US3349972A - Dispenser closure - Google Patents

Dispenser closure Download PDF

Info

Publication number
US3349972A
US3349972A US588853A US58885366A US3349972A US 3349972 A US3349972 A US 3349972A US 588853 A US588853 A US 588853A US 58885366 A US58885366 A US 58885366A US 3349972 A US3349972 A US 3349972A
Authority
US
United States
Prior art keywords
aperture
cup
collar
shaped member
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US588853A
Inventor
Carlton L Whiteford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US588853A priority Critical patent/US3349972A/en
Application granted granted Critical
Publication of US3349972A publication Critical patent/US3349972A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/04Closures with discharging devices other than pumps
    • B65D47/20Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge
    • B65D47/2018Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge comprising a valve or like element which is opened or closed by deformation of the container or closure
    • B65D47/2031Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge comprising a valve or like element which is opened or closed by deformation of the container or closure the element being formed by a slit, narrow opening or constrictable spout, the size of the outlet passage being able to be varied by increasing or decreasing the pressure

Definitions

  • Containers for dispensing liquids, pastes and finely divided solids are well known in the art. It is desirable to provide such containers with closures which seal the containers to prevent leakage therefrom as well as to protect the contents thereof from contamination. Such closures are most desirably attached to the container, even when the closure is in an open position, so that the possibility of misplacing the closure or a part thereof is minimized or eliminated. Containers which have such closures attached to them are generally known, and are often quite satisfactory from many viewpoints. It is not uncommon, however, for such closures to be relatively costly to manufacture due to the number of operations involved and/ or the number or complexity of their component parts.
  • Another object is to provide such a container closure wherein the components may be fabricated relatively economically by injection molding techniques in a minimum number of steps and thereafter assembled to provide a 7 highly effective assembly.
  • a further object is to provide a container including such a closure in an assembly comprising only two components, which are both adapted to injection molding techniques.
  • a still further object is to provide such a container having a closure device which is simple, neat, convenient to operate and is capable of being opened and closed in a positive manner.
  • FIGURE 1 is a side elevational view of a container embodying the present invention with a portion thereof in section and with the closure in closed position;
  • FIGURE 2 is a fragmentary side elevational view in partial section similar to FIGURE 1 ,and with the closure in its normally open position;
  • FIGURE 3 is a plan view of the container tion shownin FIGURE 1;
  • FIGURE 4 is a plan view of the container in the position shown in FIGURE 2; and 7 FIGURE is a fragmentary side elevational view of the container of FIGURES 1-4 with the closure in the position shown in FIGURES l and 3.
  • a container closure comprising a resiliently deformable, generally cup-shaped in the posimember having a top wall and a side wall, and a relatively rigid collar rotatably mounted on the exterior of the cupshaped member so that a side wall portion thereof slidably bears against the outer surface of the side wall of the cup-shaped member.
  • the inner contour of the collar side wall portion defines a generally elliptical aperture having a peripheral length which substantially conforms or equals the peripheral length of the cooperating outer surface of the cup-shaped member as taken in a plane transaxial or perpendicular to the axis thereof.
  • a dispensing aperture is symmetrically positioned in the top Wall of the cup-shaped member and, in its normally open position, has a double convex cross section providing substantially symmetrical, arcuate sides defined by a common chord which intersects to provide sharp corners at the ends of the long dimension of the aperture, the aperture thus having the shape of a marquise-shaped gem.
  • the wide dimension of the aperture i.e., the dimension along .a line at right angles to the length of the aperture at which the distance between the arcuate sides in open position is greatest, is no greater than the difference between the dimension of the cup-shaped member cooperating outer surface to which the wide dimension is parallel and the minor axis of the elliptical aperture.
  • the collar is rotatable from a position wherein its major axis is in substantial alignment with the wide dimension of the dispensing aperture to provide an open position therefor, to one wherein the minor axis of the inner contour is substantially aligned with the wide dimension so as to bias the material of the top wall and thereby the aperture into a closed position.
  • Interengaging means are provided on the collar and the cupshaped member to prevent inadvertent relative axial movement thereof, thus maintaining the parts in assembly.
  • the closure is comprised of only two components with the cup-shaped member being made of resiliently deformable material and being provided with a normally open aperture through its top Wall.
  • the other component is a relatively rigid collar providing an aperture which closely conforms in its internal curvature to the length of the outer curvature of the cooperating side wall portion of the cup-shaped member.
  • Axial ridges are desirably provided on the outer wall of the collar to provide a good gripping surface for manual rotation of the collar.
  • the means for mutual engagement to lock the components against inadvertent relative axial movement are simply provided by an annular bead projecting from the side wall of one component, preferably the cup-shaped member, engageable with a mating annular depression provided in the side wall of the other component, preferably the collar.
  • the adaptability of an injection molding technique to the fabrication of the cup-shaped member is further enhanced by forming the aperture therethrough in a normally open position.
