spatially enclose the guest compound.
  • the additives of the present invention may be in the form of either of two general types of inclusion compounds which are classified according to the nature of the host or enclosing compound. These inclusion compounds are either (1) polymolecular or lattice inclusion compounds or (2) monomolecular inclusion compounds.
  • the polynuclear or lattice inclusion type are inclusion compounds composed of polymolecular host structures where the lattice is built up from smaller single molecules.
  • the host structure of such compounds may contain either channel-like spaces or cages (clathrates).
  • Some examples of inclusion compounds of this type are those wherein the host compound is urea, thiourea, chloeic acids, i.e., desoxycholic and apochlolic acid, hydroquinone, phenol, triortho-thymotides etc.
  • the monomolecular inclusion compounds are so termed because it is thought that only one molecule is host to the guest molecule.
  • the host compound will therefore be large and will generally possess spaces in its center as in the case of larger ring molecules.
  • the cyclodex- 3,314,834. Patented Apr. 18, 1967 trins of either the 0:, B or 'y type are typical monomolecular host compounds.
  • the inclusion compounds of the invention are, as far as is known, addition compounds wherein the guest compound, i.e., chemical additive, is geometrically entrapped within the cavities of the host.
  • the selection of particular guest compounds is limited by geometrical rather than chemical considerations.
  • any additive compound possessing a molecular geometry, i.e., a size and shape, which both allows entrance into the available space of the host compound and prevents ready escape through the openings in the framework of the host may be formed into an inclusion compound and employed according to the present invention.
  • Suitable additives which may be used as guest compounds include fatty acids, such as those containing 1 to about 18 carbons; carboxylic acid esters including aliphatic, aromatic or mixed esters; ketones such as acetone, methyl ethyl ketone etc.; ethers; long chain or fatty alcohols; phenols; halogenated organic compounds including halogenated paraffins, halogenated carboxylic acids; organic sulfur compounds; primary, secondary and tertiary amines etc.
  • fatty acids such as those containing 1 to about 18 carbons
  • carboxylic acid esters including aliphatic, aromatic or mixed esters
  • ketones such as acetone, methyl ethyl ketone etc.
  • ethers long chain or fatty alcohols
  • phenols halogenated organic compounds including halogenated paraffins, halogenated carboxylic acids
  • organic sulfur compounds primary, secondary and tertiary amines etc.
  • gaseous materials such as hydrogen chloride, ammonia, chlorine, bromine and sulfur dioxide, which because of their physical state have not been especially useful as additives, maybe used as additives in the form of inclusion compounds.
  • Phenol, hydroquinone and the cyclodextrins are particularly suitable as host compounds with these gases.
  • the procedure for preparing the inclusion compounds will vary depending on a number of factors especially the nature of the host and guest compounds.
  • a convenient method is use of a mutual solvent to bring the two components together, or in the case of gaseous additives the guest compound may be bubbled through a suitable solution, dispersion etc. of the host compound.
  • the inclusion of the invention may be prepared. in situ, i.e., while present in the fuel or lubricant compositions.
  • the preparation of inclusion compounds used according to the present invention is well known in the art. Particular details regarding these compounds and their preparation are described in Clathrate Inclusion Compound, M. Hagan, Reinhold Publishing Company, 1962, and in "Eintician für, F. Cramer, Springer Verlag, Berlin, 1954.
  • the guest and host compounds are normally not chemically bonded together, they can be readily freed from the inclusion structure and made available for chemical reaction. In general, any mechanism which destroys the framework of inclusion compound or supplies sufficient energy will set free the included additive. Thus, in order to free the guest from the structure it is only necessary to melt, dissolve or otherwise disintegrate the structure of the host compound. It should be noted, however, that since the guest molecule is completely enclosed by the host compound, the guest or chemical additive, is substantially prevented from reacting with the particular environment around the inclusion compound until the additive is released from the surrounding host compound.
  • the test sample is placed in a test cup which is positioned so that the V blocks and shaft are partially (3)
  • the use of inclusion compounds makes possible the 5 submerged.
  • the pressure between the rubbing surfaces is use of additives which heretofore, because of their suscepincreased until seizure occurs.
  • the OK load is the tibility to oxidative or bacteriological attack during highest reading obtained before seizure. The higher the storage, could not be employed. For example, gases and OK load the more desirable is the ER characteristics of oxidation-sensitive materials may be formed into incluthe composition. sion compounds and added to fuel or lubricating composi- 1O Four-ball test tions.
  • the samples to be per se has a useful additive eifect it is possible to achieve tested are placed between three fixed and one rotating a sequential additive action when the inclusion comsteel balls of a standard four-ball machine.
  • the steel pound is decomposed since at this point another addiballs are rigidly clamped in contact with each other and tive i.e., the guest compound or compounds, then acts on pressed by means of a loading lever against the rotating the composition.
  • fourth ball The rotational speed of the top ball is con- The use of the additives in the form of inclusion comstant at approximately 1735 rpm. The BF.
  • characterispounds is particularly advantageous in lubricating comtics of the sample is indicated by the scale reading at positions.
  • the lubricating oils are generally relativel low, i.e., below 200 F., the oil temperatures become ap preciably higher Tappmg test at surfaces needing lubrication such as at bearing or wear In the measurement of pp g efficlehey of an 011, a surfaces. It is precisely at these wear surfaces that the series of hol s are y accurately drilled ill a test metal, need for the chemical additive is usually the greatest.
