US3357989A - Metal free phthalocyanine in the new x-form - Google Patents

Metal free phthalocyanine in the new x-form Download PDF

Info

Publication number
US3357989A
US3357989A US505723A US50572365A US3357989A US 3357989 A US3357989 A US 3357989A US 505723 A US505723 A US 505723A US 50572365 A US50572365 A US 50572365A US 3357989 A US3357989 A US 3357989A
Authority
US
United States
Prior art keywords
phthalocyanine
metal
alpha
beta
free phthalocyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US505723A
Inventor
John F Byrne
Philip F Kurz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US505723A priority Critical patent/US3357989A/en
Priority to NL6615262A priority patent/NL6615262A/xx
Priority to DE19661619654 priority patent/DE1619654A1/en
Priority to FR81947A priority patent/FR1508173A/en
Priority to GB48357/66A priority patent/GB1169901A/en
Application granted granted Critical
Publication of US3357989A publication Critical patent/US3357989A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0025Crystal modifications; Special X-ray patterns
    • C09B67/0026Crystal modifications; Special X-ray patterns of phthalocyanine pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0032Treatment of phthalocyanine pigments

Definitions

  • This invention relates to phthalocyanine in general and, more specifically, to a new polymorphic form of metalfree phthalocyanine.
  • This application is a continuation-inpart of copending application Ser. No. 375,191, filed June 15, I964.
  • Phthalocyanine which also is known as tetrabenzotetraazaporphin and tetrabenzoporphyrazine, may be said to be the condensation product of four isoindole groups.
  • Metal-free phthalocyanine has the following general In addition to the metal-free phthalocyanine of the above structure, various metal derivatives of phthalocyanine are known in which the two hydrogen atoms in the center of the molecule are replaced by metals from any group of the periodic table. Also, it is well known that from one to sixteen of the peripheral hydrogen atoms in the four benzene rings of the phthalocyanine molecule may be replaced by halogen atoms and by numerous organic and inorganic groups. The following discussion is directed primarily to substituted and unsubstituted metalfree phthalocyanine.
  • Phthalocyanine is known to exist in at least three polymorphic forms which may be easily distinguished by comparison of their X-ray diffraction patterns and/or infrared spectra. Also, the color of the pigment varies according to the polymorphic form, the beta form being greener than the alpha or gamma forms. As discussed in more detail below, there is some question whether the reported gamma form is actually a separate polymorph, or is instead merely a less crystalline form of alpha phthalocyanine. In addition to these three well-known forms, which exist in both metal containing and metal-free phthalocyanine, additional polymorphs of metal-containing phthalocyanine are known, i.e., R-form disclosed in US. Patent 3,051,721, delta form described in US. Patent 3,160,635 and another delta form described in US. Patent 3,150,150.
  • X-form phthalocyanine metal-free phthalocyanine exists in an additional form, hereinafter referred to as X-form phthalocyanine.
  • X-form phthalocyanine has utility as a photoconductive material in electrophotography when mixed with a binder and coated onto a substrate.
  • the resulting electrophotographio plate has surprisingly high photosensitivity when the phthalocyanine is either entirely X-form or a mixture of X-form and alpha form phthalocyanine.
  • FIG. 1 shows X-ray patterns for alpha, beta and X-forrn polymorph for samples preferred in the laboratory.
  • FIG. 2 shows infrared patterns for alpha, beta and X-form polymorph for samples prepared in the laboratory.
  • FIG. 1 shows a set of curves comparing alpha, beta and X-forms of metal-free phthalocyanine arranged in vertical alignment for easy comparison.
  • the samples of each form of phthalocyanine tested by X-ray diffraction was prepared in the laboratory and analyzed on the same equipment by the same operator to insure consistency.
  • the samples used to produce the curve for alpha form was commercial Monolite Fast Blue GS, a mixture of alpha and beta metal-free phthalocyanine available from the Arnold Hoffman Co., a division of ICI, Ltd. This pigment was entirely converted to alpha form before testing by solvent extraction with dichlorobenzene, washing with acetone and precipitation from sulfuric acid in ice water.
  • the beta form sample which produced the curve shown in FIG. 1 was prepared by suspending commercial Monolite Fast Blue GS in triethylenetetramine at a concentration of 1 part pigment to 5 parts triethylenetetramine by weight for four days at about 23 C. The pigment was then washed with methanol and dried.
  • the X-form phthalocyanine which produced the curve shown was prepared as follows.
  • Commercial Monolite Fast Blue GS was solvent extracted with dichlorobenzene, then washed with acetone and dried.
  • the pigment was then dissolved in sulfuric acid and precipitated in ice water.
  • the precipitate was washed with methanol and dried.
  • the pigment was then neat milled in a ball mill fod 7 days, washed with dirnethyl formamide and then with methanol.
  • X-form phthalocyanine differs dramatically from alpha and beta forms.
  • the spectra for X-form has peaks at Bragg angles of about 17.3 and 22.3 which do not exist with the alpha and beta polymorphs.
  • X-form shows a peak at about 9.1 which is not present with alpha form, and is of lower intensity then the corresponding peaks for beta-form.
  • beta-form has peaks at about 26.2, 18.0, 14.1 and 7.0 and alpha form has peaks at about 26.7, 13.6 and 6.8 which do not occur with X-form.
  • FIG.2 shows infrared spectra for alpha, beta and X- form phthalocyanine samples which were prepared in the laboratory. The spectra were obtained by the same operator on the same equipment to insure consistency. The samples of alpha, beta and X-form phthalocyanine tested here were prepared by the methods described above in the description of FIG. 1. The spectra for X-form phthalocyanine differs markedly from those for alpha, and beta forms.
  • the alpha form these exist at 708, 724, 728 and 733 cmf In the beta form they are shifted to the higher frequencies of 715, 725, 732 and 745 cm.-
  • the X- form had the same C- -I deformation bands as the beta, but in this spectra, differences are shown as a change in the intensity ratio for the 765 and 755 Cl'l'lf bands. For the beta, the intensities are nearly equal, but with the X-forrn, the intensity of the 765 crn. is about twice that of the 775 cm? band.
  • band changes such as those between 1250 and 1350 cm? can be used to characterize the three forms.
  • the relative ratios for the four bands are quite different for the three forms, as can be seen in FIG. 2.
  • the starting material in each of the following examples is Monolite Fast Blue GS, a mixture of alpha and beta forms of metal-free phthalocyanine available from the Arnold Hoffman Company.
  • this starting material for the process of preparing X-form phthalocyanine may be prepared by any conventional method.
  • any of the methods of preparing alpha or beta metal-free phthalocyanine described by F. Moser and A. Thomas in Phthalocyanine Compounds, ACS Monograph 157, Reinhold Publishing Company (1963) may be used if desired.
  • a metal-free phthalocyanine may be converted to the X-form phthalocyanine of this invention, broadly, by neat milling or salt milling alpha phthalocyanine for a sufficient time.
  • samples should be taken at regular intervals and examined by either infrared or X-ray analysis.
  • the time necessary for complete conversion by the particular milling process may be thus empirically determined for later production of additional X-form phthalocyanine by the same process.
  • the following examples described particular preferred embodiments of methods of producing X-form metal-free phthalocyanine.
  • Example I About 100 parts Monolite Fast Blue GS, a mixture of alpha and beta forms of metal-free phthalocyanine available from Arnold Hoffman Company, is purified by extraction with a mixture of equal volumes of O-dichlorobenzene and methanol at about 50 C. for about 24 hours in a Soxhlet extraction unit. The phthalocyanine is then added portion-wise to concentrated sulfuric at a ratio of about 1 part phthalocyanine to about 6 parts sulfuric acid at about C. The mixture is stirred at icebatlr temperature for about 1 /2 hours, then filtered through a coarse sintered glass funnel. Precipitation is effected by pouring the solution slowly into about 5 times its volume of a well-stirred ice-water mixture.
  • the phthalocyanine precipitates immediately; after allowing the suspension to sit for about minutes, the product is isolated by filtration. The resultant cake is washed to neutrality with distilled water, rinsed several times with acetone, and dried in air for several days. X-ray and infrared analysis show this phthalocyanine to be alphaform metal-free phthalocyanine.
  • Example III A sample of alpha form metal-free phthalocyanine is prepared as in Example I above. About 0.5 gram of the phthalocyanine is placed in a Spex Mixer Mill unit for grinding. This is a small grinding apparatus, commonly used by dentists, which consists of a stainless steel cylinder (1 inch long and /2 inch in diameter) and a single stainless steel ball inch in diameter) which functions via a high speed oscillating action. This provides a highly efficient milling action. All of the phthalocyanine sample is found to have converted to X-form after two hours of grinding. Since conversion to X-form is more rapid in neat milling than in salt milling, and even more rapid in the Spex Mixer Mill unit, it can be tentatively concluded that for formation of X-form phthalocyanine, highly efficient grinding action is preferable.
  • Example IV About 50 parts magnesium phthalocyanine is slowly stirred into about 500 parts of 96 percent sulfuric acid, the mixture is stirred and maintained at about 3 C. The solution is filtered through a coarse sintered glass funnel and is washed with more acid. The sulfuric acid solution is then run slowly into ice made from distilled water. The blue precipitate is collected on a filter, washed acid free, and dried. About 30 parts of alpha metal-free phthalocyanine is produced, as shown by infrared and X-ray analysis.
  • Any suitable grinding process may be used to convert alpha, or beta metal-free phthalocyanine to the X-polymorph.
  • Typical grinding processes include ball milling with ceramic or metallic balls, salt milling using ceramic or metallic balls, and a grinding aid such as sodium chloride and milling using Spex Mixer Mills. Where the phthalocyanine is salt milled, any suitable milling aid may be used.
  • Typical milling aids include sodium chloride, sodium bicarbonate, hydrosodium sulfate, and mixtures thereof.
  • the starting material may be metal-containing or metalfree phthalocyanine prepared by any conventional process. Typical phthalocyanine synthesis are described by Frank H. Moser and Arthur L. Thomas in the above mentioned book. Where the phthalocyanine used is metalcontaining, the preliminary purification steps should include the removal of the metal atom. Typical methods of preparing metal-free phthalocyanine from metal phthalocyanine are described in pages 108-118 of the above cited Moser and Thomas book. In general, alpha form may be produced from a mixture of different forms by milling with sodium chloride alone. Beta form may be similarly produced by milling with sodium chloride and xylene or some other aromatic solvent. Thus, if alpha form metal-free phthalocyanine is subjected to grinding, it will convert directly to X-forrn while the beta and gamma form starting material will convert first to alpha form and then to X-form during milling.
  • compositions of this invention are, as discussed above, especially useful as photoconductive materials in electrophotography.
  • the X-polymorph of metal-free phthalocyanine may be used in the preparation of polymeric phthalocyanine as described in copending application Ser. No. 468,983, filed July 1, 1965. These compositions are also useful as pigments in inks, paints, varnishes, molded synthetic resin objects, etc. These compositions may have other materials mixed therewith for particular applications to enhance, synergize or otherwise modify their properties.
  • Nk 2d sin 0
  • A the wavelength of the X-radiation (here, 1.54050 A.)
  • d the spacing which gives rise to the interference phenomenon
  • 0 the Bragg scattering angle
  • Metay-free phthalocyanine in the X-form having an X-ray diffraction pattern exhibiting strong lines at Bragg angles of 7.5, 9.1, 16.7, 17.3 and 22.3.
  • the X-forrn metal-free phthalocyanine of claim 1 which also has a strong infrared absorption band at 746 cmr has three peaks between 700 and 750 cm.” and has bands of about equal intensity at 1318 and 1330 cmr' References Cited UNITED STATES PATENTS 1/1958 Ehrich 260-3145 8/1962 Wheeler 260-3145 OTHER REFERENCES WALTER A. MODANCE, Primary Examiner.

