US3352294A - Process and device for preventing evaporation loss - Google Patents

Process and device for preventing evaporation loss Download PDF

Info

Publication number
US3352294A
US3352294A US475475A US47547565A US3352294A US 3352294 A US3352294 A US 3352294A US 475475 A US475475 A US 475475A US 47547565 A US47547565 A US 47547565A US 3352294 A US3352294 A US 3352294A
Authority
US
United States
Prior art keywords
fuel
conduit
air
carburetor
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US475475A
Inventor
William F Biller
Charles W Skarstrom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US475475A priority Critical patent/US3352294A/en
Application granted granted Critical
Publication of US3352294A publication Critical patent/US3352294A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03504Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/28Carburetor attached

Definitions

  • Apparatus comprises a closed system for containing and subsequently consuming vapors normally escaping to the atmosphere from an internal combustion engine utilizing a pair of absorbent beds.
  • the respective absorbent beds are interconnected by suitable conduits and control means to the fuel supply bowl associated with a carburetor and the fuel supply tank.
  • the present invention is broadly concerned with an improved method of operating an internal combustion engine wherein fuel vapors are prevented from venting into and polluting the atmosphere.
  • the invention is also concerned with an improved apparatus or device for attaining this result.
  • a more specific adaptation of the invention is a method of operating the internal combustion engine wherein fuel constituents normally lost to the atmosphere are combusted in the engine to secure greater mileage.
  • the method and apparatus of the present invention utilize at least one adsorbent bed to adsorb vaporized fuel constituents and then desorbs these fuel constituents and combusts the same in the engine.
  • Air pollution control authorities in California have considered these sources of great enough significance to require control. As a result California has adopted emission standards calling for approximately an 80% reduction in evaporation losses from carburetors and fuel tanks.
  • the present invention is particularly concerned with the elimination of fuel losses from the vehicle fuel tank and carburetor bowl and with their ultimate use in the combustion chamber.
  • fuel vapors such as hydrocarbon fuel vapors, alcohol vapors and the like, which are emitted either from the fuel reservoir or the carburetor bowl, are adsorbed on an adsorbent and thereafter desorbed and combusted in the engine.
  • the losses from the fuel reservoir tank are caused by factors which include the rising temperature of the fuel as the vehicle is operated and rising atmospheric temperatures which cause the reservoir or fuel tank to reathe through the vent, or vents, in the fuel tank thereby emitting unburned fuel constituents into the atmos phere.
  • the temperature of the fuel reservoir may be from about to F. higher than the atmospheric or ambient temperature.
  • the temperature of the fuel in the carburetor bowl rises as heat flows to the carburetor from the hot engine.
  • the fuel is said to undergo a hot soak.
  • Data have shown that the temperature of the fuel in the carburetor bowl can rise to as high as about 200 F. after the hot engine has been turned off. It has been estimated that the loss per hour from a gasoline tank may range from about 2 to grams per day and that the hot soak loss from the carburetor bowl may range from about 2 to 50 grams per hot soak.
  • FIGURE 1 illustrates the use of two adsorbent beds while FIGURE 2 illustrates an adaptation using a single bed.
  • fuel tank or fuel reservoir 10 has a vapor space 1 and a fuel layer 2.
  • Fuel tank 10 contains a conventional cap 3 permitting fuel to be introduced into the tank 10.
  • Fuel cap 3 also contains a conventional vent which normally permits the tank to breathe whereby expanding vapors are emitted into the atmosphere.
  • the vent on the tank 10 may be placed in other positions.
  • liquid fuel is withdrawn from reservoir 10 by means of line 5, fuel pump 6 and introduced into carburetor bowl 20 by means of line 7.
  • a conventional float, or equivalent means positioned in carburetor bowl 20, controls the level of the liquid fuel in the carburetor bowl.
  • Carburetor bowl 2%) is normally supplied with a vent 11, which permits vapors to pass into the atmosphere.
  • atmospheric air is introduced by means of line, or conduit, 12 and passes through an air filter 30.
  • the air passes downwardly through the carburetor wherein fuel is Withdrawn from bowl 20 by means of line 8 and passed into a carburetion means 9 where the same is mixed with the incoming air.
  • a choke element 31 is positioned normally ahead of the carburetion means 9.
  • a flapper valve or element 14 controls the introduction of the fuel-air mixture into the intake manifold 40 which element distributes the fuelair mixture into the respective cylinders.
  • vents 4 and 11 and any other open vents which would allow loss of vapors from the fuel system to the atmosphere are closed off.
  • a conduit 15 is atfixed to the fuel tank to provide communication to one end of an adsorption zone 50.
  • Adsorption zone 50 contains a suitable adsorbent 17 for adsorbing vaporous fuel constituents.
  • a vent 16 is provided at the other end of adsorption zone 50 which provides communication to the atmosphere.
  • the quantity of adsorbent 17 provided is sufficient to adsorb all vaporous fuel constituents emitted from tank 3 and to prevent any breakthrough of these constituents through vent 16.
  • the quantity of adsorbent required will be a function, among other factors, of the. particular engine design, environmental conditions and particular adsorbentor adsorbent mixture utilized.
  • the adsorbent used in the descriptionof the drawing is activated carbon.
  • a conduit or line 18 communicates. with conduit intermediate fuel tank 10 and adsorption zone 50.
  • This conduit preferably has an adjustment valve, or equivalent means, 19,so as to control the flow of vapors into a conduit 21 which communicates with intake manifold 4-0.
  • the amount of adsorbent provided is sufficient so that when fuel constituents are being adsorbed none of these fuel constituents will pass into the atmosphere by meansof line or vent 16.
  • the amount of backwash air passed through vent 16 controlled by valve 19 or equivalent means, is sufficient to desorb the previously adsorbed fuel constituents.
  • fuel constituents will vaporize and flow through line 22 into one end of a second adsorption bed 60 which is provided with an adsorbent which will adsorb the vaporized fuel constituents.
  • sufiicient adsorbent is provided so as to prevent any breakthrough of the fuel constituents into line or conduit 23 provided near the top or at the other end of zone 60.
  • This conduit 23 preferably communicates into air filter zone 30, although it may be vented'directly into the atmosphere by means of line 32 controlled by valve 33.
  • a conduit 24 communicates with conduit 22 intermediate zone 20 and the one end of zone 60.
  • Conduit 24 also communicates with conduit 21 which communicates with the intake manifold 40.
  • air flows from zone 30 through conduit 23 into the other end of zone 60 and backwashes through zone 60 so as to desorb the constituents previously adsorbed on the adsorbent.
  • the desorbed constituents pass out of the one end of zone 60 and into the manifold 40 by means of conduits 24 and 21.
  • a limiting orifice or equivalent means 25 may be provided to control the rate of flow and to balance the pressure drop as compared with the pressure drop across the flapper valve 14. The amount of air backwashed by means of line 23, is sufficient to desorb the fuel constituents previously adsorbed in zone 60.
  • vaporized fuel constituents from fuel tank 100 are passed through line 101 and absorbed in zone 110 containing a suitable adsorbent 102.
  • Liquid fuel is passed to the carburetor cup 120 by means of line 103, pump 104 and line 105.
  • Vaporized constituents from the carburetor cup are passed into the lower or one end of zone 110 by means of line 106.
  • Air is passed through filter zone 130 and into carburetion zone 121 where it is mixed with liquid fuel introduced from the carburetor cup.
  • a flapper valve 122 controls the amount of air-fuel mixture introduced into intake manifold 140.
  • Example 1 Full scale operations in accordance with the present technique were conducted utilizing a 1962 Chevrolet automobile fitted with activated carbon breather canisters.
  • the car was mounted on a dynamometer in a temperature controlled room.
  • One canister was in communication with the gasoline fuel tank while the second canister was in communication as described with the carburetor bowl. All vents except through the canisters were closed;
  • the room temperature, the gas tank and the carburetor bowl were at 60 F.
  • the room temperature was gradually raised to F. with the car running at 30 mph with a road load.
  • the fuel in the gas tank reached F. in 60 to 80 minutes, the engine was stopped.
  • the carburetor bowl reached a maximum temperature of 175. to F.
  • the ambient room temperature was kept at 90 F. during the 60 minute, hot soak. Thus, in these tests, the engine was run for a period of 60 to 80 minutes and then turned off for a period of 60 minutes. After the hot soak, all temperatures were brought back to 60' F. Approximately 50 such runs were made.
  • the canister in communication with the fuel tank contained one gallon of activated carbon while the canister in communication with the carburetor cup contained about one quart of activated carbon.
  • the canister is associated with curred to the atmosphere.
  • the under-hood temperatures range up to about 160 F. during the hot soak.
  • Example 2 TAB LE I Run Number Weight of 1 Qt. Silica Gel Bed After Purge After Hot Soak Grams Grams 1, 198 1, 204 1, 198 1, 208 1, 197 1, 205 1, 197 1, 203 1, 199 1, 207 1, 198 1, 208 1, 198 1, 207 1, 199 1, 208 1, 199 1, 206
  • an activated carbon guard adsorbent bed was positioned after the silica gel bed. This guard bed did not pick up any weight indicating that no losses were occurring through the silica gel bed and that this silica gel bed had attained steady state conditions.
  • Example 3 In another operation, similar to that described with respect to the foregoing examples, activated alumina was used as the adsorbent. No backwashing was employed until about the th run. During this period, approximately 24 grams of fuel was adsorbed. Backwashing was then employed with the result that the Weight of the adsorbent dropped below its original weight. This is due to the fact that water was being desorbed from the activated alumina. (See Chart 3).
  • Example 4 Other operations were conducted as described wherein the activated carbon was saturated with Water prior to the adsorption and backwashing cycle. No adverse results Were secured when the activated carbon was saturated with water which indicates that the system will function in high humidity and fog conditions.
  • the present invention is adapted to provide and prevent contamination of the atmosphere when using any fuel utilized in an internal combustion engine.
  • the fuels may be, for example, gasoline, diesel fuel or any type fuel containing hydrocarbons, alcohols, or other combustible liquid substances or mixtures.
  • the adsorbent may be any one which is adapted for adsorbing the vapor constituents of these fuels.
  • Suitable adsorbents are, for example, activated carbon, silica gel, molecular sieves and activated alumina.
  • the amount of backwash or backflow required will be a function of the particular fuel used, the particular adsorbent used, the quantity of adsorbent used and temperature and pressure conditions.
  • the present invention covers the method of operating an engine wherein vaporous constituents of a fuel are adsorbed on an adsorbent and thereafter desorbed from said adsorbent and introduced into an internal combustion engine.
  • the preferred adaptations are to adsorb vaporous constituents from liquid fuel reservoirs which are ahead of the carburetor and to adsorb these vaporous constituents on an adsorbent. These vaporous constituents are then desorbed by backflowing or backwashing atmospheric air by the action of the engine and then are introduced as an enriched fuel-air mixture into the engine.
  • the apparatus features, in essence, comprise the utilization of a parallel airstream structure wherein the first airstream is a conventional one flowing through the carburetion Zone and into the manifold while the second stream backflows through a bed of adsorbent to remove therefrom vaporous constituents of the fuel previously adsorbed thereon, which second airstream is then introduced into the manifold.
  • This second stream will also contain vapors emitted from the fuel tank and carburetor bowl during engine operation.
  • One preferred adaptation of the present invention is for use with an internal combustion engine wherein the fuel is a hydrocarbon fuel such as a gasoline and where the adsorbent is activated carbon.
  • a carburetor having air and fuel inlets for supplying a mixture of air and fuel to an inlet on said intake manifold, a fuel bowl associated with the carburetor for supplying fuel to said fuel inlets, an air horn on the carburetor for mounting an air filter at the air inlet to said carburetor, and means including a fuel tank for maintaining a substantially constant fuel level in said fuel bowl: the improvement in said system which comprises a pair of absorbent beds enclosed in separate closed containers, a first conduit connecting at its opposite ends with said fuel tank above the usual fuel level therein and one side of one of said containers, an atmospheric vent at an opposite side of said one of said containers, a second conduit, connecting at its opposite ends with said first conduit, intermediate its ends, and one side of the other of said containers, means connected at an opposite