  • an aperture in a normally open position is quite easily obtained by providing a suitably shaped projection on the mold.
  • the entire container may be composed of only two simple components. This can be achieved merely by forming the main body portion integrally with the cupshaped member, such as in injection-molding apparatus.
  • Such an integrally-formed container has many advantages. It is, of course, a most simple and economical article to manufacture because of the relatively few steps necessary. By forming the cup-shaped member and the main body as a unitary member, the number of locations at which leakage or contamination can occur are minimized.
  • both parts are advantageously fabricated of the same resiliently deformable material, which inherently makes opening and closing of the aperture possible, in addition to providing a main body portion which is a collapsible container from which material therein can be manually expressed.
  • the collar may be simply aligned over the cup-shaped member and forced downwardly over the latter until interengagement of the locking means occurs.
  • the resiliently of the cup-shaped portion allows it to deform sufficiently so that such assembly is a simple matter.
  • a tighter and substantially permanent assembly is also possible. This is achieved by providing a projection annular ring on the side wall of the cupshaped member, and a mating depression on the inside wall of the collar, which should be fabricated of a rigid thermoplastic. The dimensions of the ring and the depression should vary by no more than a few thousandths of an inch.
  • the collar is heated to a temperature at which the plastic softens and, while still flexible, is placed over the cup-shaped member and annular ring. Upon cooling, the collar becomes rigidly locked against axial movement from the cup-shaped member.
  • the shape of the cup-shaped member in transaxial cross section should be either circular or elliptical.
  • the circular shape is advantageous in that it is simpler and more economical to fabricate.
  • the peripheral length of the outside wall should closely conform to the peripheral length of the inner aperture of the collar so that the cup-shaped member can be resiliently deformed to take the shape of the inner contour, without the creation of unsightly and unsanitary gaps between the inner member and the collar in any position.
  • the aperture When the cup-shaped member is elliptical, the aperture will be in its normally open position when the major and minor axes of the cup-shaped member and the collar are aligned, since no deformative forces are created. Rotation of the collar through an angle of 90 degrees in either direction tends to align the major axes with the minor axes.
  • the resiliently deformable cup-shaped member is deformed along its major axis due to the force brought to bear by the minor axis of the rigid collar. Since the aperture in the top wall of the cup-shaped member is positioned with its wide dimension parallel to the major axis of the ellipse of the resilient cup-shaped member, the deformation of the cup-shaped member along its major axis tends to close the aperture and to thereby seal the container.
  • the cup-shaped member When the cup-shaped member is circular, forces are brought to bear upon it by the rigid elliptical collar in all positions. In the position where the minor axis of the collar is aligned with the wide dimension of the aperture, the aperture is biased into its closed position. Rotation of the collar through 90 degrees from this position aligns its [minor axis with the long dimension of the aperture. This not only opens the aperture, but it has the added advantage, over the situation wherein the resilient member is elliptical, of bringing positive opening forces to bear. Thus, the minor axis of the rigid collar tends to pinch the cupshaped member in a direction parallel to the long dimension of the aperture, forcing the corners of the aperture together and the sides apart, to a more open position than that at which the aperture is molded. The aperture is returned to its original closed position by a degree turn of the collar.
  • the marquise-shaped, double convex aperture is molded in a normally open position in the top wall of the cup-shaped member. It is necessary that sharp corners be provided at the ends of the long dimension of the aperture so that a perfectly tight seal is obtained when the aperture is pressed into closed position.
  • the surfaces defining the aperture can be formed normal to a fiat upper surface of the top wall, or, independent of the curvature of the upper surface, in such a vmanner that they will mate over their entire area when the closure is closed, it is most advantageous to form relatively sharp upper edges by beveling the aperture surfaces to form angles of less than 90 degrees with the upper surface. Closing a device having such edges quickly and neatly terminates the effluent stream therefrom, while the beveled surfaces serve to force material near the point of exit back into the container.
  • An additional advantage in forming the aperture in a normally open position and through an internal member, and biasing it into closed position with an external collar is that by forming the aperturewith a wide dimension which is less than the difference between the length of the minor axis of the ellipse of the colar and the dimension of the cross section of the cup-shaped member to which the wide dimension is parallel, it is possible to create a significant positive closing force without the need for complex auxiliary means. Such a dimensional difference will cause the aperture to close before the collar is fully rotated to its position of maximum closing force, thus creating a positive force when the collar is fully rotated.
  • the closure is to be capable of a positive closing force, it is most beneficial to form the top Wall of the cupshaped member with a slightly arcuate, or dome-shaped configuration. With such a configuration, the positive force will not tend to push the edges of the aperture past one another, and out of engagement, as would be the case if the top wall were fiat.
  • the dome-shaped top wall will allow lateral movement under positive force, and will thereby tend to avoid misalignment of the abutting edges.