Description

Dec. 12, 1967 J. F. BYRNE ETAL METAL FREE PHTHALOCYANINE IN THE NEW X-FORM Filed 001;. 29, 1965 INTENSITY l I l I I l l I l lllllllllllll 2 Sheets-Sheet l lllll |il|lll|lll|l|lljllIlllllllll BRAGG ANGLE (29) INVENTORS. JOHN F. BYRNE PHILIP F. KURZ U ATTORNEYS 1967 J. F. BYRNE ETAL 3,357,989
METAL FREE PIITIIALOCYANINE IN THE NEW X-FORM Filed Oct. 29, 1965 2 Sheets-Sheet 2 I I I l l I I l l l l I I l I I I I I I I I l l I (I) Z E 5 ,6
I: I I I I I I l I I I I I I I I I l l l l I l I I I I I I I I l I I I I l l l I I I I IW'I l I I l I I I800 I600 I400 I200 I000 800 e00 400 FREQUENCY (cM') Y INVENTORS. JOHN F. BYRNE F/G 2 BY W PHILIP F. KURZ ATTORNEYS structure.
United States Patent 3,357,989 METAL FREE PHTHALOCYANINE IN THE NEW X-FORM John F. Byrne and Philip F. Kurz, Columbus, Ohio, as-
signors, by mesne assignments, to Xerox Corporation,
Rochester, N .Y., a corporation of New York Filed Oct. 29, 1965, Ser. No. 505,723
2 Claims. (Cl. 260-3145) ABSTRACT OF THE DISCLOSURE A new polymorphic form of metal-free phthalocyanine is disclosed. This polymorph, referred to as the X-form, is identified by X-ray and infrared spectra. Several methods of preparing the X-form of metal-free phthalocyanine are disclosed,
This invention relates to phthalocyanine in general and, more specifically, to a new polymorphic form of metalfree phthalocyanine. This application is a continuation-inpart of copending application Ser. No. 375,191, filed June 15, I964.
Phthalocyanine, which also is known as tetrabenzotetraazaporphin and tetrabenzoporphyrazine, may be said to be the condensation product of four isoindole groups. Metal-free phthalocyanine has the following general In addition to the metal-free phthalocyanine of the above structure, various metal derivatives of phthalocyanine are known in which the two hydrogen atoms in the center of the molecule are replaced by metals from any group of the periodic table. Also, it is well known that from one to sixteen of the peripheral hydrogen atoms in the four benzene rings of the phthalocyanine molecule may be replaced by halogen atoms and by numerous organic and inorganic groups. The following discussion is directed primarily to substituted and unsubstituted metalfree phthalocyanine.
Phthalocyanine is known to exist in at least three polymorphic forms which may be easily distinguished by comparison of their X-ray diffraction patterns and/or infrared spectra. Also, the color of the pigment varies according to the polymorphic form, the beta form being greener than the alpha or gamma forms. As discussed in more detail below, there is some question whether the reported gamma form is actually a separate polymorph, or is instead merely a less crystalline form of alpha phthalocyanine. In addition to these three well-known forms, which exist in both metal containing and metal-free phthalocyanine, additional polymorphs of metal-containing phthalocyanine are known, i.e., R-form disclosed in US. Patent 3,051,721, delta form described in US. Patent 3,160,635 and another delta form described in US. Patent 3,150,150.
It has now been found that metal-free phthalocyanine exists in an additional form, hereinafter referred to as X-form phthalocyanine. As pointed out more fully below, the X-ray diffraction spectra and infrared spectra ice of this form dilfer significantly from those of the prior known forms. As described and claimed in the abovecited parent application, X-form phthalocyanine has utility as a photoconductive material in electrophotography when mixed with a binder and coated onto a substrate. The resulting electrophotographio plate has surprisingly high photosensitivity when the phthalocyanine is either entirely X-form or a mixture of X-form and alpha form phthalocyanine.
The distinctions between the new X-form metal-free phthalocyanine and the prior known alpha, beta and gamma forms will become more apparent upon reference to the drawings, which consist of comparative X-ray diffraction spectrums and infrared spectra for the different forms of metal-free phthalocyanine. In the drawing:
FIG. 1 shows X-ray patterns for alpha, beta and X-forrn polymorph for samples preferred in the laboratory.
FIG. 2 shows infrared patterns for alpha, beta and X-form polymorph for samples prepared in the laboratory.
FIG. 1 shows a set of curves comparing alpha, beta and X-forms of metal-free phthalocyanine arranged in vertical alignment for easy comparison. The samples of each form of phthalocyanine tested by X-ray diffraction was prepared in the laboratory and analyzed on the same equipment by the same operator to insure consistency. The samples used to produce the curve for alpha form was commercial Monolite Fast Blue GS, a mixture of alpha and beta metal-free phthalocyanine available from the Arnold Hoffman Co., a division of ICI, Ltd. This pigment was entirely converted to alpha form before testing by solvent extraction with dichlorobenzene, washing with acetone and precipitation from sulfuric acid in ice water. The beta form sample which produced the curve shown in FIG. 1 was prepared by suspending commercial Monolite Fast Blue GS in triethylenetetramine at a concentration of 1 part pigment to 5 parts triethylenetetramine by weight for four days at about 23 C. The pigment was then washed with methanol and dried.
The X-form phthalocyanine which produced the curve shown was prepared as follows. Commercial Monolite Fast Blue GS was solvent extracted with dichlorobenzene, then washed with acetone and dried. The pigment was then dissolved in sulfuric acid and precipitated in ice water. The precipitate was washed with methanol and dried. The pigment was then neat milled in a ball mill fod 7 days, washed with dirnethyl formamide and then with methanol.
As can be seen from FIG. 1, X-form phthalocyanine differs dramatically from alpha and beta forms. The spectra for X-form has peaks at Bragg angles of about 17.3 and 22.3 which do not exist with the alpha and beta polymorphs. Also, X-form shows a peak at about 9.1 which is not present with alpha form, and is of lower intensity then the corresponding peaks for beta-form. Further, beta-form has peaks at about 26.2, 18.0, 14.1 and 7.0 and alpha form has peaks at about 26.7, 13.6 and 6.8 which do not occur with X-form.
FIG.2 shows infrared spectra for alpha, beta and X- form phthalocyanine samples which were prepared in the laboratory. The spectra were obtained by the same operator on the same equipment to insure consistency. The samples of alpha, beta and X-form phthalocyanine tested here were prepared by the methods described above in the description of FIG. 1. The spectra for X-form phthalocyanine differs markedly from those for alpha, and beta forms.
In characterizing the alpha, [3 and 5-forms, the position of four C-H deformation bands may be considered. For
the alpha form these exist at 708, 724, 728 and 733 cmf In the beta form they are shifted to the higher frequencies of 715, 725, 732 and 745 cm.- The X- form had the same C- -I deformation bands as the beta, but in this spectra, differences are shown as a change in the intensity ratio for the 765 and 755 Cl'l'lf bands. For the beta, the intensities are nearly equal, but with the X-forrn, the intensity of the 765 crn. is about twice that of the 775 cm? band.
Other band changes, such as those between 1250 and 1350 cm? can be used to characterize the three forms. The relative ratios for the four bands are quite different for the three forms, as can be seen in FIG. 2.
The following examples further specifically define the present invention with respect to methods of preparing X-form phthalocyanine. Parts and percentages are by weight unless otherwise indicated. The examples below are intended to illustrate various preferred embodiments of methods of preparing X-form phthalocyanine.
The starting material in each of the following examples is Monolite Fast Blue GS, a mixture of alpha and beta forms of metal-free phthalocyanine available from the Arnold Hoffman Company. However, this starting material for the process of preparing X-form phthalocyanine may be prepared by any conventional method. For example, any of the methods of preparing alpha or beta metal-free phthalocyanine described by F. Moser and A. Thomas in Phthalocyanine Compounds, ACS Monograph 157, Reinhold Publishing Company (1963), may be used if desired. A metal-free phthalocyanine may be converted to the X-form phthalocyanine of this invention, broadly, by neat milling or salt milling alpha phthalocyanine for a sufficient time. In order to determine the time necessary for complete conversion to X-form, for a specific milling process, samples should be taken at regular intervals and examined by either infrared or X-ray analysis. The time necessary for complete conversion by the particular milling process may be thus empirically determined for later production of additional X-form phthalocyanine by the same process. The following examples described particular preferred embodiments of methods of producing X-form metal-free phthalocyanine.