Description

Nov. 14, 1967 w. F. BILLER ETAL 3,352,294
PROCESS AND DEVICE FOR PREVENTING EVAPORATION LOSS Filed July 28, 1965 AIR CLEANER CARBURETOR MAKE MANIFOLD FIGURE I 4 Sheets-Sheet 1 ACTIVATED CARBON BEDS 4 FUEL TANK l FUEL PUMP WILLIAM F. BILLER CHARLES W. SKARSTROM PATENT ATTORNEY INVENTORS Nov. 14, 1967 w. F. BILLER ETAL 3,352,294
PROCESS AND DEVICE FOR PREVENTING EVAPORATION LOSS Filed July 28, 1965 4 Sheets-Sheet 2 ACTIVATED CARBON BED AIR CLEAN-ER CARBURETOR |25 ORIFICE I24 c I22 INTAKE MANIFOLD AMhUvAAAlavuvuuuuluuauuM u m FIGURE 2 l l FUEL TANK I04 I FUEL PUMP WILLIAM F. BILLER CHARLES W. SKARSTROM PATENT ATTORNEY INVENTORS Nov. 14, 1967 Filed July 28, 1965 FUEL, GRAMS FUEL, GRAMS w. F. BILLER ETAL 3,352,294
PROCESS AND DEVICE FOR PREVENTING EVAPORATION LOSS 4 Sheets-Sheet 5 IN ALL RUNS (CHARTS LE6 BI AMOUNT OF PURGE WAS ABOUT I0 30 CUBIC FEET OF AIR PER PURGE. AVERAGE CUBIC FEET.
CHART I I I I I I I I GAS TANK CANISTER: l Gul. Cup.
GAS TANK: 22 Gal. Cup.- Full 60F. Io I0OF. 9.0 RVP Fuel I962 Cur 'After Adsorbtion Alternate Runs I I I I I I I 0 5 I0 l5 2O 25 4O 5O RUN NUMBER CHART 2 I I I CARBURETOR CARBURETOR CANISTER: lOt. Cup.
CARBURETOR BOWL: F to lF. No Purge Purge After Each Hot Souk 5o After Adsorbtion After Purge Guard CunisIer RUN NUMBER PATENT ATTORNEY INVENTORS Nov. 14, 1967 w. F. BILLER TAL 3,352,294
PROCESS AND DEVICE FOR PREVENTING EVAPORATION LOSS 4 Sheets-Sheet 4 Filed July 28, 1965 mmmsaz zam 8 Q moOQ 2 meow 50m mokumammzo 5 5m 8.2.2 6. EQzS mofi mm INVENTORS WILLIAM F. BILLER CHARLES W. SKARSTROM m wuj cimp PATENT ATTORNEY United States Patent ABSTRACT OF THE DISCLOSURE Apparatus comprises a closed system for containing and subsequently consuming vapors normally escaping to the atmosphere from an internal combustion engine utilizing a pair of absorbent beds. The respective absorbent beds are interconnected by suitable conduits and control means to the fuel supply bowl associated with a carburetor and the fuel supply tank.
The present invention is broadly concerned with an improved method of operating an internal combustion engine wherein fuel vapors are prevented from venting into and polluting the atmosphere. The invention is also concerned with an improved apparatus or device for attaining this result. A more specific adaptation of the invention is a method of operating the internal combustion engine wherein fuel constituents normally lost to the atmosphere are combusted in the engine to secure greater mileage. In essence, the method and apparatus of the present invention utilize at least one adsorbent bed to adsorb vaporized fuel constituents and then desorbs these fuel constituents and combusts the same in the engine.
It is well known that air pollution presents health, nuisance, and economic problems, and that the fumes, vapors, and gases evolved from internal combustion motor vehicles contribute significantly to air contamination. It is also known that generally these fumes and vapors are emitted into the atmosphere from the motor vehicle as exhaust gases discharged through the tailpipe, or are due to unburned fuel constituents which are emitted through the vent in the fuel storage tank and through cuts from the carburetor bowl. For example, it has been estimated that from about to 20% by volume as, for example, about by volume of the total vapors and fumes emitted unburned to the atmosphere from an internal combustion motor vehicle are evaporated from the gasoline tank and the carburetor bowl.
Air pollution control authorities in California have considered these sources of great enough significance to require control. As a result California has adopted emission standards calling for approximately an 80% reduction in evaporation losses from carburetors and fuel tanks. The present invention is particularly concerned with the elimination of fuel losses from the vehicle fuel tank and carburetor bowl and with their ultimate use in the combustion chamber. In accordance with the present invention fuel vapors, such as hydrocarbon fuel vapors, alcohol vapors and the like, which are emitted either from the fuel reservoir or the carburetor bowl, are adsorbed on an adsorbent and thereafter desorbed and combusted in the engine.
The losses from the fuel reservoir tank are caused by factors which include the rising temperature of the fuel as the vehicle is operated and rising atmospheric temperatures which cause the reservoir or fuel tank to reathe through the vent, or vents, in the fuel tank thereby emitting unburned fuel constituents into the atmos phere. In many instances the temperature of the fuel reservoir may be from about to F. higher than the atmospheric or ambient temperature.
ice
Furthermore, after the engine has been operated for a period of time and then turned olf, the temperature of the fuel in the carburetor bowl rises as heat flows to the carburetor from the hot engine. The fuel is said to undergo a hot soak. Data have shown that the temperature of the fuel in the carburetor bowl can rise to as high as about 200 F. after the hot engine has been turned off. It has been estimated that the loss per hour from a gasoline tank may range from about 2 to grams per day and that the hot soak loss from the carburetor bowl may range from about 2 to 50 grams per hot soak.
Thus, in accordance with the present invention as hereinbefore mentioned, these fuel vapors are adsorbed on an adsorbent and then desorbed and combusted in the internal combustion engine. The process and apparatus of the present invention may be more fully understood by reference to the drawings illustrating embodiments of the same. FIGURE 1 illustrates the use of two adsorbent beds while FIGURE 2 illustrates an adaptation using a single bed.
Referring specifically to FIGURE 1, fuel tank or fuel reservoir 10, has a vapor space 1 and a fuel layer 2. Fuel tank 10 contains a conventional cap 3 permitting fuel to be introduced into the tank 10. Fuel cap 3 also contains a conventional vent which normally permits the tank to breathe whereby expanding vapors are emitted into the atmosphere. The vent on the tank 10 may be placed in other positions. In accordance with one conventional method liquid fuel is withdrawn from reservoir 10 by means of line 5, fuel pump 6 and introduced into carburetor bowl 20 by means of line 7. A conventional float, or equivalent means (not shown) positioned in carburetor bowl 20, controls the level of the liquid fuel in the carburetor bowl. Carburetor bowl 2%) is normally supplied with a vent 11, which permits vapors to pass into the atmosphere.
In accordance with conventional operation atmospheric air is introduced by means of line, or conduit, 12 and passes through an air filter 30. The air passes downwardly through the carburetor wherein fuel is Withdrawn from bowl 20 by means of line 8 and passed into a carburetion means 9 where the same is mixed with the incoming air. A choke element 31 is positioned normally ahead of the carburetion means 9. A flapper valve or element 14 controls the introduction of the fuel-air mixture into the intake manifold 40 which element distributes the fuelair mixture into the respective cylinders.
As pointed out heretofore, due to temperature variations and fuel tank breathing, fuel vapors pass from the tank 10 through the vent 4 and are lost into the atmosphere thereby causing contamination of the atmosphere. Also as pointed out heretofore, after the engine has been run for a time period the entire engine block is very hot and when the engine is turned off, the fuel in the carburetor bowl becomes quite warm reaching temperatures as high as F. and greater. This causes a portion of the fuel to be vaporized. The vapors are vented through vent 11 and further contaminate the atmosphere. Also, in addition, valuable fuel constituents are lost rather than combusted in the engine.
In accordance with the present invention, vents 4 and 11 and any other open vents which would allow loss of vapors from the fuel system to the atmosphere are closed off. A conduit 15 is atfixed to the fuel tank to provide communication to one end of an adsorption zone 50. Adsorption zone 50 contains a suitable adsorbent 17 for adsorbing vaporous fuel constituents. A vent 16 is provided at the other end of adsorption zone 50 which provides communication to the atmosphere.
The quantity of adsorbent 17 provided is sufficient to adsorb all vaporous fuel constituents emitted from tank 3 and to prevent any breakthrough of these constituents through vent 16.
The quantity of adsorbent required will be a function, among other factors, of the. particular engine design, environmental conditions and particular adsorbentor adsorbent mixture utilized. The adsorbent used in the descriptionof the drawing is activated carbon.
A conduit or line 18 communicates. with conduit intermediate fuel tank 10 and adsorption zone 50. This conduit preferably has an adjustment valve, or equivalent means, 19,so as to control the flow of vapors into a conduit 21 which communicates with intake manifold 4-0.
Thus, when the fuel in tank 10 emits vapors due to temperature rise, change in pressure, etc., and when the engine is not operating these vapors are adsorbed on the adsorbent in adsorption zone 50. When the engine is operating, the suction pressure or vacuum in manifold 40 not only will draw atmospheric air into air filter zone 30 but also will draw air in through vent 16, conduit 18; through conduit 21 into manifold 40. This will backwash or backfiow air through adsorption zone 50 from the other end to the one end in a manner to desorb the fuel constituents which were adsorbed previously on the adsorbent. As pointed out heretofore, the amount of adsorbent provided is sufficient so that when fuel constituents are being adsorbed none of these fuel constituents will pass into the atmosphere by meansof line or vent 16. The amount of backwash air passed through vent 16 controlled by valve 19 or equivalent means, is sufficient to desorb the previously adsorbed fuel constituents.
Referring to the carburetor bowl 20 when the engine is turned off after running, fuel constituents will vaporize and flow through line 22 into one end of a second adsorption bed 60 which is provided with an adsorbent which will adsorb the vaporized fuel constituents. Here again, sufiicient adsorbent is provided so as to prevent any breakthrough of the fuel constituents into line or conduit 23 provided near the top or at the other end of zone 60. This conduit 23 preferably communicates into air filter zone 30, although it may be vented'directly into the atmosphere by means of line 32 controlled by valve 33.