  • the inclusion compounds may be admixed with the in PfP With Standard reference which has fuels and lubricant compositions using any suitable hitraflly been asslghed an e ey Of 100 Percent The procedure to form either a solution, dispersion or susaverage torque the t 011 eohflpafed to that Of pension. Various procedures for achieving this admixture the Standard h a relatlve'efiicleney 1S ealculated on a will be apparent totho'se in the art percentage basis.
  • the tapping efficiency is calculated as The amount of inclusion compound used in the comfollows: positions will vary depending on factors such as the type of additive, its proportions in the inclusion compound 40 Torque Wlth stanfiard refefence 100% etc. As a practical matter, the fuels or lubricating corn- Torque Wlth test 011 positions generally contain .less than 9 by Weight of The higher the tapping efficiency, the higher is the film the inclusion compound, while amounts in the range from b t00001'7 t b r207 b iht 't b1 Strengthoflubncam' a on on o y g are Sm a The results of the tests are shown in the following The invention Wlll be further illustrated by reference table to the following Specific embodlments' The hydrogen chloride-hydroquinone inclusion com- A cuttmzgpll and a grease were i t the pound employed was crystallized from a saturated soluacidltlves ac.cordmg to the present lnvent
  • Falex test The sulfur dioxide hydroquinone inclusion compound was formed by passing a steady stream of sulfur dioxide
  • the lubricants to be tested are inthrough a saturated aqueous solution of hydroquinone at troduced into a Falex lubricant tester which is a device room temperature and recovering the slowly crystallizing wherein a shaft is rotated between two V-shaped bearing product.
  • the included additives were admixed with the blocks, with provision for varying the rubbing speed, oil compositions, thoroughly stirred and then tested.
  • the present invention encompasses the use in the form of inclusion compounds of any chemical additive normally used in conjunction with fuels or lubricants to improve the characteristics thereof including but not limited to combustion improvers, ignition control agents, deposit modifiers, oxidation inhibitors, metal deactivators, antiicing agents, anti-corrosion agents, sludge depressants, de tergents, pour depressants, VI improvers, defoaming agents, color stabilizers, odor maskants etc.
  • any chemical additive normally used in conjunction with fuels or lubricants to improve the characteristics thereof including but not limited to combustion improvers, ignition control agents, deposit modifiers, oxidation inhibitors, metal deactivators, antiicing agents, anti-corrosion agents, sludge depressants, de tergents, pour depressants, VI improvers, defoaming agents, color stabilizers, odor maskants etc.
  • any host compound selected from the two general types hereinabove described may be employed.
  • the compounds of the present invention wherein the additive is in the form of an inclusion compound may be employed with various types of lubricants and hydrocarbon fuels.
  • lubricants comprising both petroleum and synthetic oils, e.g., synthetic hydrocarbon and synthetic ester, such as greases and oils used with internal combustion engines, turbine engines, machinery, including hydraulic fluids, gear oils etc.
  • the hydrocarbon fuels include gasoline, diesel fuel, kerosine, industrial and home fuel oils, jet fuels etc.
  • lubricant and fuel compositions of this invention may, of course, also contain effective quantities of other ingredients normally used in such compositions and designed to improve the characteristics of these compositions in other respects.
  • suitable dispersing agents of either the ionic or non-ionic type or other additives which are not employed in the form of inclusion compounds.
  • composition of claim 1 wherein said host compound is a polymolecular compound having a lattice structure.
  • composition of claim 1 wherein said host compound is a monomolecular compound having a space within the center of the molecule capable of enclosing a smaller molecule of said additive.
  • composition of claim 1 wherein said host compound is hydroquinone.
  • composition of claim 1 wherein said host compound is a flavan.
  • composition of claim 1 wherein said host compound is a tri-ortho-thymotide.
  • composition of claim 1 wherein said host compound is a cyclodextrin.
  • composition of claim 1 wherein said host compound is urea.
  • composition of claim 1 wherein said host compound is thiourea.
  • composition of claim 1 wherein said host compound is phenol.
  • composition of claim 13 wherein said host compound is choleic acid.
  • composition of claim 1 wherein said chemical additive is a gas.
  • An organic composition selected from the group consisting of lubricants and normally liquid hydrocarbon fuels containing from about 0.0001% to about 20% by weight of said composition of an additive in the form of a sulfur dioxide-hydroquinone inclusion compound.
  • a method of lubricating moving metal surfaces comprising the steps of (1) applying to the said surfaces a lubricant composition containing an amount of a chemical additive sufficient to enhance the lubricating properties of said composition, said additive being in the form of an inclusion compound wherein the additive is enclosed within the cavities of a host compound selected from the group consisting of lattice-molecular compounds and spatial-monomolecular compounds; and (2) subjecting said lubricant composition, while in use, to conditions whereby the said host compound is deteriorated, thereby releasing said enclosed additive into the said composition.
  • a method of stabilizing a fuel which comprises adding to a normally liquid hydrocarbon fuel composition, capable of being compounded with chemical additives, an additive in an amount sufficient to improve the storage and combustion characteristics of said fuel, said additive being in the form of an inclusion compound wherein the additive is enclosed within the cavities of a host compound selected from the group consisting of lattice-molecular compounds and spatial-monomolecular compounds; and (2) subjecting said fuel composition to conditions whereby said host compound is deteriorated thereby releasing said enclosed additive into the said composition.