  • the collar is made of a relatively rigid material and the cup-shaped member is made of a resiliently deformable material, the choice of the particular materials out of which the components are fabricated is not critical.
  • the collar may be produced from metal, glass, plastic, etc. From the standpoint of economy and ease of fabrication, it is probably best to make the collar out of a thermoplastic.
  • Such materials include polystyrenes, polyolefins, polyamides, acetals, etc. Flurocarbons are particularly advantageously employed in this application because of their generally low coefficients of friction of their surfaces which facilitate rotation of the collar between the open and closed dispensing aperture positions.
  • thermosetting materials such as the phenolics and the melamines also can be used.
  • the choice of the material out of which the cup-shaped member,-and preferably also the main body portion of the container is fabricated will depend largely upon the material to be contained therein since the container must be substantially resistant to attack thereby. In all cases, however, the cup-shaped member must be composed of a resiliently defonmable material.
  • the preferred compositions will be resinous thermoplastic materials or rubber-reinforced resinous thermoplastic materials. Exemplary of such resins are polyethylene, polypropylene, polyvinyls, impact styrenes, etc.
  • a container embodying the present invention includes an integrally formed main component having an elongated body portion 10, and intermediate inwardly tapering shoulder portion 11 and the cup-shaped member of the closure generally designated by the numeral 12.
  • the cupshaped member 12 has a slightly arcuate or dome-shaped top Wall portion 13 and a side wall portion 14 intersecting with the shoulder portion 11 and having a circumferential annular bead 15. At the opposite end, the wall of the body portion is sealed together as indicated by the deformed portion 21.
  • a relatively rigid collar generally designated by the numeral 16 with a multiplicity of axial ribs or corrugations 17 spaced about the exterior periphery thereof to facilitate gripping.
  • the collar 16 and cup-shaped member 12 are held in axial engagement by the seating of the bead in an annular groove 22 in the inner surface of the collar 16.
  • a marquise-shaped, or double convex, aperture 18 is provided in the top wall 13.
  • FIGURE 2 best illustrates the beveled inwardly tapering surfaces defining the aperture 18 and providing relatively sharp upper edges 19.
  • the collar 16 has an aperture of substantially elliptical configuration
  • the cupshaped member 12 has an elliptical transaxial cross section so that the cooperating bearing surfaces of both members are elliptical.
  • the major axes of the ellipses of both the collar 16 and the cup-shaped member 12 are aligned in FIGURES 2 and 4 wherein the dispensing aperture 18 is open.
  • the cup-shaped member 12 is not deformed and the marquise-shaped aperture 18, which is disposed with its long dimension at right angles to the major axis of the elliptical cross section of member 12, is in its normally open position.
  • the distance between sections of the side wall 14, diametrically opposed along the major axis of the elliptical cross section is a maximum value, designated by the letter b in FIGURE 2.
  • the collar 16 has been rotated through an angle of 90 degrees from its position in FIGURES 2 and 4.
  • the minor axis of the elliptical aperture of the collar 16 is in alignment with the major axis of the elliptical crosssection of member 12.
  • the reduced dimension of the aperture in the relatively rigid collar 16, shown in the sectional view in FIGURE 1 inwardly deforms the side wall 14 of member 12 and presses the edges 19 into contact to close the dispensing aperture 18.
  • the distance between sections of the side wall 14, diametrically opposed along what would be the major axis of the elliptical cross section in normal position, is now at a minimum value, designated by the letter a in FIGURE. 1.
  • the present invention provides a container closure of relatively simple construction which is convenient and efficient in operation.
  • the component parts of the closure are suitablyinterengaged so as to prevent inadvertent misplacement.
  • the components are few in number, simple in design and readily fabricated of relatively inexpensive materials so as to make manufacture of the closure an easy and economical matter.
  • the design of the closure is such that it is suitably formed with an integral main body portion, providing a cheap, efficient and convenient container for liquids, pastes and finely divided solid materials.
  • a container closure comprising a resiliently deformable cup-shaped member having a top wall and a side wall, and a relatively rigid collar rotatably mounted on the exterior of said cup-shaped member with a side wall portion slidably bearing against the outer surfaces of said side wall of said cup-shaped member, said collar side wall portion defining a generally elliptical aperture having a peripheral length substantially equal to the peripheral length of the cooperating outer surface of said cup-shaped member, said top wall having therein a symmetrically positioned dispensing aperture of generally double convex cross section in the open position and providing substantially symmetrical, arcuate sides defined by a common chord so as to intersect in sharp corners at the ends of the long dimension of said aperture, the wide dimension of said aperture in the open position being no greater than the difference between the dimension of said cupshaped member cooperating outer surface to which said wide dimension is parallel and the minor axis of said elliptical aperture, said collar being rotatable from a position wherein the major axis of said aperture is substantially aligned with
  • cup-shaped member has a generally elliptical transaxial cross section, the outer contour of said side wall substantially conforming to said elliptical aperture of said collar and said wide dimension of said dispensing aperture being parallel to the major axis of said elliptical transaxial cross section.
  • cup-shaped member is at one end of a resilient, collapsible, generally cylindrical body member.