A conduit 24 communicates with conduit 22 intermediate zone 20 and the one end of zone 60. Conduit 24 also communicates with conduit 21 which communicates with the intake manifold 40. Thus, when the engine is operating,air flows from zone 30 through conduit 23 into the other end of zone 60 and backwashes through zone 60 so as to desorb the constituents previously adsorbed on the adsorbent. The desorbed constituents pass out of the one end of zone 60 and into the manifold 40 by means of conduits 24 and 21. A limiting orifice or equivalent means 25 may be provided to control the rate of flow and to balance the pressure drop as compared with the pressure drop across the flapper valve 14. The amount of air backwashed by means of line 23, is sufficient to desorb the fuel constituents previously adsorbed in zone 60.
Referring specifically to FIGURE 2, utilizing a single adsorbent bed, vaporized fuel constituents from fuel tank 100 are passed through line 101 and absorbed in zone 110 containing a suitable adsorbent 102. Liquid fuel is passed to the carburetor cup 120 by means of line 103, pump 104 and line 105. Vaporized constituents from the carburetor cup are passed into the lower or one end of zone 110 by means of line 106. Air is passed through filter zone 130 and into carburetion zone 121 where it is mixed with liquid fuel introduced from the carburetor cup. A flapper valve 122 controls the amount of air-fuel mixture introduced into intake manifold 140.
When the engine is operating a portion of the incoming air is passed through line 123 and enters the other end of zone 110 and backwashes through the adsorbent, thereby desorbing fuel constituents. The amount of air backwashing is sufficient to desorb the adsorbed constituents and is controlled by check valve or previously equivalent means 124. The backwashing air containing desorbed fuel constituents passes through line 125, through check valve 124 and is introduced into the intake manifold. The structure and method described ,with respect to FIGURE 2 is substantially the same as that described with respect to FIGURE 1 except that a single adsorbent bed is utilized.
The present invention may be more readily understood by the following examples illustrating adaptations of the same.
Example 1 Full scale operations in accordance with the present technique were conducted utilizing a 1962 Chevrolet automobile fitted with activated carbon breather canisters. The car was mounted on a dynamometer in a temperature controlled room. One canisterwas in communication with the gasoline fuel tank while the second canister was in communication as described with the carburetor bowl. All vents except through the canisters were closed; At the start of the engine operation, the room temperature, the gas tank and the carburetor bowl were at 60 F. The room temperature was gradually raised to F. with the car running at 30 mph with a road load. When the fuel in the gas tank reached F. in 60 to 80 minutes, the engine was stopped. During the hot soak the carburetor bowl reached a maximum temperature of 175. to F. The ambient room temperature was kept at 90 F. during the 60 minute, hot soak. Thus, in these tests, the engine was run for a period of 60 to 80 minutes and then turned off for a period of 60 minutes. After the hot soak, all temperatures were brought back to 60' F. Approximately 50 such runs were made.
The canister in communication with the fuel tank contained one gallon of activated carbon while the canister in communication with the carburetor cup contained about one quart of activated carbon.
No backwash was utilized to desorb adsorbed constituents until the respective canisters were saturated with fuel constituents and breakthrough of the fuel constituents occurred.
The results of these tests are illustrated in Chart 1 and Chart 2.
It is to be noted that with respect to Chart 1, 35 runs occurred before the activated carbon became saturated, containing about 380 grams of adsorbed hydrocarbons. When breakthrough occurred at this point the system was run as described with respect to the present invention whereby while the engine was running, backwash of atmospheric air was secured. It is to be noted that the amount of adsorbed constituents dropped to about 310 grams during engine operation and then picked up about 22 grams during nonengine operation. After about 50 runs, the amount of fuel after purge on the adsorbent was about 240 grams and when not running, about 252 grams. No fuel break-through occurred from the time backwashing began.
With respect to Chart 1 for experimental reasons purge or backwashing was carried out every other cycle. If backwashing had been carried out every cycle, then the pickup of fuel on the adsorbent would approximate about 5 grams each cycle. This is due to the fact that evaporation occurs from the tank while the engine is running and if backwashing is carried out this evaporation from the tank passes directly into the intake manifold together with desorbed constituents. If backwashing is not carried out while the engine is running, the evaporation from the tank which occurs while the engine is running passes into the adsorbent bed and is adsorbed thereon.
With respect to Chart 2, the canister is associated with curred to the atmosphere. The under-hood temperatures range up to about 160 F. during the hot soak.
Example 2 TAB LE I Run Number Weight of 1 Qt. Silica Gel Bed After Purge After Hot Soak Grams Grams 1, 198 1, 204 1, 198 1, 208 1, 197 1, 205 1, 197 1, 203 1, 199 1, 207 1, 198 1, 208 1, 198 1, 207 1, 199 1, 208 1, 199 1, 206
In the foregoing operation, an activated carbon guard adsorbent bed was positioned after the silica gel bed. This guard bed did not pick up any weight indicating that no losses were occurring through the silica gel bed and that this silica gel bed had attained steady state conditions.
Example 3 In another operation, similar to that described with respect to the foregoing examples, activated alumina was used as the adsorbent. No backwashing was employed until about the th run. During this period, approximately 24 grams of fuel was adsorbed. Backwashing was then employed with the result that the Weight of the adsorbent dropped below its original weight. This is due to the fact that water was being desorbed from the activated alumina. (See Chart 3).
It is apparent that steady state conditions were attained at about the th run wherein during the adsorption cycle, about 12 grams of fuel was picked up, which was desorbed on the backwashing cycle. It is to be noted that the guard canister of activated carbon did not gain any weight which indicated no leakage through the activated aluminum bed.
Example 4 Other operations were conducted as described wherein the activated carbon was saturated with Water prior to the adsorption and backwashing cycle. No adverse results Were secured when the activated carbon was saturated with water which indicates that the system will function in high humidity and fog conditions.
The present invention is adapted to provide and prevent contamination of the atmosphere when using any fuel utilized in an internal combustion engine. The fuels may be, for example, gasoline, diesel fuel or any type fuel containing hydrocarbons, alcohols, or other combustible liquid substances or mixtures.
The adsorbent may be any one which is adapted for adsorbing the vapor constituents of these fuels. Suitable adsorbents are, for example, activated carbon, silica gel, molecular sieves and activated alumina.
The amount of backwash or backflow required will be a function of the particular fuel used, the particular adsorbent used, the quantity of adsorbent used and temperature and pressure conditions.
In its broadest adaptation, the present invention covers the method of operating an engine wherein vaporous constituents of a fuel are adsorbed on an adsorbent and thereafter desorbed from said adsorbent and introduced into an internal combustion engine. The preferred adaptations are to adsorb vaporous constituents from liquid fuel reservoirs which are ahead of the carburetor and to adsorb these vaporous constituents on an adsorbent. These vaporous constituents are then desorbed by backflowing or backwashing atmospheric air by the action of the engine and then are introduced as an enriched fuel-air mixture into the engine. The apparatus features, in essence, comprise the utilization of a parallel airstream structure wherein the first airstream is a conventional one flowing through the carburetion Zone and into the manifold while the second stream backflows through a bed of adsorbent to remove therefrom vaporous constituents of the fuel previously adsorbed thereon, which second airstream is then introduced into the manifold. This second stream will also contain vapors emitted from the fuel tank and carburetor bowl during engine operation. One preferred adaptation of the present invention is for use with an internal combustion engine wherein the fuel is a hydrocarbon fuel such as a gasoline and where the adsorbent is activated carbon.
What is claimed is:
1. In a system for containing and subsequently consuming the vapors normally escaping to the atmosphere from the fuel supply for an internal combustion engine having an intake manifold for distributing a mixture of fuel and air to individual cylinders of said engine, a carburetor having air and fuel inlets for supplying a mixture of air and fuel to an inlet on said intake manifold, a fuel bowl associated with the carburetor for supplying fuel to said fuel inlets, an air horn on the carburetor for mounting an air filter at the air inlet to said carburetor, and means including a fuel tank for maintaining a substantially constant fuel level in said fuel bowl: the improvement in said system which comprises a pair of absorbent beds enclosed in separate closed containers, a first conduit connecting at its opposite ends with said fuel tank above the usual fuel level therein and one side of one of said containers, an atmospheric vent at an opposite side of said one of said containers, a second conduit, connecting at its opposite ends with said first conduit, intermediate its ends, and one side of the other of said containers, means connected at an opposite side of said other container for selectively opening or closing a vent from said other container to atmosphere, third and fourth conduits separately connected at their opposite ends with said intake manifold, and the top of said fuel bowl, respectively, and at spaced apart locations on said second conduit between opposite ends thereof, valve means in said second conduit for alternatively or simultaneously opening and closing communication of suction in said intake manifold by way of said third conduit with said one container and said tank or with said other container and said fuel bowl, and a fifth conduit connected at its opposite ends with the air horn of said carburetor and said other container between said selective venting means and said other container.
2. System as defined by claim 1 wherein said absorbent beds comprise activated carbon beds.
References Cited UNITED STATES PATENTS 3,001,519 9/1961 Dietrich et al. 123-136 3,093,124 6/1963 Wentworth 123136 3,191,587 6/1965 Hall 158.-36.4 3,221,724 12/1965 Wentworth 123-136 LAURENCE M. GOODRIDGE, Primary Examiner.