Example I About 100 parts Monolite Fast Blue GS, a mixture of alpha and beta forms of metal-free phthalocyanine available from Arnold Hoffman Company, is purified by extraction with a mixture of equal volumes of O-dichlorobenzene and methanol at about 50 C. for about 24 hours in a Soxhlet extraction unit. The phthalocyanine is then added portion-wise to concentrated sulfuric at a ratio of about 1 part phthalocyanine to about 6 parts sulfuric acid at about C. The mixture is stirred at icebatlr temperature for about 1 /2 hours, then filtered through a coarse sintered glass funnel. Precipitation is effected by pouring the solution slowly into about 5 times its volume of a well-stirred ice-water mixture. The phthalocyanine precipitates immediately; after allowing the suspension to sit for about minutes, the product is isolated by filtration. The resultant cake is washed to neutrality with distilled water, rinsed several times with acetone, and dried in air for several days. X-ray and infrared analysis show this phthalocyanine to be alphaform metal-free phthalocyanine.
About a 35 gram portion of this phthalocyanine product is then placed in a quart porcelain jar half-filled with burundum cylinders x inch. The jar is sealed and rolled at about 70 revolutions per minute. Aliquot samples are withdrawn from the jar at 6 hour intervals, and processed as required for polymorphic identification by infrared spectroscopy. After about 48 hours of neat milling, analysis shows that the entire sample has been converted to the X-polymorph.
.prepared as in Example I above. About 37 grams of this phthalocyanine product are then placed in a quart porcelain jar half-filled with burundum cylinders. About 340 grams of sodium chloride is then added to the jar, the jar is sealed and rolled at about 70 revolutions per minute. Aliquot samples are withdrawn from the jar at 6 hour intervals and processed as required for polymorphic identification by infrared spectroscopy. The saltmilled sample is freed from salt by washing with distilled water and methanol prior to infrared analysis. After 66 hours, the phthalocyanine is partially converted to X- form. After 144 hours, the sample is found to have completely converted to the X-polyrnorph.
Example III A sample of alpha form metal-free phthalocyanine is prepared as in Example I above. About 0.5 gram of the phthalocyanine is placed in a Spex Mixer Mill unit for grinding. This is a small grinding apparatus, commonly used by dentists, which consists of a stainless steel cylinder (1 inch long and /2 inch in diameter) and a single stainless steel ball inch in diameter) which functions via a high speed oscillating action. This provides a highly efficient milling action. All of the phthalocyanine sample is found to have converted to X-form after two hours of grinding. Since conversion to X-form is more rapid in neat milling than in salt milling, and even more rapid in the Spex Mixer Mill unit, it can be tentatively concluded that for formation of X-form phthalocyanine, highly efficient grinding action is preferable.
Example IV About 50 parts magnesium phthalocyanine is slowly stirred into about 500 parts of 96 percent sulfuric acid, the mixture is stirred and maintained at about 3 C. The solution is filtered through a coarse sintered glass funnel and is washed with more acid. The sulfuric acid solution is then run slowly into ice made from distilled water. The blue precipitate is collected on a filter, washed acid free, and dried. About 30 parts of alpha metal-free phthalocyanine is produced, as shown by infrared and X-ray analysis.
About a gram portion of this product is placed in a quart porcelain jar half-filled with porcelain balls. The jar is sealed and rolled at about revolutions per minute. Aliquot samples are withdrawn from the jar at 6 hour intervals and subjected to infrared and X-ray analysis. After about hours of neat milling, analysis shows that the entire sample has been converted to the X-polymorph.
Any suitable grinding process may be used to convert alpha, or beta metal-free phthalocyanine to the X-polymorph. Typical grinding processes include ball milling with ceramic or metallic balls, salt milling using ceramic or metallic balls, and a grinding aid such as sodium chloride and milling using Spex Mixer Mills. Where the phthalocyanine is salt milled, any suitable milling aid may be used. Typical milling aids include sodium chloride, sodium bicarbonate, hydrosodium sulfate, and mixtures thereof.
The starting material may be metal-containing or metalfree phthalocyanine prepared by any conventional process. Typical phthalocyanine synthesis are described by Frank H. Moser and Arthur L. Thomas in the above mentioned book. Where the phthalocyanine used is metalcontaining, the preliminary purification steps should include the removal of the metal atom. Typical methods of preparing metal-free phthalocyanine from metal phthalocyanine are described in pages 108-118 of the above cited Moser and Thomas book. In general, alpha form may be produced from a mixture of different forms by milling with sodium chloride alone. Beta form may be similarly produced by milling with sodium chloride and xylene or some other aromatic solvent. Thus, if alpha form metal-free phthalocyanine is subjected to grinding, it will convert directly to X-forrn while the beta and gamma form starting material will convert first to alpha form and then to X-form during milling.
The compositions of this invention are, as discussed above, especially useful as photoconductive materials in electrophotography. The X-polymorph of metal-free phthalocyanine may be used in the preparation of polymeric phthalocyanine as described in copending application Ser. No. 468,983, filed July 1, 1965. These compositions are also useful as pigments in inks, paints, varnishes, molded synthetic resin objects, etc. These compositions may have other materials mixed therewith for particular applications to enhance, synergize or otherwise modify their properties.
For all Bragg angles mentioned in the description of this invention radiation corresponding to the Copper K, wavelength, 1.54050 A., was used. If desired, values measured in Bragg angles may be converted to absolute spacings (d) by the following equation: Nk=2d sin 0 where N is the order of difiraction (here, 2) A is the wavelength of the X-radiation (here, 1.54050 A.), d is the spacing which gives rise to the interference phenomenon, and 0 is the Bragg scattering angle.
Although specific materials and conditions were set forth in the above exemplary processes of making the compositions of this invention, these were merely meant to be illustrative of the invention. Various other starting metal-free phthalocyanines, substituted or unsubstituted,
and various conditions may be substituted for those in the examples with similar results. Many other modifications of the invention will occur to those skilled in the art upon reading the present disclosure; these are intended to be encompassed within the spirit of this invention.
What is claimed is:
1. Metay-free phthalocyanine in the X-form having an X-ray diffraction pattern exhibiting strong lines at Bragg angles of 7.5, 9.1, 16.7, 17.3 and 22.3.
2. The X-forrn metal-free phthalocyanine of claim 1 which also has a strong infrared absorption band at 746 cmr has three peaks between 700 and 750 cm." and has bands of about equal intensity at 1318 and 1330 cmr' References Cited UNITED STATES PATENTS 1/1958 Ehrich 260-3145 8/1962 Wheeler 260-3145 OTHER REFERENCES WALTER A. MODANCE, Primary Examiner.
H. I. MOATZ, Assistant Examiner.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,357,989 December 12, 1967 John F. Byrne et al.
It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters- Patent should read as corrected below.
Column 2, line 15, before "forms" insert polymorphic line 17, for "prepared" read preferred line 47, for "fod" read for line 68, for "5-forms" read X-forms column 6, line 8, for "Metay-free" read Metal-free Signed and sealed this 21st day of January 1969.
(SEAL) Attest:
Edward M. Fletcher, 11'. EDWARD J. BRENNER Attesting Officer Commissioner of Patents