Description

1967 c WHITEFORD DISPENSER CLOSURE Filed oat. 24, 1966 I N V EN TOR. C A RL TON L WHII'EFORD ,4 TTOANEY United States Patent Ofifice 3,349,72 Patented Oct. 31, 1967 The present invention relates to containers and the like and, more particularly, to dispensing closures therefor.
Containers for dispensing liquids, pastes and finely divided solids are well known in the art. It is desirable to provide such containers with closures which seal the containers to prevent leakage therefrom as well as to protect the contents thereof from contamination. Such closures are most desirably attached to the container, even when the closure is in an open position, so that the possibility of misplacing the closure or a part thereof is minimized or eliminated. Containers which have such closures attached to them are generally known, and are often quite satisfactory from many viewpoints. It is not uncommon, however, for such closures to be relatively costly to manufacture due to the number of operations involved and/ or the number or complexity of their component parts. Moreover, in many of the prior art containers a tight seal is not readily attained between the closure and the main body or material-containing portion of the container, sometimes necessitating the use of gaskets or other auxiliary sealing devices if a satisfactory container is to be provided. Moreover, many prior art closures do not utilize a positive closing action or employ relatively complicated structures to provide such positive closing action.
Accordingly, it is an object of this invention to provide a novel container closure of relatively simple construction which may utilize positive closing action to control the discharge of materials therethrough.
It is also an object to provide such a container closure which is comprised of a minimum number of relatively simple components which are readily fabricated and assembled.
Another object is to provide such a container closure wherein the components may be fabricated relatively economically by injection molding techniques in a minimum number of steps and thereafter assembled to provide a 7 highly effective assembly.
A further object is to provide a container including such a closure in an assembly comprising only two components, which are both adapted to injection molding techniques.
A still further object is to provide such a container having a closure device which is simple, neat, convenient to operate and is capable of being opened and closed in a positive manner.
Other objects and advantages will be readily apparent from the following detailed specification and the attached drawing wherein:
FIGURE 1 is a side elevational view of a container embodying the present invention with a portion thereof in section and with the closure in closed position;
FIGURE 2 is a fragmentary side elevational view in partial section similar to FIGURE 1 ,and with the closure in its normally open position;
FIGURE 3 is a plan view of the container tion shownin FIGURE 1;
FIGURE 4 is a plan view of the container in the position shown in FIGURE 2; and 7 FIGURE is a fragmentary side elevational view of the container of FIGURES 1-4 with the closure in the position shown in FIGURES l and 3.
It has now been found that the foregoing and related objects may be readily attained with a container closure comprising a resiliently deformable, generally cup-shaped in the posimember having a top wall and a side wall, and a relatively rigid collar rotatably mounted on the exterior of the cupshaped member so that a side wall portion thereof slidably bears against the outer surface of the side wall of the cup-shaped member. The inner contour of the collar side wall portion defines a generally elliptical aperture having a peripheral length which substantially conforms or equals the peripheral length of the cooperating outer surface of the cup-shaped member as taken in a plane transaxial or perpendicular to the axis thereof.
A dispensing aperture is symmetrically positioned in the top Wall of the cup-shaped member and, in its normally open position, has a double convex cross section providing substantially symmetrical, arcuate sides defined by a common chord which intersects to provide sharp corners at the ends of the long dimension of the aperture, the aperture thus having the shape of a marquise-shaped gem. The wide dimension of the aperture, i.e., the dimension along .a line at right angles to the length of the aperture at which the distance between the arcuate sides in open position is greatest, is no greater than the difference between the dimension of the cup-shaped member cooperating outer surface to which the wide dimension is parallel and the minor axis of the elliptical aperture. The collar is rotatable from a position wherein its major axis is in substantial alignment with the wide dimension of the dispensing aperture to provide an open position therefor, to one wherein the minor axis of the inner contour is substantially aligned with the wide dimension so as to bias the material of the top wall and thereby the aperture into a closed position. Interengaging means are provided on the collar and the cupshaped member to prevent inadvertent relative axial movement thereof, thus maintaining the parts in assembly. Thus, the closure is comprised of only two components with the cup-shaped member being made of resiliently deformable material and being provided with a normally open aperture through its top Wall. The other component is a relatively rigid collar providing an aperture which closely conforms in its internal curvature to the length of the outer curvature of the cooperating side wall portion of the cup-shaped member. Axial ridges are desirably provided on the outer wall of the collar to provide a good gripping surface for manual rotation of the collar. In addition, the means for mutual engagement to lock the components against inadvertent relative axial movement are simply provided by an annular bead projecting from the side wall of one component, preferably the cup-shaped member, engageable with a mating annular depression provided in the side wall of the other component, preferably the collar. The adaptability of an injection molding technique to the fabrication of the cup-shaped member is further enhanced by forming the aperture therethrough in a normally open position. Although it would be rather difficult to effectively mold the aperture in the top wall in a normally closed position, an aperture in a normally open position is quite easily obtained by providing a suitably shaped projection on the mold. By molding the aperture in the top wall rather than by cutting or otherwise creating it in a subsequent operation, the economy of the manufacture is increased by avoiding {at least one additional step.
Although it is possible to separately form the closure and the main body of material-containing portion of the container and then to attach them, as by threaded portions on each part or by solvent or heat sealing, it can also be seen that the entire container may be composed of only two simple components. This can be achieved merely by forming the main body portion integrally with the cupshaped member, such as in injection-molding apparatus. A container having an elongated, generally cylindrical body portion, such as that which is commonly used for toothpaste, is readily fabricated in this way. Utilization of such a two-component container requires only closing of the aperture, desirably achieved by assembly with the collar, filling of the main body portion with the desired material, and sealing of the opening and the opposite end of the body portion. Such an integrally-formed container has many advantages. It is, of course, a most simple and economical article to manufacture because of the relatively few steps necessary. By forming the cup-shaped member and the main body as a unitary member, the number of locations at which leakage or contamination can occur are minimized.