Claims (1)

1. IN A SYSTEM FOR CONTAINING AND SUBSEQUENTLY CONSUMING THE VAPORS NORMALLY ESCAPING TO THE ATMOSPHERE FROM THE FUEL SUPPLY FOR AN INTERNAL COMBUSTION ENGINE HAVING AN INTAKE MANIFOLD FOR DISTRIBUTING A MIXTURE OF FUEL AND AIR TO INDIVIDUAL CYLINDERS OF SAID ENGINE, A CARBURETOR HAVING AIR AND FUEL INLETS FOR SUPPLYING A MIXTURE OF AIR AND FUEL TO AN INLET ON SAID INTAKE MANIFOLD, A FUEL BOWL ASSOCIATED WITH THE CARBURETOR FOR SUPPLYING FUEL TO SID FUEL INLETS, AN AIR HORN ON THE CARBURETOR FOR MOUNTING AN AIR FILTER AT THE AIR INLET TO SAID CARBURETOR, AND MEANS INCLUDING A FUEL TANK FOR MAINTAINING A SUBSTANTIALLY CONSTANT FUEL LEVEL IN SAID FUEL BOWL: THE IMPROVEMENT IN SAID SYSTEM WHICH COMPRISES A PAIR OF ABSORBENT BEDS ENCLOSED IN SEPARATE CLOSED CONTAINERS, A FIRST CONDUIT CONNECTING AT ITS OPPOSITE ENDS WITH SAID FUEL TANK ABOVE THE USUAL FUEL LEVEL THEREIN AND ONE SIDE OF ONE OF SAID CONTAINERS, AN ATMOSPHERIC VENT AT AN OPPOSITE SIDE OF SAID ONE OF SAID CONTAINERS, A SECOND CONDUIT, CONNECTING AT ITS OPPOSITE ENDS WITH SAID FIRST CONDUIT, INTERMEDIATE ITS ENDS, AND ONE SIDE OF THE OTHER OF SAID CONTAINERS, MEANS CONNECTED AT AN OPPOSITE SIDE OF SAID OTHER CONTAINER FOR SELECTIVELY OPENING OR CLOSING A VENT FROM SAID OTHER CONTAINER TO ATMOSPHERE, THIRD AND FOURTH CONDUITS SEPARATELY CONNECTED AT THEIR OPPOSITE ENDS WITH SAID INTAKE MANIFOLD, AND THE TOP OF SAID SECOND CONDUIT BETWEEN AT SPACED APART LOCATIONS ON SAID SECOND CONDUIT BETWEEN OPPOSITE ENDS THEREOF, VALVE MEANS IN SAID SECOND CONDUIT FOR ALTERNATIVELY OR SIMULTANEOUSLY OPENING AND CLOSING COMMUNICATION OF SUCTION IN SAID INTAKE MANIFOLD BY WAY OF SAID THIRD CONDUIT WITH SAID ONE CONTAINER AND SAID TANK OR WITH SAID OTHER CONTAINER AND SAID FUEL BOWL, AND A FIFTH CONDUIT CONNECTED AT ITS OPPOSITE ENDS WITH THE AIR HORN OF SAID CARBURETOR AND SAID OTHER CONTAINER BETWEEN SAID SELECTIVE VENTING MEANS AND SAID OTHER CONTAINER.
US475475A 1965-07-28 1965-07-28 Process and device for preventing evaporation loss Expired - Lifetime US3352294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US475475A US3352294A (en) 1965-07-28 1965-07-28 Process and device for preventing evaporation loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US475475A US3352294A (en) 1965-07-28 1965-07-28 Process and device for preventing evaporation loss

Publications (1)

Publication Number Publication Date
US3352294A true US3352294A (en) 1967-11-14

Family

ID=23887730

Family Applications (1)

Application Number Title Priority Date Filing Date
US475475A Expired - Lifetime US3352294A (en) 1965-07-28 1965-07-28 Process and device for preventing evaporation loss

Country Status (1)