Description

United States Patent 3,314,884 FUELS AND LUBRICANTS CONTAINING INCLUSION COMPOUNDS Richard E. Cover, Woodhaven, N.Y., assignor to Mobil Oil Corporation, a corporation of New York No Drawing. Filed Jan. 2, 1964, Ser. No. 335,422 20 Claims. (Cl. 252) The present invention relates to organic compositions such as lubricants and fuels and to an improved type of additive for these compositions.
As is known in the art, a variety of chemical compounds are normally added to fuels and to lubricating compositions in order to improve their characteristics in various respects. Thus, for example, additives are used to improve the oxidation stability, anti-wear and extreme pressure characteristics, pour point, viscosity index, etc. of lubricants, as well as to improve the combustion properties, rust-resistance, oxidation stability and other properties of petroleum-derived fuels. Normally, these additives in their active state are admixed with the particular composition sometime prior to the time of ultimate use. This is often a significant disadvantage since it means that the additive may precipitate out or may be subject to degradation and deterioration prior to the complete use of the fuel or lubricant composition. As a result the effectiveness of the additive is frequently lessened or eliminated during the period when it is most needed. It would therefore be desirable to provide a means whereby the effectiveness of the additives could be regulated and controlled.
In accordance with the present invention, the above mentioned disadvantages are largely overcome by employing the fuel or lubricant additives in the form of certain types of inclusion compounds wherein the additive is contained within the frame work of another compound.
It is therefore an object of the present invention to provide improved fuel and lubricating compositions possessing a superior type of chemical additive. A further object is to provide improved additives for fuel and lubricant compositions. Another object is to furnish a means for controlling additive release in such compositions. Further objects of the invention and the advantages thereof will become apparent hereinafter.
In general, inclusion compounds of the present invention are formed by combining the chemical additive, e.g., antioxidant, E.P. agent, combustion improver etc. which is herein referred to as the guest compound with a selected compound, i.e., the host, which because of its stereochemical properties and/ or polarity, has the ability to spatially enclose the guest compound. More particularly, the additives of the present invention may be in the form of either of two general types of inclusion compounds which are classified according to the nature of the host or enclosing compound. These inclusion compounds are either (1) polymolecular or lattice inclusion compounds or (2) monomolecular inclusion compounds.
The polynuclear or lattice inclusion type are inclusion compounds composed of polymolecular host structures where the lattice is built up from smaller single molecules. The host structure of such compounds may contain either channel-like spaces or cages (clathrates). Some examples of inclusion compounds of this type are those wherein the host compound is urea, thiourea, chloeic acids, i.e., desoxycholic and apochlolic acid, hydroquinone, phenol, triortho-thymotides etc.
The monomolecular inclusion compounds are so termed because it is thought that only one molecule is host to the guest molecule. The host compound will therefore be large and will generally possess spaces in its center as in the case of larger ring molecules. The cyclodex- 3,314,834. Patented Apr. 18, 1967 trins of either the 0:, B or 'y type are typical monomolecular host compounds.
The inclusion compounds of the invention are, as far as is known, addition compounds wherein the guest compound, i.e., chemical additive, is geometrically entrapped within the cavities of the host. Thus, the selection of particular guest compounds is limited by geometrical rather than chemical considerations. In general, any additive compound possessing a molecular geometry, i.e., a size and shape, which both allows entrance into the available space of the host compound and prevents ready escape through the openings in the framework of the host, may be formed into an inclusion compound and employed according to the present invention. Some examples of suitable additives which may be used as guest compounds include fatty acids, such as those containing 1 to about 18 carbons; carboxylic acid esters including aliphatic, aromatic or mixed esters; ketones such as acetone, methyl ethyl ketone etc.; ethers; long chain or fatty alcohols; phenols; halogenated organic compounds including halogenated paraffins, halogenated carboxylic acids; organic sulfur compounds; primary, secondary and tertiary amines etc.
According to a particular aspect of the invention, it has been found that gaseous materials such as hydrogen chloride, ammonia, chlorine, bromine and sulfur dioxide, which because of their physical state have not been especially useful as additives, maybe used as additives in the form of inclusion compounds. Phenol, hydroquinone and the cyclodextrins are particularly suitable as host compounds with these gases.
The procedure for preparing the inclusion compounds will vary depending on a number of factors especially the nature of the host and guest compounds. A convenient method is use of a mutual solvent to bring the two components together, or in the case of gaseous additives the guest compound may be bubbled through a suitable solution, dispersion etc. of the host compound. Depending on the nature of the other ingredients present, the inclusion of the invention may be prepared. in situ, i.e., while present in the fuel or lubricant compositions. The preparation of inclusion compounds used according to the present invention is well known in the art. Particular details regarding these compounds and their preparation are described in Clathrate Inclusion Compound, M. Hagan, Reinhold Publishing Company, 1962, and in "Einschlussverbindungen, F. Cramer, Springer Verlag, Berlin, 1954.
Since the guest and host compounds are normally not chemically bonded together, they can be readily freed from the inclusion structure and made available for chemical reaction. In general, any mechanism which destroys the framework of inclusion compound or supplies sufficient energy will set free the included additive. Thus, in order to free the guest from the structure it is only necessary to melt, dissolve or otherwise disintegrate the structure of the host compound. It should be noted, however, that since the guest molecule is completely enclosed by the host compound, the guest or chemical additive, is substantially prevented from reacting with the particular environment around the inclusion compound until the additive is released from the surrounding host compound.