Claims (1)

1. METAL-FREE PHTHALOCYANIANE IN THE "X"-FORM HAVING AN X-RAY DIFFRACTION PATERN EXHIBITING STRONG LINES AT BRAGG ANGLES OF 7.5, 9.1, 16.7, 17.3 AND 22.3.
US505723A 1965-10-29 1965-10-29 Metal free phthalocyanine in the new x-form Expired - Lifetime US3357989A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US505723A US3357989A (en) 1965-10-29 1965-10-29 Metal free phthalocyanine in the new x-form
NL6615262A NL6615262A (en) 1965-10-29 1966-10-28
DE19661619654 DE1619654A1 (en) 1965-10-29 1966-10-28 Process for the production of a metal-free phthalocyanine in the X-form
FR81947A FR1508173A (en) 1965-10-29 1966-10-28 New polymorphic form of metal-free phthalocyanine and its manufacturing process
GB48357/66A GB1169901A (en) 1965-10-29 1966-10-28 Metal-Free Phthalocyanine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US505723A US3357989A (en) 1965-10-29 1965-10-29 Metal free phthalocyanine in the new x-form

Publications (1)

Publication Number Publication Date
US3357989A true US3357989A (en) 1967-12-12

Family

ID=24011554

Family Applications (1)

Application Number Title Priority Date Filing Date
US505723A Expired - Lifetime US3357989A (en) 1965-10-29 1965-10-29 Metal free phthalocyanine in the new x-form

Country Status (5)

Country Link
US (1) US3357989A (en)
DE (1) DE1619654A1 (en)
FR (1) FR1508173A (en)
GB (1) GB1169901A (en)
NL (1) NL6615262A (en)