Country Link
US (1) US3352294A (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3543484A (en) * 1968-05-24 1970-12-01 Edwin R Davis Fuel vapor adsorbing apparatus
US3575152A (en) * 1969-10-01 1971-04-20 Gen Motors Corp Vapor recovery using a plurality of progressively absorbent beds connected in series
US3581782A (en) * 1968-12-23 1971-06-01 Burdsall & Ward Co Vapor emission control system
US3683878A (en) * 1971-02-16 1972-08-15 Joe E Rogers Apparatus for preventing escape of fuel vapor from internal combustion engine
US3709202A (en) * 1971-01-21 1973-01-09 Outboard Marine Corp Crankcase drainings recycling system
US3713273A (en) * 1971-05-03 1973-01-30 R Coffee Method and apparatus for storing gases and fueling internal combustion engines
JPS4943024A (en) * 1972-08-30 1974-04-23
US3854911A (en) * 1971-04-13 1974-12-17 B Walker Pressure fuel tank evaporation control
US3902874A (en) * 1973-12-13 1975-09-02 Shell Oil Co Vapor recovery and disposal system
US3913545A (en) * 1973-04-04 1975-10-21 Ford Motor Co Evaporative emission system
US3937198A (en) * 1974-01-24 1976-02-10 Chrysler Corporation Roll-over valve and vapor separator
US4025324A (en) * 1975-09-08 1977-05-24 Texaco Inc. Hydrocarbon vapor control unit and system
US4083344A (en) * 1976-01-08 1978-04-11 Toyota Jidosha Kogyo Kabushiki Kaisha System for controlling vaporized hydrocarbon of fuel for a gasoline engine
US4085721A (en) * 1966-05-09 1978-04-25 Exxon Research & Engineering Co. Evaporation purge control device
US4134378A (en) * 1977-10-03 1979-01-16 General Motors Corporation Balance tube fuel bowl vent system
US4166085A (en) * 1977-07-11 1979-08-28 Toyota Jidosha Kogyo Kabushiki Kaisha Carburetor
US4173207A (en) * 1976-01-14 1979-11-06 Toyota Jidosha Kogyo Kabushiki Kaisha Canister
DE2943452A1 (en) * 1978-11-30 1980-06-12 Gen Motors Corp FUEL SUPPLY FOR AN INTERNAL COMBUSTION ENGINE
US4279233A (en) * 1978-05-22 1981-07-21 Hitachi, Ltd. Device for trapping fuel vapor vaporized in fuel feed system of internal combustion engine
US4280466A (en) * 1979-03-26 1981-07-28 General Motors Corporation Evaporative emission control device
DE3012656A1 (en) * 1980-04-01 1981-10-08 Pierburg Gmbh & Co Kg, 4040 Neuss Carburettor with air rinsing system - has flow path including air vol. in float chamber between atmosphere and air intake
US4362130A (en) * 1981-05-26 1982-12-07 Antonio Robinson Supplementary composition for and a method of combustion-burning of gasoline
DE3346103A1 (en) * 1983-12-21 1985-07-18 Audi AG, 8070 Ingolstadt BLEEDING DEVICE FOR THE FUEL TANK OF A MOTOR VEHICLE
DE3515220A1 (en) * 1983-04-13 1986-10-30 Michigan Consolidated Gas Co., Detroit, Mich. CONTAINER FOR FUEL FROM HYDROCARBON GAS AND ENGINE SYSTEM FOR MOTOR VEHICLES
DE3632706A1 (en) * 1986-09-26 1987-01-29 Lothar Dr Jander Sealing-off and suction device for filler necks
US4683862A (en) * 1986-04-14 1987-08-04 General Motors Corporation Fuel vapor storage canister
US4714485A (en) * 1986-04-14 1987-12-22 General Motors Corporation Fuel vapor storage canister
DE3704641A1 (en) * 1987-02-14 1988-03-24 Daimler Benz Ag Device for catching fuel vapours when filling a fuel tank
US4894072A (en) * 1989-03-27 1990-01-16 General Motors Corporation High efficiency vapor storage canister
DE3916691A1 (en) * 1989-05-23 1990-11-29 Gabor Haynal Nozzle for filling fuel tank of motor vehicle - has suction pump to remove fuel vapour from fuel tank
US5021071A (en) * 1990-03-14 1991-06-04 General Motors Corporation Vehicle fuel tank pressure control method
DE4001831A1 (en) * 1990-01-23 1991-07-25 Ruiter Ernest De Activated charcoal filter - comprising three=dimensional matrix contg. activated charcoal pellets in pref. housing, useful motor vehicles
US5143041A (en) * 1989-06-28 1992-09-01 Robert Bosch Gmbh Venting device for a fuel tank of an internal combustion engine
US5148793A (en) * 1991-05-20 1992-09-22 General Motors Corporation Compartmental evaporative canister and pressure control valve assembly
DE4205433A1 (en) * 1991-02-03 1993-08-26 Fritz Curtius Reduction of fuel vapour-air mixture emission during filling of vehicle fuel tank - requires reducing partial pressure of inert gas (air) in tank prior to filling, either by warming fuel or by adding fuel from reserve tank.
US5288307A (en) * 1992-08-28 1994-02-22 The Dow Chemical Company Method to reduce fuel vapor emissions
WO1996028316A1 (en) * 1995-03-13 1996-09-19 Fritz Curtius Prevention of liquid emissions from vehicles
US5873920A (en) * 1996-09-27 1999-02-23 Dana Corporation Low restriction, high performance air filter
DE10102604A1 (en) * 2001-01-20 2002-07-25 Mann & Hummel Filter Air intake system, for an IC motor, has a connected fuel vapor filter to adsorb hydrocarbons and prevent their escape into the ambient environment
US6550238B2 (en) * 2000-08-17 2003-04-22 Daimlerchrysler Ag Apparatus for reducing the emission of vaporized hydrocarbons in a fuel supply system
DE10163923A1 (en) * 2001-12-22 2003-07-03 Mahle Filtersysteme Gmbh Ventilation device of the fuel tank of an internal combustion engine
US20030145732A1 (en) * 2002-02-07 2003-08-07 Leffel Jeffry Marvin Screened carbon trap protection
US20040182240A1 (en) * 2003-03-19 2004-09-23 Bause Daniel E. Evaporative emissions filter
US6896852B1 (en) * 2000-03-29 2005-05-24 Delphi Technologies, Inc. Hydrocarbon bleed emission scrubber with low restriction
US20050145224A1 (en) * 2003-03-19 2005-07-07 Zulauf Gary B. Evaporative emissions filter
US20050274364A1 (en) * 2004-06-14 2005-12-15 Kirk J D Evaporative emissions control system for small internal combustion engines
US20060042468A1 (en) * 2004-08-26 2006-03-02 Smith Robert L Adsorptive assembly and method of making the same
US20060096584A1 (en) * 2004-11-05 2006-05-11 Shears Peter D Integrated fuel tank and vapor containment system
US7086390B2 (en) 2004-11-05 2006-08-08 Briggs & Stratton Corporation Integrated fuel tank and vapor containment system
US7159577B2 (en) 2002-04-12 2007-01-09 Briggs And Stratton Corporation Stationary evaporative emission control system
US7281525B2 (en) 2006-02-27 2007-10-16 Briggs & Stratton Corporation Filter canister family
US7435289B2 (en) 2005-09-27 2008-10-14 Briggs & Stratton Corporation Integrated air cleaner and vapor containment system
US20090007890A1 (en) * 2007-07-05 2009-01-08 Ford Global Technologies, Llc Multi-Path Evaporative Purge System for Fuel Combusting Engine
US20090120071A1 (en) * 2007-11-12 2009-05-14 Ford Global Technologies, Llc. Hydrocarbon Retaining System for Flex-Fuel Combustion Engine
US20090288645A1 (en) * 2008-05-21 2009-11-26 Ford Global Technologies, Llc Evaporative Emission Management For Vehicles
DE102010019373A1 (en) 2010-05-05 2011-11-10 Volkswagen Ag Ventilation system for providing ventilation to fuel tank in internal combustion engine of vehicle, has vent pipes joined in combustion engine supply line, where engine supply line is connected with air intake of combustion engine
DE102011001310A1 (en) 2011-03-16 2012-09-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Tank system for a motor vehicle
US8899158B2 (en) 2012-07-31 2014-12-02 Electro-Motive Diesel, Inc. Consist having self-powered tender car
US8919259B2 (en) 2012-07-31 2014-12-30 Electro-Motive Diesel, Inc. Fuel system for consist having daughter locomotive
US8925465B2 (en) 2012-07-31 2015-01-06 Electro-Motive Diesel, Inc. Consist having self-propelled tender car
US8955444B2 (en) 2012-07-31 2015-02-17 Electro-Motive Diesel, Inc. Energy recovery system for a mobile machine
US8960100B2 (en) 2012-07-31 2015-02-24 Electro-Motive Diesel, Inc. Energy recovery system for a mobile machine
US9073556B2 (en) 2012-07-31 2015-07-07 Electro-Motive Diesel, Inc. Fuel distribution system for multi-locomotive consist
US9193362B2 (en) 2012-07-31 2015-11-24 Electro-Motive Diesel, Inc. Consist power system having auxiliary load management
US9234472B2 (en) 2012-08-08 2016-01-12 Caterpillar Inc. Dual fuel engine and evaporated natural gas system
DE102015217611A1 (en) * 2015-09-15 2017-03-16 Kautex Textron Gmbh & Co. Kg Motor vehicle tank system
US20170087980A1 (en) * 2014-07-21 2017-03-30 Bayerische Motoren Werke Aktiengesellschaft Tank System for a Motor Vehicle Having a Volume Modifying Element
US20170184059A1 (en) * 2011-03-16 2017-06-29 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Tank system for a motor vehicle
US10677200B2 (en) * 2018-09-27 2020-06-09 GM Global Technology Operations LLC Hydrocarbon emission control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001519A (en) * 1960-08-08 1961-09-26 Gen Motors Corp Fuel vapor loss elimination system
US3093124A (en) * 1960-12-23 1963-06-11 Gen Motors Corp Engine fuel vapor recovery system and method
US3191587A (en) * 1965-06-29 Device for controlling the hydrocar- bon evaporation losses from automo- tive vehicles
US3221724A (en) * 1964-01-27 1965-12-07 Gen Motors Corp Vapor recovery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3191587A (en) * 1965-06-29 Device for controlling the hydrocar- bon evaporation losses from automo- tive vehicles
US3001519A (en) * 1960-08-08 1961-09-26 Gen Motors Corp Fuel vapor loss elimination system
US3093124A (en) * 1960-12-23 1963-06-11 Gen Motors Corp Engine fuel vapor recovery system and method
US3221724A (en) * 1964-01-27 1965-12-07 Gen Motors Corp Vapor recovery system