In addition, both parts are advantageously fabricated of the same resiliently deformable material, which inherently makes opening and closing of the aperture possible, in addition to providing a main body portion which is a collapsible container from which material therein can be manually expressed.
To assemble the two parts of the closure or the container, as the case may be, the collar may be simply aligned over the cup-shaped member and forced downwardly over the latter until interengagement of the locking means occurs. The resiliently of the cup-shaped portion allows it to deform sufficiently so that such assembly is a simple matter. A tighter and substantially permanent assembly is also possible. This is achieved by providing a projection annular ring on the side wall of the cupshaped member, and a mating depression on the inside wall of the collar, which should be fabricated of a rigid thermoplastic. The dimensions of the ring and the depression should vary by no more than a few thousandths of an inch. The collar is heated to a temperature at which the plastic softens and, while still flexible, is placed over the cup-shaped member and annular ring. Upon cooling, the collar becomes rigidly locked against axial movement from the cup-shaped member.
The shape of the cup-shaped member in transaxial cross section should be either circular or elliptical. The circular shape is advantageous in that it is simpler and more economical to fabricate. In any case, the peripheral length of the outside wall should closely conform to the peripheral length of the inner aperture of the collar so that the cup-shaped member can be resiliently deformed to take the shape of the inner contour, without the creation of unsightly and unsanitary gaps between the inner member and the collar in any position.
When the cup-shaped member is elliptical, the aperture will be in its normally open position when the major and minor axes of the cup-shaped member and the collar are aligned, since no deformative forces are created. Rotation of the collar through an angle of 90 degrees in either direction tends to align the major axes with the minor axes. The resiliently deformable cup-shaped member is deformed along its major axis due to the force brought to bear by the minor axis of the rigid collar. Since the aperture in the top wall of the cup-shaped member is positioned with its wide dimension parallel to the major axis of the ellipse of the resilient cup-shaped member, the deformation of the cup-shaped member along its major axis tends to close the aperture and to thereby seal the container.
When the cup-shaped member is circular, forces are brought to bear upon it by the rigid elliptical collar in all positions. In the position where the minor axis of the collar is aligned with the wide dimension of the aperture, the aperture is biased into its closed position. Rotation of the collar through 90 degrees from this position aligns its [minor axis with the long dimension of the aperture. This not only opens the aperture, but it has the added advantage, over the situation wherein the resilient member is elliptical, of bringing positive opening forces to bear. Thus, the minor axis of the rigid collar tends to pinch the cupshaped member in a direction parallel to the long dimension of the aperture, forcing the corners of the aperture together and the sides apart, to a more open position than that at which the aperture is molded. The aperture is returned to its original closed position by a degree turn of the collar.
As mentioned above, the marquise-shaped, double convex aperture is molded in a normally open position in the top wall of the cup-shaped member. It is necessary that sharp corners be provided at the ends of the long dimension of the aperture so that a perfectly tight seal is obtained when the aperture is pressed into closed position. Although the surfaces defining the aperture can be formed normal to a fiat upper surface of the top wall, or, independent of the curvature of the upper surface, in such a vmanner that they will mate over their entire area when the closure is closed, it is most advantageous to form relatively sharp upper edges by beveling the aperture surfaces to form angles of less than 90 degrees with the upper surface. Closing a device having such edges quickly and neatly terminates the effluent stream therefrom, while the beveled surfaces serve to force material near the point of exit back into the container.
An additional advantage in forming the aperture in a normally open position and through an internal member, and biasing it into closed position with an external collar, is that by forming the aperturewith a wide dimension which is less than the difference between the length of the minor axis of the ellipse of the colar and the dimension of the cross section of the cup-shaped member to which the wide dimension is parallel, it is possible to create a significant positive closing force without the need for complex auxiliary means. Such a dimensional difference will cause the aperture to close before the collar is fully rotated to its position of maximum closing force, thus creating a positive force when the collar is fully rotated. If the closure is to be capable of a positive closing force, it is most beneficial to form the top Wall of the cupshaped member with a slightly arcuate, or dome-shaped configuration. With such a configuration, the positive force will not tend to push the edges of the aperture past one another, and out of engagement, as would be the case if the top wall were fiat. The dome-shaped top wall will allow lateral movement under positive force, and will thereby tend to avoid misalignment of the abutting edges.
As long as the collar is made of a relatively rigid material and the cup-shaped member is made of a resiliently deformable material, the choice of the particular materials out of which the components are fabricated is not critical. Thus, the collar may be produced from metal, glass, plastic, etc. From the standpoint of economy and ease of fabrication, it is probably best to make the collar out of a thermoplastic. Such materials include polystyrenes, polyolefins, polyamides, acetals, etc. Flurocarbons are particularly advantageously employed in this application because of their generally low coefficients of friction of their surfaces which facilitate rotation of the collar between the open and closed dispensing aperture positions. Although not preferred because of the need for compression molding, thermosetting materials such as the phenolics and the melamines also can be used.
The choice of the material out of which the cup-shaped member,-and preferably also the main body portion of the container is fabricated will depend largely upon the material to be contained therein since the container must be substantially resistant to attack thereby. In all cases, however, the cup-shaped member must be composed of a resiliently defonmable material. Although natural and synthetic rubbers of various varieties can be employed, the preferred compositions will be resinous thermoplastic materials or rubber-reinforced resinous thermoplastic materials. Exemplary of such resins are polyethylene, polypropylene, polyvinyls, impact styrenes, etc.