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854943A (en) * 1969-07-30 1974-12-17 Xerox Corp Manifold imaging method and member employing fundamental particles of alpha metal-free phthalocyanine
US3992205A (en) * 1973-10-26 1976-11-16 Hoechst Aktiengesellschaft Electrophotographic recording material containing a plurality of dyes with different spectral absorbtion characteristics
US4197242A (en) * 1978-07-03 1980-04-08 Xerox Corporation Potassium phthalocyanine complexes, method of preparation, and phthalocyanine purification processes
JPS6020969A (en) * 1983-07-13 1985-02-02 Toyo Ink Mfg Co Ltd Novel metal-free phthalocyanine crystal polymorphism and production thereof
US4530924A (en) * 1977-03-25 1985-07-23 Ciba-Geigy Corporation Phthalocyanine compounds and anti-microbial use
EP0176221A1 (en) 1984-08-17 1986-04-02 Konica Corporation Photoreceptor for positive electrostatic charge
US4664997A (en) * 1985-01-25 1987-05-12 Mitsubishi Chemical Industries, Ltd. Crystalline oxytitanium phthalocyanine and photoreceptor for use in electrophotography
US4725519A (en) * 1984-11-01 1988-02-16 Mitsubishi Chemical Industries Ltd. Dual layer electrophotographic photoreceptor comprises titanium phthalocyanine charge generator and hydrazone charge transport materials
US4757472A (en) * 1986-12-31 1988-07-12 Tecon Memory, Inc. Electrophotographic optical memory system
US4814441A (en) * 1986-11-27 1989-03-21 Basf Aktiengesellschaft Finely divided transparent metal-free X-phthalocyanine
JPH0354572A (en) * 1989-07-21 1991-03-08 Fuji Electric Co Ltd Electrophotographic sensitive body
US5008173A (en) * 1988-04-15 1991-04-16 Nec Corporation Phthalocyanine crystal, process for manufacture thereof and its use for electrophotographic photosensitive material
US5008167A (en) * 1989-12-15 1991-04-16 Xerox Corporation Internal metal oxide filled materials for electrophotographic devices
US5021309A (en) * 1990-04-30 1991-06-04 Xerox Corporation Multilayered photoreceptor with anti-curl containing particulate organic filler
US5055366A (en) * 1989-12-27 1991-10-08 Xerox Corporation Polymeric protective overcoatings contain hole transport material for electrophotographic imaging members
US5063397A (en) * 1990-05-25 1991-11-05 Xerox Corporation Variable-thickness imaging members
US5069993A (en) * 1989-12-29 1991-12-03 Xerox Corporation Photoreceptor layers containing polydimethylsiloxane copolymers
US5087540A (en) * 1989-07-13 1992-02-11 Matsushita Electric Industrial Co., Ltd. Phthalocyanine photosensitive materials for electrophotography and processes for making the same
US5089369A (en) * 1990-06-29 1992-02-18 Xerox Corporation Stress/strain-free electrophotographic device and method of making same
US5091278A (en) * 1990-08-31 1992-02-25 Xerox Corporation Blocking layer for photoreceptors
US5096795A (en) * 1990-04-30 1992-03-17 Xerox Corporation Multilayered photoreceptor containing particulate materials
US5100752A (en) * 1990-05-07 1992-03-31 Xerox Corporation Processes for the preparation of phthalocyanines for electrophotography
US5110700A (en) * 1990-12-28 1992-05-05 Xerox Corporation Electrophotographic imaging member
US5112232A (en) * 1987-05-21 1992-05-12 Cray Computer Corporation Twisted wire jumper electrical interconnector
US5120628A (en) * 1989-12-12 1992-06-09 Xerox Corporation Transparent photoreceptor overcoatings
US5132627A (en) * 1990-12-28 1992-07-21 Xerox Corporation Motionless scanner
US5162183A (en) * 1990-07-31 1992-11-10 Xerox Corporation Overcoat for imaging members
US5166381A (en) * 1990-08-31 1992-11-24 Xerox Corporation Blocking layer for photoreceptors
US5168022A (en) * 1990-12-31 1992-12-01 Xerox Corporation Method of preparing photoconductive pigments by treating α-form metal-free phthalocyanine to a liquid jet interaction
US5175503A (en) * 1990-12-28 1992-12-29 Xerox Corporation Ascertaining imaging cycle life of a photoreceptor
US5187039A (en) * 1990-07-31 1993-02-16 Xerox Corporation Imaging member having roughened surface
US5190608A (en) * 1990-12-27 1993-03-02 Xerox Corporation Laminated belt
US5204203A (en) * 1990-11-28 1993-04-20 Matsushita Electric Industrial Co., Ltd. Electrophotographic element with blocked isocyanate binder
US5223361A (en) * 1990-08-30 1993-06-29 Xerox Corporation Multilayer electrophotographic imaging member comprising a charge generation layer with a copolyester adhesive dopant
US5252417A (en) * 1990-03-20 1993-10-12 Fuji Xerox Co., Ltd. Titanyl phthalocyanine crystal and electrophotographic photoreceptor using the same
US5258461A (en) * 1990-11-26 1993-11-02 Xerox Corporation Electrocodeposition of polymer blends for photoreceptor substrates
US5270142A (en) * 1990-06-27 1993-12-14 Xerox Corporation Photo-erasable ionographic receptor
US5270140A (en) * 1991-03-15 1993-12-14 Konica Corporation Bisstyryl compound and the electrophotographic photoreceptors relating thereto
US5283145A (en) * 1991-05-01 1994-02-01 Fuji Xerox Co., Ltd. Crystals of dichlorotin phthalocyanine, method of preparing the crystal, and electrophotographic photoreceptor comprising the crystal
US5298617A (en) * 1990-11-22 1994-03-29 Fuji Xerox Co., Ltd. Oxytitaniumphthalocyanine hydrate crystal and electrophotographic photoreceptor using said crystal
US5302479A (en) * 1991-04-26 1994-04-12 Fuji Xerox Co., Ltd. Crystals of hydroxygallium phthalocyanine, method of preparing the crystals, photoconductive material comprising the crystals, and electrophotographic photoreceptor comprising the material
US5308728A (en) * 1991-08-16 1994-05-03 Fuji Xerox Co., Ltd. Dichlorotin phthalocyanine crystal, process for producing the same, and electrophotographic photoreceptor using the same
US5312706A (en) * 1992-05-29 1994-05-17 Xerox Corporation Infra-red photoconductor based on octa-substituted phthalocyanines
US5312705A (en) * 1990-07-27 1994-05-17 Matsushita Electric Industrial Co., Ltd. Photosensitive materials for electrophotography having a double-layer structure of a charge generation layer and a charge transport layer
US5316880A (en) * 1991-08-26 1994-05-31 Xerox Corporation Photoreceptor containing similar charge transporting small molecule and charge transporting polymer
US5328788A (en) * 1990-07-26 1994-07-12 Matsushita Electric Industrial Co., Ltd. Organic photoconductive material for electrophotography and method for making the same
US5356744A (en) * 1989-12-27 1994-10-18 Xerox Corporation Conductive layers using charge transfer complexes
US5358813A (en) * 1902-01-13 1994-10-25 Fuji Xerox Co., Ltd. Crystals of chlorogallium phthalocyanine and method of preparing them
US5360475A (en) * 1992-10-09 1994-11-01 Fuji Xerox Co., Ltd. Process for preparing hydroxymetal phthalocyanine pigment
US5367069A (en) * 1992-05-15 1994-11-22 Bayer Aktiengesellschaft Metal-free, substituted phthalocyanines in the χ-modification
US5393881A (en) * 1992-08-26 1995-02-28 Fuji Xerox Co., Ltd. Crystalline forms of hydroxygallium phthalocyanine
US5393629A (en) * 1991-04-26 1995-02-28 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor
US5409792A (en) * 1991-08-26 1995-04-25 Xerox Corporation Photoreceptor containing dissimilar charge transporting small molecule and charge transporting polymer
US5418100A (en) * 1990-06-29 1995-05-23 Xerox Corporation Crack-free electrophotographic imaging device and method of making same
US5422213A (en) * 1992-08-17 1995-06-06 Xerox Corporation Multilayer electrophotographic imaging member having cross-linked adhesive layer
US5432277A (en) * 1992-10-16 1995-07-11 Basf Aktiengesellschaft Metal-free phthalocyanine of the γ-form
US5440029A (en) * 1990-11-28 1995-08-08 Fuji Xerox Co., Ltd. Titanyl phthalocyanine crystal
US5459004A (en) * 1992-03-31 1995-10-17 Fuji Xerox Co., Ltd. Process for preparing hydroxygallium phthalocyanine crystals and electrophotographic photoreceptor using the crystals
US5463043A (en) * 1991-09-27 1995-10-31 Fuji Xerox Co., Ltd. Process for producing a dichlorotin phthalocyanine crystal
US5463041A (en) * 1992-06-17 1995-10-31 Fuji Xerox Co., Ltd. Process for preparing purified hydroxymetal phthalocyanine and electrophotographic photoreceptor using the same
US5463044A (en) * 1992-08-26 1995-10-31 Fuji Xerox Co., Ltd. Process for preparing chlorogallium phthalocyanine crystal