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085721A (en) * 1966-05-09 1978-04-25 Exxon Research & Engineering Co. Evaporation purge control device
US3543484A (en) * 1968-05-24 1970-12-01 Edwin R Davis Fuel vapor adsorbing apparatus
US3581782A (en) * 1968-12-23 1971-06-01 Burdsall & Ward Co Vapor emission control system
US3575152A (en) * 1969-10-01 1971-04-20 Gen Motors Corp Vapor recovery using a plurality of progressively absorbent beds connected in series
US3709202A (en) * 1971-01-21 1973-01-09 Outboard Marine Corp Crankcase drainings recycling system
US3683878A (en) * 1971-02-16 1972-08-15 Joe E Rogers Apparatus for preventing escape of fuel vapor from internal combustion engine
US3854911A (en) * 1971-04-13 1974-12-17 B Walker Pressure fuel tank evaporation control
US3713273A (en) * 1971-05-03 1973-01-30 R Coffee Method and apparatus for storing gases and fueling internal combustion engines
JPS4943024A (en) * 1972-08-30 1974-04-23
US3913545A (en) * 1973-04-04 1975-10-21 Ford Motor Co Evaporative emission system
US3902874A (en) * 1973-12-13 1975-09-02 Shell Oil Co Vapor recovery and disposal system
US3937198A (en) * 1974-01-24 1976-02-10 Chrysler Corporation Roll-over valve and vapor separator
US4025324A (en) * 1975-09-08 1977-05-24 Texaco Inc. Hydrocarbon vapor control unit and system
US4083344A (en) * 1976-01-08 1978-04-11 Toyota Jidosha Kogyo Kabushiki Kaisha System for controlling vaporized hydrocarbon of fuel for a gasoline engine
US4173207A (en) * 1976-01-14 1979-11-06 Toyota Jidosha Kogyo Kabushiki Kaisha Canister
US4166085A (en) * 1977-07-11 1979-08-28 Toyota Jidosha Kogyo Kabushiki Kaisha Carburetor
US4134378A (en) * 1977-10-03 1979-01-16 General Motors Corporation Balance tube fuel bowl vent system
US4279233A (en) * 1978-05-22 1981-07-21 Hitachi, Ltd. Device for trapping fuel vapor vaporized in fuel feed system of internal combustion engine
DE2943452A1 (en) * 1978-11-30 1980-06-12 Gen Motors Corp FUEL SUPPLY FOR AN INTERNAL COMBUSTION ENGINE
US4280466A (en) * 1979-03-26 1981-07-28 General Motors Corporation Evaporative emission control device
DE3012656A1 (en) * 1980-04-01 1981-10-08 Pierburg Gmbh & Co Kg, 4040 Neuss Carburettor with air rinsing system - has flow path including air vol. in float chamber between atmosphere and air intake
US4362130A (en) * 1981-05-26 1982-12-07 Antonio Robinson Supplementary composition for and a method of combustion-burning of gasoline
DE3515220A1 (en) * 1983-04-13 1986-10-30 Michigan Consolidated Gas Co., Detroit, Mich. CONTAINER FOR FUEL FROM HYDROCARBON GAS AND ENGINE SYSTEM FOR MOTOR VEHICLES
DE3346103C2 (en) * 1983-12-21 1986-10-30 Audi AG, 8070 Ingolstadt Ventilation device for the fuel tank of a motor vehicle
DE3346103A1 (en) * 1983-12-21 1985-07-18 Audi AG, 8070 Ingolstadt BLEEDING DEVICE FOR THE FUEL TANK OF A MOTOR VEHICLE
US4683862A (en) * 1986-04-14 1987-08-04 General Motors Corporation Fuel vapor storage canister
US4714485A (en) * 1986-04-14 1987-12-22 General Motors Corporation Fuel vapor storage canister
DE3632706A1 (en) * 1986-09-26 1987-01-29 Lothar Dr Jander Sealing-off and suction device for filler necks
DE3704641A1 (en) * 1987-02-14 1988-03-24 Daimler Benz Ag Device for catching fuel vapours when filling a fuel tank
US4894072A (en) * 1989-03-27 1990-01-16 General Motors Corporation High efficiency vapor storage canister
DE3916691A1 (en) * 1989-05-23 1990-11-29 Gabor Haynal Nozzle for filling fuel tank of motor vehicle - has suction pump to remove fuel vapour from fuel tank
US5143041A (en) * 1989-06-28 1992-09-01 Robert Bosch Gmbh Venting device for a fuel tank of an internal combustion engine
DE4001831A1 (en) * 1990-01-23 1991-07-25 Ruiter Ernest De Activated charcoal filter - comprising three=dimensional matrix contg. activated charcoal pellets in pref. housing, useful motor vehicles
US5021071A (en) * 1990-03-14 1991-06-04 General Motors Corporation Vehicle fuel tank pressure control method
DE4205433A1 (en) * 1991-02-03 1993-08-26 Fritz Curtius Reduction of fuel vapour-air mixture emission during filling of vehicle fuel tank - requires reducing partial pressure of inert gas (air) in tank prior to filling, either by warming fuel or by adding fuel from reserve tank.
DE4205433C2 (en) * 1991-02-03 2001-05-03 Fritz Curtius Method and device for reducing emissions from refueling
US5148793A (en) * 1991-05-20 1992-09-22 General Motors Corporation Compartmental evaporative canister and pressure control valve assembly
US5288307A (en) * 1992-08-28 1994-02-22 The Dow Chemical Company Method to reduce fuel vapor emissions
WO1996028316A1 (en) * 1995-03-13 1996-09-19 Fritz Curtius Prevention of liquid emissions from vehicles
US5873920A (en) * 1996-09-27 1999-02-23 Dana Corporation Low restriction, high performance air filter
US7118716B2 (en) 2000-03-29 2006-10-10 Delphi Technologies, Inc Hydrocarbon bleed emission scrubber with low restriction
US20050123458A1 (en) * 2000-03-29 2005-06-09 Meiller Thomas C. Hydrocarbon bleed emission scrubber with low restriction
US6896852B1 (en) * 2000-03-29 2005-05-24 Delphi Technologies, Inc. Hydrocarbon bleed emission scrubber with low restriction
US6550238B2 (en) * 2000-08-17 2003-04-22 Daimlerchrysler Ag Apparatus for reducing the emission of vaporized hydrocarbons in a fuel supply system
DE10102604A1 (en) * 2001-01-20 2002-07-25 Mann & Hummel Filter Air intake system, for an IC motor, has a connected fuel vapor filter to adsorb hydrocarbons and prevent their escape into the ambient environment
US7163004B2 (en) 2001-12-22 2007-01-16 Mahle Filtersysteme Gmbh Ventilation system for a fuel tank of an internal combustion engine