The use of the included additives of the present invention offers several distinct advantages over the practice of employing the additives in their active state. For example:
(l) The degradation of the additive during storage and prior to use is minimized.
(2) It is possible to incorporate additional amounts or reserve amounts of additives above the present levels without affecting the properties of the fuel or lubricating compositions since the reserve amounts of additives are present in the inclusion compound and not capable of substantial chemical reaction with other components.
4 automatically applying pressure between the rubbing surfaces at a predetermined rate and measuring the torque developed. The test sample is placed in a test cup which is positioned so that the V blocks and shaft are partially (3) The use of inclusion compounds makes possible the 5 submerged. The pressure between the rubbing surfaces is use of additives which heretofore, because of their suscepincreased until seizure occurs. The OK load is the tibility to oxidative or bacteriological attack during highest reading obtained before seizure. The higher the storage, could not be employed. For example, gases and OK load the more desirable is the ER characteristics of oxidation-sensitive materials may be formed into incluthe composition. sion compounds and added to fuel or lubricating composi- 1O Four-ball test tions.
(4) In the case where the particular host compound According to the four-ball test, the samples to be per se has a useful additive eifect it is possible to achieve tested are placed between three fixed and one rotating a sequential additive action when the inclusion comsteel balls of a standard four-ball machine. The steel pound is decomposed since at this point another addiballs are rigidly clamped in contact with each other and tive i.e., the guest compound or compounds, then acts on pressed by means of a loading lever against the rotating the composition. fourth ball. The rotational speed of the top ball is con- The use of the additives in the form of inclusion comstant at approximately 1735 rpm. The BF. characterispounds is particularly advantageous in lubricating comtics of the sample is indicated by the scale reading at positions. For example, while the bulk temperatures of which welding first takes place. the lubricating oils are generally relativel low, i.e., below 200 F., the oil temperatures become ap preciably higher Tappmg test at surfaces needing lubrication such as at bearing or wear In the measurement of pp g efficlehey of an 011, a surfaces. It is precisely at these wear surfaces that the series of hol s are y accurately drilled ill a test metal, need for the chemical additive is usually the greatest. By namely SAE 1020 hot rolled Steel These holes f employing included additives in accordance with the pres- Sequently pp With a Series Of taps, 111 a drlll Press ent invention it is possible to achieve the controlled req pp With a table, Whleh is e to rotate about e lease of the additive at the point of maximum need for center, being mounted 011 hall hearlllgsz A fl arm 13 these additives since the temperatures existing at the attached to this floating table and thls arm t Wear surfaces during use will generally be sufficient to detuates a Spring Scale 50 that the aetufll torque durlhg P- compose the inclusion compound and release the addi- P With the Oil being evaluated 18 measured directlytive. The same taps used in evaluating the test oil are employed The inclusion compounds may be admixed with the in PfP With Standard reference which has fuels and lubricant compositions using any suitable hitraflly been asslghed an e ey Of 100 Percent The procedure to form either a solution, dispersion or susaverage torque the t 011 eohflpafed to that Of pension. Various procedures for achieving this admixture the Standard h a relatlve'efiicleney 1S ealculated on a will be apparent totho'se in the art percentage basis. The tapping efficiency is calculated as The amount of inclusion compound used in the comfollows: positions will vary depending on factors such as the type of additive, its proportions in the inclusion compound 40 Torque Wlth stanfiard refefence 100% etc. As a practical matter, the fuels or lubricating corn- Torque Wlth test 011 positions generally contain .less than 9 by Weight of The higher the tapping efficiency, the higher is the film the inclusion compound, while amounts in the range from b t00001'7 t b r207 b iht 't b1 Strengthoflubncam' a on on o y g are Sm a The results of the tests are shown in the following The invention Wlll be further illustrated by reference table to the following Specific embodlments' The hydrogen chloride-hydroquinone inclusion com- A cuttmzgpll and a grease were i t the pound employed was crystallized from a saturated soluacidltlves ac.cordmg to the present lnventl9n' h tion of hydroquinone in ethyl ether which had been satucuttlng 011 was sub ected to the Falexand Tapping tests, rated with hydrogen Chloride at C While the hydro Whlle the grease was evahflated. by the four'ban test gen sulfide-hydroquinone inclusion compound was crystal- These tefts are rec9g.mzed m.the art as standard tests lized from a saturated aqueous solution of hydroquinone for evaluating Compositions of this type which had been saturated with hydrogen sulfide at 30 C.
Falex test The sulfur dioxide hydroquinone inclusion compound was formed by passing a steady stream of sulfur dioxide In the Falex test the lubricants to be tested are inthrough a saturated aqueous solution of hydroquinone at troduced into a Falex lubricant tester which is a device room temperature and recovering the slowly crystallizing wherein a shaft is rotated between two V-shaped bearing product. The included additives were admixed with the blocks, with provision for varying the rubbing speed, oil compositions, thoroughly stirred and then tested.
TABLE.TEST RESULTS Lubricating Falex Test Tapping Four Ball Composition Additive 1 OK Load Eflicicncy Weld (kg) (lbs.) (Percent) Cutting oil 2 1,000 Cutting oil plus Hydroquinone 1,250 Do HCl-hydroquinonenn 2,000 Ins-hydroquinone. 1, 250 SO -hydroquinonm 2, 250
Hydroquinone. HCl-hydroquinon Tbs-hydroquinone.
SOz-llYdIOQUlIlOHQ.
1 Concentration of additive was 8.1% by wt. for the cutting oil, 7% by wt. for the grease by wt. added sulfur).
gravity of 21, and min. flash point of 370 F., containing 6% by wt. Cal-O-Sil (colloidal silica).
It will be seen from the above that the Falex test data indicates that the inclusion compounds produced a significant improvement in the BF. properties of the oil, while the tapping efficiency tests show that the addition of the inclusion compounds results in a significant improvement in film strength properties. Similarly, the four-ball test results indicate that improved E.P. properties are imparted to the grease by the use of these hydroquinone inclusion compounds.