Referring now in detail to the attached drawing, a container embodying the present invention includes an integrally formed main component having an elongated body portion 10, and intermediate inwardly tapering shoulder portion 11 and the cup-shaped member of the closure generally designated by the numeral 12. The cupshaped member 12 has a slightly arcuate or dome-shaped top Wall portion 13 and a side wall portion 14 intersecting with the shoulder portion 11 and having a circumferential annular bead 15. At the opposite end, the wall of the body portion is sealed together as indicated by the deformed portion 21.
Slidably rotatable on the cup-shaped member 12 is a relatively rigid collar generally designated by the numeral 16 with a multiplicity of axial ribs or corrugations 17 spaced about the exterior periphery thereof to facilitate gripping. The collar 16 and cup-shaped member 12 are held in axial engagement by the seating of the bead in an annular groove 22 in the inner surface of the collar 16. As can best be seen in FIGURE 4, a marquise-shaped, or double convex, aperture 18 is provided in the top wall 13. FIGURE 2 best illustrates the beveled inwardly tapering surfaces defining the aperture 18 and providing relatively sharp upper edges 19.
As best seen in FIGURE 4, the collar 16 has an aperture of substantially elliptical configuration, and the cupshaped member 12 has an elliptical transaxial cross section so that the cooperating bearing surfaces of both members are elliptical. The major axes of the ellipses of both the collar 16 and the cup-shaped member 12 are aligned in FIGURES 2 and 4 wherein the dispensing aperture 18 is open. In this position, the cup-shaped member 12 is not deformed and the marquise-shaped aperture 18, which is disposed with its long dimension at right angles to the major axis of the elliptical cross section of member 12, is in its normally open position. When so disposed, the distance between sections of the side wall 14, diametrically opposed along the major axis of the elliptical cross section, is a maximum value, designated by the letter b in FIGURE 2.
As shown in FIGURES 1a and 3, the collar 16 has been rotated through an angle of 90 degrees from its position in FIGURES 2 and 4. In this rotated position, the minor axis of the elliptical aperture of the collar 16 is in alignment with the major axis of the elliptical crosssection of member 12. The reduced dimension of the aperture in the relatively rigid collar 16, shown in the sectional view in FIGURE 1, inwardly deforms the side wall 14 of member 12 and presses the edges 19 into contact to close the dispensing aperture 18. The distance between sections of the side wall 14, diametrically opposed along what would be the major axis of the elliptical cross section in normal position, is now at a minimum value, designated by the letter a in FIGURE. 1. The difference between dimensions a and b which represent the lengths of the minor and major axes respectively of the elliptical aperture of collar 16, equals the width of the dispensing aperture 18, designated by the letter c in FIGURE 4. Accordingly, rotation of collar 16 to the position shown in FIGURES 1 and 3 urges edges 19 into precise abutment and rotation of the collar 16, 90 degrees in either direction from that position returns the dispensing aperture 18 to its open position depicted in FIGURES 2 and 4.
Thus, it can be seen that the present invention provides a container closure of relatively simple construction which is convenient and efficient in operation. The component parts of the closure are suitablyinterengaged so as to prevent inadvertent misplacement. The components are few in number, simple in design and readily fabricated of relatively inexpensive materials so as to make manufacture of the closure an easy and economical matter. The design of the closure is such that it is suitably formed with an integral main body portion, providing a cheap, efficient and convenient container for liquids, pastes and finely divided solid materials.
Having thus described the invention, I claim:
1. A container closure comprising a resiliently deformable cup-shaped member having a top wall and a side wall, and a relatively rigid collar rotatably mounted on the exterior of said cup-shaped member with a side wall portion slidably bearing against the outer surfaces of said side wall of said cup-shaped member, said collar side wall portion defining a generally elliptical aperture having a peripheral length substantially equal to the peripheral length of the cooperating outer surface of said cup-shaped member, said top wall having therein a symmetrically positioned dispensing aperture of generally double convex cross section in the open position and providing substantially symmetrical, arcuate sides defined by a common chord so as to intersect in sharp corners at the ends of the long dimension of said aperture, the wide dimension of said aperture in the open position being no greater than the difference between the dimension of said cupshaped member cooperating outer surface to which said wide dimension is parallel and the minor axis of said elliptical aperture, said collar being rotatable from a position wherein the major axis of said aperture is substantially aligned with said Wide dimension to provide the open position of said aperture to a position wherein said minor axis of said elliptical aperture is substantially aligned with said wide dimension to deform the material of said top wall and close said dispensing aperture, said collar and cup-shaped member having interengaging means substantially preventing inadvertent relative axial movement thereof.
2. The closure in accordance with claim 1 wherein said cup-shaped member has a generally elliptical transaxial cross section, the outer contour of said side wall substantially conforming to said elliptical aperture of said collar and said wide dimension of said dispensing aperture being parallel to the major axis of said elliptical transaxial cross section.
3. The closure in accordance with claim 1 wherein said cup-shaped member has a generally circular transaxial cross section.
4. The closure in accordance with claim 1 wherein said cup-shaped member is at one end of a resilient, collapsible, generally cylindrical body member.
5. The closure in accordance with claim 4 wherein said body member and said closure are disengageably coupled.
6. The closure in accordance with claim 4 wherein said body member and said closure are integrally formed.
7. The closure in accordance with claim 1 wherein said wide dimension is less than said difference between said dimension of said cup-shaped member cooperating outer surface to which said Wide dimension is parallel and said minor axis of said elliptical aperture.
8. The closure in accordance with claim 1 wherein the two surfaces of the top wall defining said aperture are beveled to provide angles between said surfaces and the portion of the upper surface of said top wall adjacent thereto which are less than degrees, whereby upon closing said closure the efiiuent stream therefrom is quickly and neatly terminated with material near the point of exit being forced away from said upper surface.
References Cited UNITED STATES PATENTS ROBERT B. REEVES, Primary Examiner.
S. H. TOLLBERG, Assistant Examiner,