DE10163923A1 (en) * 2001-12-22 2003-07-03 Mahle Filtersysteme Gmbh Ventilation device of the fuel tank of an internal combustion engine
US20050126549A1 (en) * 2001-12-22 2005-06-16 Frank Reiners Ventilation system for a fuel tank of an internal combustion engine
US6758885B2 (en) * 2002-02-07 2004-07-06 Visteon Global Technologies, Inc. Screened carbon trap protection
US20030145732A1 (en) * 2002-02-07 2003-08-07 Leffel Jeffry Marvin Screened carbon trap protection
US7159577B2 (en) 2002-04-12 2007-01-09 Briggs And Stratton Corporation Stationary evaporative emission control system
US20040182240A1 (en) * 2003-03-19 2004-09-23 Bause Daniel E. Evaporative emissions filter
US7182802B2 (en) * 2003-03-19 2007-02-27 Honeywell International, Inc. Evaporative emissions filter
US20100101542A1 (en) * 2003-03-19 2010-04-29 Zulauf Gary B Evaporative emissions filter
US20080184891A1 (en) * 2003-03-19 2008-08-07 Zulauf Gary B Evaporative emissions filter
US7344586B2 (en) 2003-03-19 2008-03-18 Honeywell International, Inc. Evaporative emissions filter
US20050145224A1 (en) * 2003-03-19 2005-07-07 Zulauf Gary B. Evaporative emissions filter
US7163574B2 (en) 2003-03-19 2007-01-16 Honeywell International, Inc. Evaporative emissions filter
US20050000362A1 (en) * 2003-03-19 2005-01-06 Bause Daniel E. Evaporative emissions filter
US8216349B2 (en) * 2003-03-19 2012-07-10 Fram Group Ip Llc Evaporative emissions filter
US7655166B2 (en) * 2003-03-19 2010-02-02 Honeywell International Inc. Evaporative emissions filter
US7165536B2 (en) * 2004-06-14 2007-01-23 Tecumseh Products Company Evaporative emissions control system for small internal combustion engines
US20050274364A1 (en) * 2004-06-14 2005-12-15 Kirk J D Evaporative emissions control system for small internal combustion engines
US7377966B2 (en) 2004-08-26 2008-05-27 Honeywell International, Inc. Adsorptive assembly and method of making the same
US20060042468A1 (en) * 2004-08-26 2006-03-02 Smith Robert L Adsorptive assembly and method of making the same
US7185640B2 (en) 2004-11-05 2007-03-06 Briggs & Stratton Corporation Integrated fuel tank and vapor containment system
US7086390B2 (en) 2004-11-05 2006-08-08 Briggs & Stratton Corporation Integrated fuel tank and vapor containment system
US20060096584A1 (en) * 2004-11-05 2006-05-11 Shears Peter D Integrated fuel tank and vapor containment system
US7435289B2 (en) 2005-09-27 2008-10-14 Briggs & Stratton Corporation Integrated air cleaner and vapor containment system
US7281525B2 (en) 2006-02-27 2007-10-16 Briggs & Stratton Corporation Filter canister family
US20090007890A1 (en) * 2007-07-05 2009-01-08 Ford Global Technologies, Llc Multi-Path Evaporative Purge System for Fuel Combusting Engine
US8191536B2 (en) * 2007-07-05 2012-06-05 Ford Global Technologies, Llc Multi-path evaporative purge system for fuel combusting engine
US8261531B2 (en) * 2007-11-12 2012-09-11 Ford Global Technologies, Llc Hydrocarbon retaining system for flex-fuel combustion engine
US20090120071A1 (en) * 2007-11-12 2009-05-14 Ford Global Technologies, Llc. Hydrocarbon Retaining System for Flex-Fuel Combustion Engine
US7762241B2 (en) * 2008-05-21 2010-07-27 Ford Global Technologies, Llc Evaporative emission management for vehicles
US20090288645A1 (en) * 2008-05-21 2009-11-26 Ford Global Technologies, Llc Evaporative Emission Management For Vehicles
DE102010019373A1 (en) 2010-05-05 2011-11-10 Volkswagen Ag Ventilation system for providing ventilation to fuel tank in internal combustion engine of vehicle, has vent pipes joined in combustion engine supply line, where engine supply line is connected with air intake of combustion engine
DE102011001310A1 (en) 2011-03-16 2012-09-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Tank system for a motor vehicle
US11371471B2 (en) * 2011-03-16 2022-06-28 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Tank system for a motor vehicle
US20170184059A1 (en) * 2011-03-16 2017-06-29 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Tank system for a motor vehicle
US9073556B2 (en) 2012-07-31 2015-07-07 Electro-Motive Diesel, Inc. Fuel distribution system for multi-locomotive consist
US8955444B2 (en) 2012-07-31 2015-02-17 Electro-Motive Diesel, Inc. Energy recovery system for a mobile machine
US8960100B2 (en) 2012-07-31 2015-02-24 Electro-Motive Diesel, Inc. Energy recovery system for a mobile machine
US8925465B2 (en) 2012-07-31 2015-01-06 Electro-Motive Diesel, Inc. Consist having self-propelled tender car
US9193362B2 (en) 2012-07-31 2015-11-24 Electro-Motive Diesel, Inc. Consist power system having auxiliary load management
US8919259B2 (en) 2012-07-31 2014-12-30 Electro-Motive Diesel, Inc. Fuel system for consist having daughter locomotive
US9718478B2 (en) 2012-07-31 2017-08-01 Electro-Motive Diesel, Inc. Fuel system for consist having daughter locomotive
US8899158B2 (en) 2012-07-31 2014-12-02 Electro-Motive Diesel, Inc. Consist having self-powered tender car
US9234472B2 (en) 2012-08-08 2016-01-12 Caterpillar Inc. Dual fuel engine and evaporated natural gas system
US20170087980A1 (en) * 2014-07-21 2017-03-30 Bayerische Motoren Werke Aktiengesellschaft Tank System for a Motor Vehicle Having a Volume Modifying Element
US10675967B2 (en) * 2014-07-21 2020-06-09 Bayerische Motoren Werke Aktiengesellschaft Tank system for a motor vehicle having a volume modifying element
DE102015217611A1 (en) * 2015-09-15 2017-03-16 Kautex Textron Gmbh & Co. Kg Motor vehicle tank system
US10677200B2 (en) * 2018-09-27 2020-06-09 GM Global Technology Operations LLC Hydrocarbon emission control system