Although the above embodiments are limited to certain inclusion compounds, it should be noted that these specific embodiments are merely exemplary and the present invention is not limited thereto.
The present invention encompasses the use in the form of inclusion compounds of any chemical additive normally used in conjunction with fuels or lubricants to improve the characteristics thereof including but not limited to combustion improvers, ignition control agents, deposit modifiers, oxidation inhibitors, metal deactivators, antiicing agents, anti-corrosion agents, sludge depressants, de tergents, pour depressants, VI improvers, defoaming agents, color stabilizers, odor maskants etc.
Depending on the size and shape of these guest additives any host compound selected from the two general types hereinabove described may be employed.
The compounds of the present invention wherein the additive is in the form of an inclusion compound may be employed with various types of lubricants and hydrocarbon fuels. Thus, lubricants comprising both petroleum and synthetic oils, e.g., synthetic hydrocarbon and synthetic ester, such as greases and oils used with internal combustion engines, turbine engines, machinery, including hydraulic fluids, gear oils etc. may be improved by the use of the inclusion compounds of the present invention. The hydrocarbon fuels include gasoline, diesel fuel, kerosine, industrial and home fuel oils, jet fuels etc.
The lubricant and fuel compositions of this invention may, of course, also contain effective quantities of other ingredients normally used in such compositions and designed to improve the characteristics of these compositions in other respects. For example it may be desirable to employ suitable dispersing agents of either the ionic or non-ionic type or other additives which are not employed in the form of inclusion compounds.
Many variations and modifications may, of course, be made without departing from the scope and spirit of the present invention.
Having described the invention, what it is desired to secure and claim by Letters Patent is:
1. An organic composition selected from the group consisting of lubricants and normally liquid hydrocarbon fuels containing an amount effective to enhance the useful characteristics of said composition of a chemical additive in the form of an inclusion compound wherein said additive is enclosed within the cavities of a host compound having a structure selected from the group consisting of a lattice structure and a mono-molecular structure, the molecule of the said additive being smaller than that of the said host.
2. A lubricating composition according to claim 1.
3. A normally liquid hydrocarbon fuel composition according to claim 1.
4. The composition of claim 1 wherein said host compound is a polymolecular compound having a lattice structure.
5. The composition of claim 1 wherein said host compound is a monomolecular compound having a space within the center of the molecule capable of enclosing a smaller molecule of said additive.
6. The composition of claim 1 wherein said host compound is hydroquinone.
7. The composition of claim 1 wherein said host compound is a flavan.
8. The composition of claim 1 wherein said host compound is a tri-ortho-thymotide.
9. The composition of claim 1 wherein said host compound is a cyclodextrin.
10. The composition of claim 1 wherein said host compound is urea.
11. The composition of claim 1 wherein said host compound is thiourea.
12. The composition of claim 1 wherein said host compound is phenol.
13. The composition of claim 1 wherein said host compound is choleic acid.
14. The composition of claim 1 wherein said chemical additive is a gas.
15. An organic composition selected from the group consisting of lubricants and normally liquid hydrocarbon fuels containing from about 0.0001% to about 20% by weight of said composition of an additive in the form of a hydrogen chloride-hydroquinone inclusion compound.
16. An organic composition selected from the group consisting of lubricants and normally liquid hydrocarbon fuels containing from about 0.0001% to about 20% by weight of said composition of an additive in the form of a hydrogen sulfide-hydroquinone inclusion compound.
'17. An organic composition selected from the group consisting of lubricants and normally liquid hydrocarbon fuels containing from about 0.0001% to about 20% by weight of said composition of an additive in the form of a sulfur dioxide-hydroquinone inclusion compound.
18. An organic composition selected from the group consisting of lubricants and normally liquid hydrocarbon fuels containing an effective amount suflicient to enhance the useful characteristics of said composition of an inclusion compound comprising a guest compound enclosed within the cavities of a host compound and wherein both said guest compound and said host compound are chemical additives, said host compound having a structure selected from the group consisting of a lattice structure and a monomolecular structure, the molecule of the said additive being smaller than that of the said host.
19. A method of lubricating moving metal surfaces comprising the steps of (1) applying to the said surfaces a lubricant composition containing an amount of a chemical additive sufficient to enhance the lubricating properties of said composition, said additive being in the form of an inclusion compound wherein the additive is enclosed within the cavities of a host compound selected from the group consisting of lattice-molecular compounds and spatial-monomolecular compounds; and (2) subjecting said lubricant composition, while in use, to conditions whereby the said host compound is deteriorated, thereby releasing said enclosed additive into the said composition.
20. A method of stabilizing a fuel which comprises adding to a normally liquid hydrocarbon fuel composition, capable of being compounded with chemical additives, an additive in an amount sufficient to improve the storage and combustion characteristics of said fuel, said additive being in the form of an inclusion compound wherein the additive is enclosed within the cavities of a host compound selected from the group consisting of lattice-molecular compounds and spatial-monomolecular compounds; and (2) subjecting said fuel composition to conditions whereby said host compound is deteriorated thereby releasing said enclosed additive into the said composition.
References Cited by the Examiner UNITED STATES PATENTS 1,319,129 10/1919 Wells et a1. 252--56 1,748,507 2/1930 Brooks 4452 1,761,810 6/1930 Bjerregaard 44-78 2,008,680 7/1935 Carlisle et al. 25254 X 2,023,110 12/1935 Wilson 44--78 X 2,209,464 7/1940 Loane et al 252--47 (Other references on following page) 7 UNITED STATES PATENTS 10/1945 Lowry 44--78 X 2/1949 Fischer 4478 X 9/1960 Coit et a1. 5/1961 Binning 4 1-70 5 11/1961 Eckert et a1 4470 X 10/1962 Schlicht et a1 252-33 X 8 OTHER REFERENCES Hagan: Clathrate Inclusion Compounds, Reinhold Publishing Corp. (1962).
DANIEL E. WYMAN, Primary Examiner.
P. P. GARVIN, Assistant Examiner.