Claims (1)

1. A CONTAINER CLOSURE COMPRISING A RESILIENTLY DEFORMABLE CUP-SHAPED MEMBER HAVING A TOP WALL AND A SIDE WALL, AND A RELATIVELY RIGID COLLAR ROTATABLY MOUNTED ON THE EXTERIOR OF SAID CUP-SHAPED MEMBER WITH A SIDE WALL PORTION SLIDABLY BEARING AGAINST THE OUTER SURFACES OF SAID SIDE WALL OF SAID CUP-SHAPED MEMBER, SAID COLLAR SIDE WALL PORTION DEFINING A GENERALLY ELLIPTICAL APERTURE HAVING A PERIPHERAL LENGHT SUBSTANTIALLY EQUAL TO THE PERIPHERAL LENGHT OF THE COOPERATING OUTER SURFACE OF SAID CUP-SHAPED MEMBER, SAID TOP WALL HAVING THEREIN A SYMMETRICALLY POSITIONED DISPENSING APERTURE OF GENERALLY DOUBLE CONVEX CROSS SECTION IN THE OPEN POSITION AND PROVIDING SUBSTANTIALLY SYMMETRICAL, ARCUATE SIDES DEFINED BY A COMMON CHORD SO AS TO INTERSECT IN SHARP CORNERS AT THE ENDS OF THE LONG DIMENSION OF SAID APERTURE, THE WIDE DIMENSION OF SAID APERTURE IN THE OPEN POSITION BEING NO GREATER THAN THE DIFFERENCE BETWEEN THE DIMENSION OF SAID CUPSHAPED MEMBER COOPERATING OUTER SURFACE TO WHICH SAID WIDE DIMENSION IS PARALLEL AND THE MINOR AXIS OF SAID ELLIPTICAL APERTURE, SAID COLLAR BEING ROTATABLE FROM A POSITION WHEREIN THE MAJOR AXIS OF SAID APERTURE IS SUBSTANTIALLY ALIGNED WITH SAID WIDE DIMENSION TO PROVIDE THE OPEN POSITION OF SAID APERTURE TO A POSITION WHEREIN SAID MINOR AXIS OF SAID ELLIPTICAL APERTURE IS SUBSTANTIALLY ALIGNED WITH SAID WIDE DIMENSION TO DEFORM THE MATERIAL OF SAID TOP WALL AND CLOSE SAID DISPENSING APERTURE, SAID COLLAR AND CUP-SHAPED MEMBER HAVING INTERENGAGING MEANS SUBSTANTIALLY PREVENTING INADVERTENT RELATIVE AXIAL MOVEMENT THEREOF.
US588853A 1966-10-24 1966-10-24 Dispenser closure Expired - Lifetime US3349972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US588853A US3349972A (en) 1966-10-24 1966-10-24 Dispenser closure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US588853A US3349972A (en) 1966-10-24 1966-10-24 Dispenser closure

Publications (1)

Publication Number Publication Date
US3349972A true US3349972A (en) 1967-10-31

Family

ID=24355567

Family Applications (1)

Application Number Title Priority Date Filing Date
US588853A Expired - Lifetime US3349972A (en) 1966-10-24 1966-10-24 Dispenser closure

Country Status (1)