Similar Documents

Publication Publication Date Title
US3352294A (en) Process and device for preventing evaporation loss
US3460522A (en) Evaporation control device-pressure balance valve
US3221724A (en) Vapor recovery system
US3191587A (en) Device for controlling the hydrocar- bon evaporation losses from automo- tive vehicles
US3575152A (en) Vapor recovery using a plurality of progressively absorbent beds connected in series
US6230693B1 (en) Evaporative emission canister with heated adsorber
US7467620B1 (en) Evaporative emission control system with new adsorbents
US3884204A (en) Tank fill vapor control
US6279548B1 (en) Evaporative emission control canister system for reducing breakthrough emissions
US3368326A (en) Means for preventing hydrocarbon losses from an engine carburetor system
US6769415B2 (en) Evaporative control system
US3515107A (en) Two-bed evaporative loss control device
CA1056671A (en) Method and apparatus for recycling hydrocarbon vapours in the carburator
US3748829A (en) Adsorbing evaporative emission during fueling of automotive vehicles
US3456635A (en) Means for preventing hydrocarbon losses from an engine carburetor system
US4028075A (en) Fuel tank cap
US6959696B2 (en) Internal combustion engine evaporative emission control system
US4085721A (en) Evaporation purge control device
JP2857658B2 (en) Evaporative fuel emission suppression device
US4279233A (en) Device for trapping fuel vapor vaporized in fuel feed system of internal combustion engine
US5148793A (en) Compartmental evaporative canister and pressure control valve assembly
US4058380A (en) Carbon cell
US3393669A (en) Apparatus and process for adsorbing and desorbing internal combustion engine fuel vapors
US3289711A (en) Device for controlling the hydrocarbon evaporation losses from automotive vehicles
US4886096A (en) Evaporative emission control system