Claims (1)

1. AN ORGANIC COMPOSITION SELECTED FROM THE GROUP CONSISTING OF LUBRICANTS AND NORMALLY LIQUID HYDROCARBON FUELS CONTAINIGN AN AMOUNT EFFECTIVE TO ENHANCE THE USEFUL CHARACTERISTICS OF SAID COMPOSTION OF A CHEMICAL ADDITIVE IN THE FORM OF AN INCLUSION COMPOUND WHEREIN SAID ADDITIVE IS ENCLOSED WITHIN THE CAVITIES OF A HOST COMPOUND HAVING A STRUCTURE SELECTED FROM THE GROUP CONSISTING OF A LATTICE STRUCTURE AND A MONO-MOLECULAR STRUCTURE, THE MOLECULE OF THE SAID ADDITIVE BEING SMALLER THAN THAT OF THE SAID HOST.
US335422A 1964-01-02 1964-01-02 Fuels and lubricants containing inclusion compounds Expired - Lifetime US3314884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US335422A US3314884A (en) 1964-01-02 1964-01-02 Fuels and lubricants containing inclusion compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US335422A US3314884A (en) 1964-01-02 1964-01-02 Fuels and lubricants containing inclusion compounds

Publications (1)

Publication Number Publication Date
US3314884A true US3314884A (en) 1967-04-18

Family

ID=23311709

Family Applications (1)

Application Number Title Priority Date Filing Date
US335422A Expired - Lifetime US3314884A (en) 1964-01-02 1964-01-02 Fuels and lubricants containing inclusion compounds

Country Status (1)

Country Link
US (1) US3314884A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0014228A1 (en) * 1979-02-08 1980-08-20 Kyoshin Co., Ltd. Solid fuel and a process for producing solid fuel
DE3019141A1 (en) * 1980-01-11 1981-07-16 Tecnocar S.p.A., 10095 Grugliasco, Torino OIL FILTERS FOR COMBUSTION ENGINES
WO1988005072A2 (en) * 1987-01-07 1988-07-14 Exxon Chemical Patents, Inc. Removal of carcinogenic hydrocarbons from used lubricating oil
US4904773A (en) * 1987-03-09 1990-02-27 Allelix Inc. Process for extracting methylxanthines from aqueous solutions containing same
US5067455A (en) * 1989-11-04 1991-11-26 Nippondenso Co., Ltd. Method and apparatus for adding additives to lubricating oil
US5238591A (en) * 1992-07-01 1993-08-24 Flickinger Harold T Anti-sludge composition and process for treating transmission oil
FR2693470A1 (en) * 1992-07-07 1994-01-14 Roquette Freres Compositions for aqueous machining fluids and aqueous machining fluids based on fats and cyclodextrin.
GB2282147A (en) * 1993-09-28 1995-03-29 Mitsubishi Chem Ind Lubricant for magnetic recording media
US5746783A (en) * 1994-03-30 1998-05-05 Martin Marietta Energy Systems, Inc. Low emissions diesel fuel
US6039772A (en) * 1984-10-09 2000-03-21 Orr; William C. Non leaded fuel composition
JP2001039971A (en) * 1999-07-28 2001-02-13 Nippon Soda Co Ltd Molecular compound containing tri-o-thymotides as constituent compound
US6238554B1 (en) 1999-06-16 2001-05-29 Fleetguard, Inc. Fuel filter including slow release additive
US6860241B2 (en) 1999-06-16 2005-03-01 Dober Chemical Corp. Fuel filter including slow release additive
US20090226244A1 (en) * 2008-03-07 2009-09-10 Byrnes Jr Thomas J Tie rod end with friction reducing coating
US20110143974A1 (en) * 2008-09-02 2011-06-16 3M Innovative Properties Company Abrasive material product containing inclusion compound
WO2014102150A1 (en) 2012-12-27 2014-07-03 Shell Internationale Research Maatschappij B.V. Compositions
WO2014102149A1 (en) * 2012-12-27 2014-07-03 Shell Internationale Research Maatschappij B.V. Compositions