US5495011A (en) * 1992-08-25 1996-02-27 Fuji Xerox Co., Ltd. Process for preparing hydroxygallium phthalocyanine crystal, product thereof and electrophotographic photoreceptor using the same
US5510217A (en) * 1993-01-01 1996-04-23 Fuji Xerox Co., Ltd. Gallium phthalocyanine halide crystals, method for preparing the same and electrophotographic photoreceptor using the same
US5516609A (en) * 1993-04-02 1996-05-14 Fuji Xerox Co., Ltd. Methoxy gallium phthalocyanine compound and electrophotographic photoreceptor using it
US5536611A (en) * 1995-03-31 1996-07-16 Minnesota Mining And Manufacturing Company Dispersing polymers for phthalocyanine pigments used in organic photoconductors
US5545499A (en) * 1995-07-07 1996-08-13 Lexmark International, Inc. Electrophotographic photoconductor having improved cycling stability and oil resistance
US5545733A (en) * 1993-08-12 1996-08-13 Fuji Xerox Co., Ltd. Method for preparing hydroxygallium phthalocyanine crystals and electrophotographic photoreceptor using the crystals
US5549999A (en) * 1990-12-27 1996-08-27 Xerox Corporation Process for coating belt seams
US5569758A (en) * 1993-12-17 1996-10-29 Basf Aktiengesellschaft Preparation of metal-free phthalocyanines
US5571650A (en) * 1995-09-05 1996-11-05 Lexmark International, Inc. Organic positive photoconductor
US5582949A (en) * 1990-12-27 1996-12-10 Xerox Corporation Process for improving belts
US5585483A (en) * 1994-01-11 1996-12-17 Fuji Electric., Ltd. Metal-free phythalocyanine, process for preparing the same, and electrophotographic photoconductor using the same
US5588991A (en) * 1994-08-31 1996-12-31 Fuji Xerox Co., Ltd. Process for producing chlorogallium phthalocyanine crystal
US5643703A (en) * 1993-03-25 1997-07-01 Fuji Xerox Co., Ltd. Hydroxygallium phthalocyanine crystal, process for preparing same, and electrophotographic photoreceptor comprising same
US5663327A (en) * 1994-09-30 1997-09-02 Fuji Xerox Co., Ltd. Hydroxygallium phthalocyanine crystal, process for producing the same, and electrophotographic photoreceptor containing the same
US5721080A (en) * 1992-06-04 1998-02-24 Agfa-Gevaert, N.V. Electrophotographic material containing particular phthalocyanines
US5830613A (en) * 1992-08-31 1998-11-03 Xerox Corporation Electrophotographic imaging member having laminated layers
US5834147A (en) * 1993-11-05 1998-11-10 Mitsubishi Denki Kabushiki Kaisha Photosensitive member for electrophotography
US5834149A (en) * 1994-06-06 1998-11-10 Fuji Xerox Co., Ltd. Hydroxygallium phthalocyanine crystals and electrophotographic photoreceptors using same
US5846681A (en) * 1992-09-30 1998-12-08 Xerox Corporation Multilayer imaging member having improved substrate
US5932723A (en) * 1996-12-16 1999-08-03 Basf Aktiengesellschaft Phase-directed preparation of metal-free phthalocyanine
US6150518A (en) * 1997-10-16 2000-11-21 Orient Chemical Industries, Ltd. Process for preparing χ-form metal free phthalocyanine
US6165660A (en) * 1999-11-29 2000-12-26 Xerox Corporation Organic photoreceptor with improved adhesion between coated layers
US6174637B1 (en) 2000-01-19 2001-01-16 Xerox Corporation Electrophotographic imaging member and process of making
US6180309B1 (en) 1999-11-26 2001-01-30 Xerox Corporation Organic photoreceptor with improved adhesion between coated layers
US6183921B1 (en) 1995-06-20 2001-02-06 Xerox Corporation Crack-resistant and curl free multilayer electrophotographic imaging member
US6210847B1 (en) 1998-10-28 2001-04-03 Sharp Kabushiki Kaisha Crystalline oxotitanylphthalocyanine and electrophotographic photoreceptor using the same
US6232466B1 (en) 1990-03-20 2001-05-15 Fuji Xerox Co., Ltd Process for preparing titanyl phthalocyanine crystal by solvent treatment of amorphous or quasi-amorphous titanyl phthalocyanine
US6291120B1 (en) 1999-05-14 2001-09-18 Sharp Kabushiki Kaisha Electrophotographic photoreceptor and coating composition for charge generating layer
US6294300B1 (en) 2000-01-19 2001-09-25 Xerox Corporation Charge generation layer for electrophotographic imaging member and a process for making thereof
US6300027B1 (en) 2000-11-15 2001-10-09 Xerox Corporation Low surface energy photoreceptors
US6322940B1 (en) 1999-01-08 2001-11-27 Sharp Kabushiki Kaisha Electrophotographic photoreceptor and electrophotographic image forming process
US6506244B1 (en) 1999-08-03 2003-01-14 Ciba Specialty Chemicals Corporation Stable polymorphic copper-free phthalocyanine pigment
US6528226B1 (en) 2000-11-28 2003-03-04 Xerox Corporation Enhancing adhesion of organic electrostatographic imaging member overcoat and anticurl backing layers
WO2003038003A1 (en) 2001-10-31 2003-05-08 Avecia Limited Phthalocyanine based inks with absorption maxima in the near infra red and visible spectrum
US20040076898A1 (en) * 1999-12-31 2004-04-22 Cheil Industries Inc. Electrophotographic photoreceptors
US20040151996A1 (en) * 2003-01-30 2004-08-05 Xerox Corporation Photoconductive members
US20050089348A1 (en) * 2003-10-28 2005-04-28 Xerox Corporation Highlight color printing machine
US20050089344A1 (en) * 2003-10-28 2005-04-28 Xerox Corporation Photoreceptor for highlight color printing machine
US20050136348A1 (en) * 2003-12-19 2005-06-23 Xerox Corporation Sol-gel processes for photoreceptor layers
US20050133147A1 (en) * 2003-12-23 2005-06-23 Xerox Corporation Process for producing an imaging member belt having a butt-lap seam
US20050158452A1 (en) * 2004-01-16 2005-07-21 Xerox Corporation Dip coating process using viscosity to control coating thickness
US20060177748A1 (en) * 2005-02-10 2006-08-10 Xerox Corporation High-performance surface layer for photoreceptors
US20060204872A1 (en) * 2005-03-08 2006-09-14 Xerox Corporation Hydrolyzed semi-conductive nanoparticles for imaging member undercoating layers
US20060292466A1 (en) * 2005-06-28 2006-12-28 Xerox Corporation Photoreceptor with three-layer photoconductive layer
US20070023133A1 (en) * 2005-07-29 2007-02-01 Xerox Corporation Process for producing an imaging member belt having an angular seam
US20070023747A1 (en) * 2005-07-28 2007-02-01 Xerox Corporation Positive charging photoreceptor
US20070022861A1 (en) * 2005-07-29 2007-02-01 Xerox Corporation. Apparatus for producing an imaging member belt having an angular seam
US20070054208A1 (en) * 2005-09-07 2007-03-08 Xerox Corporation Imaging member
US20070059620A1 (en) * 2005-09-09 2007-03-15 Xerox Corporation High sensitive imaging member with intermediate and/or undercoat layer
US20070059616A1 (en) * 2005-09-12 2007-03-15 Xerox Corporation Coated substrate for photoreceptor
US7205079B2 (en) 2004-07-09 2007-04-17 Xerox Corporation Imaging member
US20070099101A1 (en) * 2005-10-28 2007-05-03 Xerox Corporation Imaging member
US20070141490A1 (en) * 2005-12-19 2007-06-21 Jin Wu Imaging member
US20070178395A1 (en) * 2006-02-02 2007-08-02 Xerox Corporation Imaging members
US7309551B2 (en) 2005-03-08 2007-12-18 Xerox Corporation Electron conductive overcoat layer for photoreceptors
US20080199218A1 (en) * 1999-10-05 2008-08-21 Yasuo Suzuki Electrophotographic photoreceptor and electrophotographic image forming method and apparatus using the photoreceptor
US20080268357A1 (en) * 2004-03-04 2008-10-30 Mitsubishi Chemical Corporation Phthalocyanine Composition and Photoconductive Material, Electrophotographic Photoreceptor Cartridge, and Image-Forming Apparatus Each Employing the Composition
US7527903B2 (en) 2005-10-28 2009-05-05 Xerox Corporation Imaging member
EP2138899A1 (en) 2008-06-27 2009-12-30 Ricoh Company, Limited Electrophotographic photoreceptor, image forming apparatus using the electrophotographic photoreceptor, and method of producing electrophotographic photoreceptor
US20100129112A1 (en) * 2008-11-26 2010-05-27 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the photoreceptor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573904A (en) * 1967-01-09 1971-04-06 Xerox Corp Combination of electrography and manifold imaging
DE3937716A1 (en) * 1989-11-13 1991-05-16 Bayer Ag HETEROCYCLIC COMPOUNDS AND AVAILABLE PORPHYRINE COMPOUNDS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820796A (en) * 1954-07-23 1958-01-21 Du Pont Production of metal-free phthalocyanines
US3051718A (en) * 1960-01-25 1962-08-28 Du Pont Production of phthalocyanine colors in pigmentary state