Country Link
US (1) US3349972A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454967A (en) * 1982-04-19 1984-06-19 Carr Michael A Drip preventer
US4728006A (en) * 1984-04-27 1988-03-01 The Procter & Gamble Company Flexible container including self-sealing dispensing valve to provide automatic shut-off and leak resistant inverted storage
US5234138A (en) * 1990-08-29 1993-08-10 L'oreal Self-closing dispenser for a container containing a liquid or pasty product
US5676990A (en) * 1996-04-29 1997-10-14 Wawrzynski; David W. Method of food article dipping and wiping in a condiment container
US5676346A (en) * 1995-05-16 1997-10-14 Ivac Holdings, Inc. Needleless connector valve
US5881772A (en) * 1998-01-05 1999-03-16 Chesebrough-Pond's Usa., Co. Division Of Conopco, Inc. Smiling duckbill valve
US5927566A (en) * 1996-07-11 1999-07-27 Aptargroup, Inc. One-piece dispensing system and method for making same
US5975372A (en) * 1995-10-02 1999-11-02 Zeller Plastik Gmbh Metering dispenser for liquids
US6079594A (en) * 1997-08-21 2000-06-27 Seaquist Closures Foreign, Inc. Dispensing package with a self-sealing closure constructed from a thermoplastic material
US6092551A (en) * 1998-05-19 2000-07-25 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Duckbill valve
US20040000550A1 (en) * 2002-06-28 2004-01-01 Raymond Taccolini Container and holder
US6886739B1 (en) 2000-03-31 2005-05-03 Steven Tsengas Food and treat dispenser
US20140339737A1 (en) * 2011-07-28 2014-11-20 Carbonite Corporation Injection moulding plastic components with a slit
USD728378S1 (en) 2013-03-15 2015-05-05 Tc Heartland Llc Container
US20150122840A1 (en) * 2013-11-06 2015-05-07 The Procter & Gamble Company Flexible containers having flexible valves
US9315301B1 (en) * 2013-12-13 2016-04-19 Robert Vincent Martinez Snack bottle with distensible dispensing cap
US9609969B1 (en) * 2014-07-23 2017-04-04 Acorn Bay Deformable elastomeric valve and valve assembly
US9850046B2 (en) 2013-11-06 2017-12-26 The Procter & Gamble Company Flexible containers with vent systems
US9988190B2 (en) 2015-04-10 2018-06-05 The Procter & Gamble Company Flexible containers with biased dispensing
US10017300B2 (en) 2015-04-10 2018-07-10 The Procter & Gamble Company Flexible containers with product dispensing visibility
US10518943B2 (en) 2013-03-15 2019-12-31 Tc Heartland Llc Container with valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473707A (en) * 1945-09-14 1949-06-21 Hammerstein Arthur Dispenser with slitted resilient diaphragm
US2901152A (en) * 1957-08-26 1959-08-25 James H Wahnsiedler Closure for a dispenser
US3002660A (en) * 1959-06-10 1961-10-03 Clarence R Taylor Dispensing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473707A (en) * 1945-09-14 1949-06-21 Hammerstein Arthur Dispenser with slitted resilient diaphragm
US2901152A (en) * 1957-08-26 1959-08-25 James H Wahnsiedler Closure for a dispenser
US3002660A (en) * 1959-06-10 1961-10-03 Clarence R Taylor Dispensing device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454967A (en) * 1982-04-19 1984-06-19 Carr Michael A Drip preventer
US4728006A (en) * 1984-04-27 1988-03-01 The Procter & Gamble Company Flexible container including self-sealing dispensing valve to provide automatic shut-off and leak resistant inverted storage
US5234138A (en) * 1990-08-29 1993-08-10 L'oreal Self-closing dispenser for a container containing a liquid or pasty product
US5676346A (en) * 1995-05-16 1997-10-14 Ivac Holdings, Inc. Needleless connector valve
US5975372A (en) * 1995-10-02 1999-11-02 Zeller Plastik Gmbh Metering dispenser for liquids
US5676990A (en) * 1996-04-29 1997-10-14 Wawrzynski; David W. Method of food article dipping and wiping in a condiment container
US5927566A (en) * 1996-07-11 1999-07-27 Aptargroup, Inc. One-piece dispensing system and method for making same
US6112951A (en) * 1996-07-11 2000-09-05 Aptargroup, Inc. One-piece dispensing system and method for making same
US6136253A (en) * 1997-07-15 2000-10-24 Chesebrough-Pond's Usa, Division Of Conopco, Inc. Method for molding duckbill valve
US6079594A (en) * 1997-08-21 2000-06-27 Seaquist Closures Foreign, Inc. Dispensing package with a self-sealing closure constructed from a thermoplastic material
US5881772A (en) * 1998-01-05 1999-03-16 Chesebrough-Pond's Usa., Co. Division Of Conopco, Inc. Smiling duckbill valve
US6092551A (en) * 1998-05-19 2000-07-25 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Duckbill valve
US6886739B1 (en) 2000-03-31 2005-05-03 Steven Tsengas Food and treat dispenser
US20040000550A1 (en) * 2002-06-28 2004-01-01 Raymond Taccolini Container and holder
US20140339737A1 (en) * 2011-07-28 2014-11-20 Carbonite Corporation Injection moulding plastic components with a slit
US9073248B2 (en) * 2011-07-28 2015-07-07 Carbonite Corporation Injection moulding plastic components with a slit
USD728378S1 (en) 2013-03-15 2015-05-05 Tc Heartland Llc Container
USD945886S1 (en) 2013-03-15 2022-03-15 Tc Heartland Llc Container
USD801827S1 (en) 2013-03-15 2017-11-07 Tc Heartland Llc Container
US10518943B2 (en) 2013-03-15 2019-12-31 Tc Heartland Llc Container with valve
USD863064S1 (en) 2013-03-15 2019-10-15 Tc Heartland Llc Container
US10138049B2 (en) * 2013-11-06 2018-11-27 The Procter & Gamble Company Flexible containers having flexible valves
US20150122840A1 (en) * 2013-11-06 2015-05-07 The Procter & Gamble Company Flexible containers having flexible valves
US9694965B2 (en) * 2013-11-06 2017-07-04 The Procter & Gamble Company Flexible containers having flexible valves
US20170259984A1 (en) * 2013-11-06 2017-09-14 The Procter & Gamble Company Flexible containers having flexible valves
US9850046B2 (en) 2013-11-06 2017-12-26 The Procter & Gamble Company Flexible containers with vent systems
US9315301B1 (en) * 2013-12-13 2016-04-19 Robert Vincent Martinez Snack bottle with distensible dispensing cap
US9609969B1 (en) * 2014-07-23 2017-04-04 Acorn Bay Deformable elastomeric valve and valve assembly
US10017300B2 (en) 2015-04-10 2018-07-10 The Procter & Gamble Company Flexible containers with product dispensing visibility
US9988190B2 (en) 2015-04-10 2018-06-05 The Procter & Gamble Company Flexible containers with biased dispensing

Similar Documents

Publication Publication Date Title
US3349972A (en) Dispenser closure
US3298415A (en) Closures for large mouth containers
US3124273A (en) Metallic collapsible tubes having
RU2094342C1 (en) Container with cap
US4021524A (en) Method of making a collapsible tube with an integral cap
US4144983A (en) Child-resistant closure
US3321114A (en) Pop-up diaphragm closure
US3255907A (en) Linerless screw closure for containers
US4489844A (en) Crew-type all plastic closure
US4545495A (en) Snap action hinge with closed position straight straps
US3638821A (en) Closure for bottles and similar containers
US4410098A (en) Childproof locking cap
US3599845A (en) Container closure
US3817418A (en) Threaded container seal
US3168969A (en) Off-center dispensing closure arrangement
US3154226A (en) Pour spout
US3777936A (en) Safety dispensing closure
US3128900A (en) Chaboche
WO1999029620A1 (en) Hot fill dispensing closure
US3416712A (en) Dispensing closures
US3491908A (en) Screw closure for a container of thermoplastic material
US2812874A (en) Reinforced double wall container
US3907179A (en) One piece molded dispensing spout cap
GB2041891A (en) Container Closures
US3490659A (en) Dispensing closures