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1319129A (en) * 1919-10-21 Henry matthew wells
US1748507A (en) * 1925-10-10 1930-02-25 Gray Process Corp Process of producing stable hydrocarbon oils
US1761810A (en) * 1926-07-30 1930-06-03 Doherty Res Co Process of treating gasoline and the product thereof
US2008680A (en) * 1931-03-03 1935-07-23 Du Pont Stabilization of halogenated hydrocarbons
US2023110A (en) * 1932-05-02 1935-12-03 Gasoline Antioxidant Company Motor fuel distillate
US2209464A (en) * 1936-11-02 1940-07-30 Standard Oil Co Lubricant
US2387920A (en) * 1943-01-18 1945-10-30 Universal Oil Prod Co Manufacture of inhibitors
US2461972A (en) * 1944-01-11 1949-02-15 Standard Oil Dev Co Motor fuels
GB756670A (en) * 1952-07-12 1956-09-05 California Research Corp Means for starting internal combustion engines
US2952335A (en) * 1958-02-18 1960-09-13 Shell Oil Co Method of lubricating metal surfaces with a vaporous lubricant
US2985522A (en) * 1958-08-26 1961-05-23 Standard Oil Co Unleaded motor fuel
US3009792A (en) * 1958-03-07 1961-11-21 Texaco Inc Motor fuel containing synergistic anti-knock additive
US3057896A (en) * 1957-12-06 1962-10-09 Texaco Inc Hyperbasic sulfonates

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1319129A (en) * 1919-10-21 Henry matthew wells
US1748507A (en) * 1925-10-10 1930-02-25 Gray Process Corp Process of producing stable hydrocarbon oils
US1761810A (en) * 1926-07-30 1930-06-03 Doherty Res Co Process of treating gasoline and the product thereof
US2008680A (en) * 1931-03-03 1935-07-23 Du Pont Stabilization of halogenated hydrocarbons
US2023110A (en) * 1932-05-02 1935-12-03 Gasoline Antioxidant Company Motor fuel distillate
US2209464A (en) * 1936-11-02 1940-07-30 Standard Oil Co Lubricant
US2387920A (en) * 1943-01-18 1945-10-30 Universal Oil Prod Co Manufacture of inhibitors
US2461972A (en) * 1944-01-11 1949-02-15 Standard Oil Dev Co Motor fuels
GB756670A (en) * 1952-07-12 1956-09-05 California Research Corp Means for starting internal combustion engines
US3057896A (en) * 1957-12-06 1962-10-09 Texaco Inc Hyperbasic sulfonates
US2952335A (en) * 1958-02-18 1960-09-13 Shell Oil Co Method of lubricating metal surfaces with a vaporous lubricant
US3009792A (en) * 1958-03-07 1961-11-21 Texaco Inc Motor fuel containing synergistic anti-knock additive
US2985522A (en) * 1958-08-26 1961-05-23 Standard Oil Co Unleaded motor fuel