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820796A (en) * 1954-07-23 1958-01-21 Du Pont Production of metal-free phthalocyanines
US3051718A (en) * 1960-01-25 1962-08-28 Du Pont Production of phthalocyanine colors in pigmentary state

Cited By (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358813A (en) * 1902-01-13 1994-10-25 Fuji Xerox Co., Ltd. Crystals of chlorogallium phthalocyanine and method of preparing them
US3854943A (en) * 1969-07-30 1974-12-17 Xerox Corp Manifold imaging method and member employing fundamental particles of alpha metal-free phthalocyanine
US3992205A (en) * 1973-10-26 1976-11-16 Hoechst Aktiengesellschaft Electrophotographic recording material containing a plurality of dyes with different spectral absorbtion characteristics
US4530924A (en) * 1977-03-25 1985-07-23 Ciba-Geigy Corporation Phthalocyanine compounds and anti-microbial use
US4197242A (en) * 1978-07-03 1980-04-08 Xerox Corporation Potassium phthalocyanine complexes, method of preparation, and phthalocyanine purification processes
JPS6020969A (en) * 1983-07-13 1985-02-02 Toyo Ink Mfg Co Ltd Novel metal-free phthalocyanine crystal polymorphism and production thereof
JPH0336065B2 (en) * 1983-07-13 1991-05-30 Toyo Inki Seizo Kk
EP0176221A1 (en) 1984-08-17 1986-04-02 Konica Corporation Photoreceptor for positive electrostatic charge
US4725519A (en) * 1984-11-01 1988-02-16 Mitsubishi Chemical Industries Ltd. Dual layer electrophotographic photoreceptor comprises titanium phthalocyanine charge generator and hydrazone charge transport materials
US4664997A (en) * 1985-01-25 1987-05-12 Mitsubishi Chemical Industries, Ltd. Crystalline oxytitanium phthalocyanine and photoreceptor for use in electrophotography
US4814441A (en) * 1986-11-27 1989-03-21 Basf Aktiengesellschaft Finely divided transparent metal-free X-phthalocyanine
US4757472A (en) * 1986-12-31 1988-07-12 Tecon Memory, Inc. Electrophotographic optical memory system
US5112232A (en) * 1987-05-21 1992-05-12 Cray Computer Corporation Twisted wire jumper electrical interconnector
US5008173A (en) * 1988-04-15 1991-04-16 Nec Corporation Phthalocyanine crystal, process for manufacture thereof and its use for electrophotographic photosensitive material
US5087540A (en) * 1989-07-13 1992-02-11 Matsushita Electric Industrial Co., Ltd. Phthalocyanine photosensitive materials for electrophotography and processes for making the same
JPH0354572A (en) * 1989-07-21 1991-03-08 Fuji Electric Co Ltd Electrophotographic sensitive body
US5120628A (en) * 1989-12-12 1992-06-09 Xerox Corporation Transparent photoreceptor overcoatings
US5008167A (en) * 1989-12-15 1991-04-16 Xerox Corporation Internal metal oxide filled materials for electrophotographic devices
US5356744A (en) * 1989-12-27 1994-10-18 Xerox Corporation Conductive layers using charge transfer complexes
US5055366A (en) * 1989-12-27 1991-10-08 Xerox Corporation Polymeric protective overcoatings contain hole transport material for electrophotographic imaging members
US5069993A (en) * 1989-12-29 1991-12-03 Xerox Corporation Photoreceptor layers containing polydimethylsiloxane copolymers
US5252417A (en) * 1990-03-20 1993-10-12 Fuji Xerox Co., Ltd. Titanyl phthalocyanine crystal and electrophotographic photoreceptor using the same
US6232466B1 (en) 1990-03-20 2001-05-15 Fuji Xerox Co., Ltd Process for preparing titanyl phthalocyanine crystal by solvent treatment of amorphous or quasi-amorphous titanyl phthalocyanine
US5096795A (en) * 1990-04-30 1992-03-17 Xerox Corporation Multilayered photoreceptor containing particulate materials
US5021309A (en) * 1990-04-30 1991-06-04 Xerox Corporation Multilayered photoreceptor with anti-curl containing particulate organic filler
US5100752A (en) * 1990-05-07 1992-03-31 Xerox Corporation Processes for the preparation of phthalocyanines for electrophotography
US5063397A (en) * 1990-05-25 1991-11-05 Xerox Corporation Variable-thickness imaging members
US5270142A (en) * 1990-06-27 1993-12-14 Xerox Corporation Photo-erasable ionographic receptor
US5089369A (en) * 1990-06-29 1992-02-18 Xerox Corporation Stress/strain-free electrophotographic device and method of making same
US5418100A (en) * 1990-06-29 1995-05-23 Xerox Corporation Crack-free electrophotographic imaging device and method of making same
US5328788A (en) * 1990-07-26 1994-07-12 Matsushita Electric Industrial Co., Ltd. Organic photoconductive material for electrophotography and method for making the same
US5312705A (en) * 1990-07-27 1994-05-17 Matsushita Electric Industrial Co., Ltd. Photosensitive materials for electrophotography having a double-layer structure of a charge generation layer and a charge transport layer
US5187039A (en) * 1990-07-31 1993-02-16 Xerox Corporation Imaging member having roughened surface
US5162183A (en) * 1990-07-31 1992-11-10 Xerox Corporation Overcoat for imaging members
US5223361A (en) * 1990-08-30 1993-06-29 Xerox Corporation Multilayer electrophotographic imaging member comprising a charge generation layer with a copolyester adhesive dopant
US5091278A (en) * 1990-08-31 1992-02-25 Xerox Corporation Blocking layer for photoreceptors
US5166381A (en) * 1990-08-31 1992-11-24 Xerox Corporation Blocking layer for photoreceptors
US5298617A (en) * 1990-11-22 1994-03-29 Fuji Xerox Co., Ltd. Oxytitaniumphthalocyanine hydrate crystal and electrophotographic photoreceptor using said crystal
US5258461A (en) * 1990-11-26 1993-11-02 Xerox Corporation Electrocodeposition of polymer blends for photoreceptor substrates
US5204203A (en) * 1990-11-28 1993-04-20 Matsushita Electric Industrial Co., Ltd. Electrophotographic element with blocked isocyanate binder
US6268096B1 (en) * 1990-11-28 2001-07-31 Fuji Xerox Co., Ltd Titanyl phthalocyanine crystal and electrophotographic photoreceptor using the same
US5440029A (en) * 1990-11-28 1995-08-08 Fuji Xerox Co., Ltd. Titanyl phthalocyanine crystal
US5582949A (en) * 1990-12-27 1996-12-10 Xerox Corporation Process for improving belts
US5549999A (en) * 1990-12-27 1996-08-27 Xerox Corporation Process for coating belt seams
US5190608A (en) * 1990-12-27 1993-03-02 Xerox Corporation Laminated belt
US5175503A (en) * 1990-12-28 1992-12-29 Xerox Corporation Ascertaining imaging cycle life of a photoreceptor
US5132627A (en) * 1990-12-28 1992-07-21 Xerox Corporation Motionless scanner
US5110700A (en) * 1990-12-28 1992-05-05 Xerox Corporation Electrophotographic imaging member
US5168022A (en) * 1990-12-31 1992-12-01 Xerox Corporation Method of preparing photoconductive pigments by treating α-form metal-free phthalocyanine to a liquid jet interaction
US5270140A (en) * 1991-03-15 1993-12-14 Konica Corporation Bisstyryl compound and the electrophotographic photoreceptors relating thereto
US5302479A (en) * 1991-04-26 1994-04-12 Fuji Xerox Co., Ltd. Crystals of hydroxygallium phthalocyanine, method of preparing the crystals, photoconductive material comprising the crystals, and electrophotographic photoreceptor comprising the material
US5393629A (en) * 1991-04-26 1995-02-28 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor
US5283145A (en) * 1991-05-01 1994-02-01 Fuji Xerox Co., Ltd. Crystals of dichlorotin phthalocyanine, method of preparing the crystal, and electrophotographic photoreceptor comprising the crystal