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0014228A1 (en) * 1979-02-08 1980-08-20 Kyoshin Co., Ltd. Solid fuel and a process for producing solid fuel
DE3019141A1 (en) * 1980-01-11 1981-07-16 Tecnocar S.p.A., 10095 Grugliasco, Torino OIL FILTERS FOR COMBUSTION ENGINES
US6039772A (en) * 1984-10-09 2000-03-21 Orr; William C. Non leaded fuel composition
US4977871A (en) * 1987-01-07 1990-12-18 Exxon Chemical Patents, Inc. Removal of carcinogenic hydrocarbons from used lubricating oil using activated carbon
WO1988005072A2 (en) * 1987-01-07 1988-07-14 Exxon Chemical Patents, Inc. Removal of carcinogenic hydrocarbons from used lubricating oil
EP0275148A3 (en) * 1987-01-07 1988-12-07 Exxon Chemical Patents Inc. Removal of carcinogenic hydrocarbons from used lubricating oil
JPH01501872A (en) * 1987-01-07 1989-06-29 エクソン ケミカル パテンツ インコーポレーテッド Removal of carcinogenic hydrocarbons from used lubricating oil
EP0275148A2 (en) * 1987-01-07 1988-07-20 Exxon Chemical Patents Inc. Removal of carcinogenic hydrocarbons from used lubricating oil
WO1988005072A3 (en) * 1987-01-07 1988-10-06 Exxon Chemical Ltd Removal of carcinogenic hydrocarbons from used lubricating oil
US4904773A (en) * 1987-03-09 1990-02-27 Allelix Inc. Process for extracting methylxanthines from aqueous solutions containing same
US5067455A (en) * 1989-11-04 1991-11-26 Nippondenso Co., Ltd. Method and apparatus for adding additives to lubricating oil
US5238591A (en) * 1992-07-01 1993-08-24 Flickinger Harold T Anti-sludge composition and process for treating transmission oil
WO1994001518A1 (en) * 1992-07-07 1994-01-20 Roquette Freres Compositions for aqueous machining fluids and cyclodextrin and fatty substance based aqueous machining fluids
US5496479A (en) * 1992-07-07 1996-03-05 Roquette Freres Compositions for aqueous machining fluids and cyclodextrin and fatty substance based aqueous machining fluids
FR2693470A1 (en) * 1992-07-07 1994-01-14 Roquette Freres Compositions for aqueous machining fluids and aqueous machining fluids based on fats and cyclodextrin.
GB2282147A (en) * 1993-09-28 1995-03-29 Mitsubishi Chem Ind Lubricant for magnetic recording media
GB2282147B (en) * 1993-09-28 1998-02-18 Mitsubishi Chem Ind Magnetic recording medium
US5830577A (en) * 1993-09-28 1998-11-03 Mitsubishi Chemical Corporation Surface having a coating of a host multidentate ligand and a reversibly trapped lubricant
US5746783A (en) * 1994-03-30 1998-05-05 Martin Marietta Energy Systems, Inc. Low emissions diesel fuel
US6238554B1 (en) 1999-06-16 2001-05-29 Fleetguard, Inc. Fuel filter including slow release additive
US6860241B2 (en) 1999-06-16 2005-03-01 Dober Chemical Corp. Fuel filter including slow release additive
JP2001039971A (en) * 1999-07-28 2001-02-13 Nippon Soda Co Ltd Molecular compound containing tri-o-thymotides as constituent compound
JP4544551B2 (en) * 1999-07-28 2010-09-15 日本曹達株式会社 Molecular compounds containing tri-o-thymotides as component compounds
US20090226244A1 (en) * 2008-03-07 2009-09-10 Byrnes Jr Thomas J Tie rod end with friction reducing coating
US8747012B2 (en) 2008-03-07 2014-06-10 Federal-Mogul Corporation Tie rod end with friction reducing coating
US8617272B2 (en) * 2008-09-02 2013-12-31 3M Innovative Properties Company Abrasive material product containing inclusion compound
US20110143974A1 (en) * 2008-09-02 2011-06-16 3M Innovative Properties Company Abrasive material product containing inclusion compound
WO2014102150A1 (en) 2012-12-27 2014-07-03 Shell Internationale Research Maatschappij B.V. Compositions
WO2014102149A1 (en) * 2012-12-27 2014-07-03 Shell Internationale Research Maatschappij B.V. Compositions
CN104870617A (en) * 2012-12-27 2015-08-26 国际壳牌研究有限公司 Compositions
JP2016505683A (en) * 2012-12-27 2016-02-25 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap Composition
US9315754B2 (en) 2012-12-27 2016-04-19 Shell Oil Company Compositions
US9382490B2 (en) 2012-12-27 2016-07-05 Shell Oil Company Compositions

Similar Documents

Publication Publication Date Title
US3314884A (en) Fuels and lubricants containing inclusion compounds
US2497521A (en) Oil compositions containing amine salts of boro-diol complexes
US2160273A (en) Lubricant
JP4460087B2 (en) Borate-containing additive for manual transmission lubricants that provides stable and high synchromesh durability against hydrolysis
US4555352A (en) Lubricant additive
WO2013079559A1 (en) Grease composition
JPS5978295A (en) Protecting lubricating agent composition
US4517103A (en) Lubricating compositions containing 5,5'-dithiobis(1,3,4-thiadiazole-2-thiol)
US3970570A (en) Antiwear additive mixture
US6110877A (en) Non-halogenated extreme pressure, antiwear lubricant additive
US3244627A (en) Functional fluid compositions
US2568472A (en) Oil compositions containing amine salts of acid compounds of boric acid and hydroxy carboxylic acids
US2161615A (en) Lubricant
US3537999A (en) Lubricants containing benzothiadiazole
US3883439A (en) Grease composition
US4211662A (en) Synergistic lubricating compositions
JPH1121579A (en) Lubricant for maintenance-free joint shaft
US2696473A (en) Halogen containing extreme pressure lubricant stabilized with a polyalkylene polyamine
US2999813A (en) Lubricant comprising a sulfurized mineral oil and a polyvalent metal dithiocarbamate
US2511250A (en) Stabilized extreme pressure lubricants
US3278432A (en) Extreme pressure lubricants containing sulfur
US2361391A (en) Stabilization of lubricating greases against oxidation
US2419360A (en) Lubricating oil composition
US2858273A (en) Extreme pressure lubricating grease
JPS6372792A (en) Polycyclic thiophene lubricant additive and method for reducing coking tendency of lubricant