US5416207A (en) * 1991-08-16 1995-05-16 Fuji Xerox Co., Ltd. Dichlorotin phthalocyanine crystal, process for producing the same, and electrophotographic photoreceptor using the same
US5308728A (en) * 1991-08-16 1994-05-03 Fuji Xerox Co., Ltd. Dichlorotin phthalocyanine crystal, process for producing the same, and electrophotographic photoreceptor using the same
US5409792A (en) * 1991-08-26 1995-04-25 Xerox Corporation Photoreceptor containing dissimilar charge transporting small molecule and charge transporting polymer
US5316880A (en) * 1991-08-26 1994-05-31 Xerox Corporation Photoreceptor containing similar charge transporting small molecule and charge transporting polymer
US5463043A (en) * 1991-09-27 1995-10-31 Fuji Xerox Co., Ltd. Process for producing a dichlorotin phthalocyanine crystal
US5459004A (en) * 1992-03-31 1995-10-17 Fuji Xerox Co., Ltd. Process for preparing hydroxygallium phthalocyanine crystals and electrophotographic photoreceptor using the crystals
US5367069A (en) * 1992-05-15 1994-11-22 Bayer Aktiengesellschaft Metal-free, substituted phthalocyanines in the χ-modification
US5312706A (en) * 1992-05-29 1994-05-17 Xerox Corporation Infra-red photoconductor based on octa-substituted phthalocyanines
US5721080A (en) * 1992-06-04 1998-02-24 Agfa-Gevaert, N.V. Electrophotographic material containing particular phthalocyanines
US5463041A (en) * 1992-06-17 1995-10-31 Fuji Xerox Co., Ltd. Process for preparing purified hydroxymetal phthalocyanine and electrophotographic photoreceptor using the same
US5422213A (en) * 1992-08-17 1995-06-06 Xerox Corporation Multilayer electrophotographic imaging member having cross-linked adhesive layer
US5495011A (en) * 1992-08-25 1996-02-27 Fuji Xerox Co., Ltd. Process for preparing hydroxygallium phthalocyanine crystal, product thereof and electrophotographic photoreceptor using the same
US5556967A (en) * 1992-08-26 1996-09-17 Fuji Xerox Co., Ltd. Process for producing hydroxygallium phthalocyanine
US5393881A (en) * 1992-08-26 1995-02-28 Fuji Xerox Co., Ltd. Crystalline forms of hydroxygallium phthalocyanine
US5463044A (en) * 1992-08-26 1995-10-31 Fuji Xerox Co., Ltd. Process for preparing chlorogallium phthalocyanine crystal
US5472816A (en) * 1992-08-26 1995-12-05 Fuji Xerox Co., Ltd. Process for producing hydroxygallium phthalocyanine
US5830613A (en) * 1992-08-31 1998-11-03 Xerox Corporation Electrophotographic imaging member having laminated layers
US5846681A (en) * 1992-09-30 1998-12-08 Xerox Corporation Multilayer imaging member having improved substrate
US5360475A (en) * 1992-10-09 1994-11-01 Fuji Xerox Co., Ltd. Process for preparing hydroxymetal phthalocyanine pigment
EP0592955A3 (en) * 1992-10-16 1995-07-19 Basf Ag Gamma modification of a metal free phthalocyanine.
US5432277A (en) * 1992-10-16 1995-07-11 Basf Aktiengesellschaft Metal-free phthalocyanine of the γ-form
US5510217A (en) * 1993-01-01 1996-04-23 Fuji Xerox Co., Ltd. Gallium phthalocyanine halide crystals, method for preparing the same and electrophotographic photoreceptor using the same
US5643703A (en) * 1993-03-25 1997-07-01 Fuji Xerox Co., Ltd. Hydroxygallium phthalocyanine crystal, process for preparing same, and electrophotographic photoreceptor comprising same
US5516609A (en) * 1993-04-02 1996-05-14 Fuji Xerox Co., Ltd. Methoxy gallium phthalocyanine compound and electrophotographic photoreceptor using it
US5545733A (en) * 1993-08-12 1996-08-13 Fuji Xerox Co., Ltd. Method for preparing hydroxygallium phthalocyanine crystals and electrophotographic photoreceptor using the crystals
US5834147A (en) * 1993-11-05 1998-11-10 Mitsubishi Denki Kabushiki Kaisha Photosensitive member for electrophotography
US5569758A (en) * 1993-12-17 1996-10-29 Basf Aktiengesellschaft Preparation of metal-free phthalocyanines
US5585483A (en) * 1994-01-11 1996-12-17 Fuji Electric., Ltd. Metal-free phythalocyanine, process for preparing the same, and electrophotographic photoconductor using the same
US5824800A (en) * 1994-01-11 1998-10-20 Fuji Electric Co., Ltd. Process for preparing a metal-free phthalocyanine
US5591555A (en) * 1994-01-11 1997-01-07 Fuji Electric Co., Ltd. Electrophotographic photoconductor including a metal-free phthalocyanine
US5834149A (en) * 1994-06-06 1998-11-10 Fuji Xerox Co., Ltd. Hydroxygallium phthalocyanine crystals and electrophotographic photoreceptors using same
US5588991A (en) * 1994-08-31 1996-12-31 Fuji Xerox Co., Ltd. Process for producing chlorogallium phthalocyanine crystal
US5688619A (en) * 1994-08-31 1997-11-18 Fuji Xerox Co., Ltd. Chlorogalium phthalocyanine crystal and electrophotographic photoreceptor containing same
US5663327A (en) * 1994-09-30 1997-09-02 Fuji Xerox Co., Ltd. Hydroxygallium phthalocyanine crystal, process for producing the same, and electrophotographic photoreceptor containing the same
US5756247A (en) * 1994-09-30 1998-05-26 Fuji Xerox Co., Ltd. Hydroxygallium phthalocyanine crystal, and electro-photographic photoreceptor containing the same
US5536611A (en) * 1995-03-31 1996-07-16 Minnesota Mining And Manufacturing Company Dispersing polymers for phthalocyanine pigments used in organic photoconductors
US6183921B1 (en) 1995-06-20 2001-02-06 Xerox Corporation Crack-resistant and curl free multilayer electrophotographic imaging member
US5545499A (en) * 1995-07-07 1996-08-13 Lexmark International, Inc. Electrophotographic photoconductor having improved cycling stability and oil resistance
US5571650A (en) * 1995-09-05 1996-11-05 Lexmark International, Inc. Organic positive photoconductor
US5932723A (en) * 1996-12-16 1999-08-03 Basf Aktiengesellschaft Phase-directed preparation of metal-free phthalocyanine
US6150518A (en) * 1997-10-16 2000-11-21 Orient Chemical Industries, Ltd. Process for preparing χ-form metal free phthalocyanine
US6210847B1 (en) 1998-10-28 2001-04-03 Sharp Kabushiki Kaisha Crystalline oxotitanylphthalocyanine and electrophotographic photoreceptor using the same
US6322940B1 (en) 1999-01-08 2001-11-27 Sharp Kabushiki Kaisha Electrophotographic photoreceptor and electrophotographic image forming process
US6291120B1 (en) 1999-05-14 2001-09-18 Sharp Kabushiki Kaisha Electrophotographic photoreceptor and coating composition for charge generating layer
US6506244B1 (en) 1999-08-03 2003-01-14 Ciba Specialty Chemicals Corporation Stable polymorphic copper-free phthalocyanine pigment
US20080199218A1 (en) * 1999-10-05 2008-08-21 Yasuo Suzuki Electrophotographic photoreceptor and electrophotographic image forming method and apparatus using the photoreceptor
US6180309B1 (en) 1999-11-26 2001-01-30 Xerox Corporation Organic photoreceptor with improved adhesion between coated layers
US6165660A (en) * 1999-11-29 2000-12-26 Xerox Corporation Organic photoreceptor with improved adhesion between coated layers
US6797446B2 (en) 1999-12-31 2004-09-28 Samsung Electronics Co., Ltd. Electrophotographic photoreceptors
US20040076898A1 (en) * 1999-12-31 2004-04-22 Cheil Industries Inc. Electrophotographic photoreceptors
US6858364B2 (en) 1999-12-31 2005-02-22 Daewon Scn. Co., Ltd. Electrophotographic photoreceptors
US6294300B1 (en) 2000-01-19 2001-09-25 Xerox Corporation Charge generation layer for electrophotographic imaging member and a process for making thereof
US6174637B1 (en) 2000-01-19 2001-01-16 Xerox Corporation Electrophotographic imaging member and process of making
US6300027B1 (en) 2000-11-15 2001-10-09 Xerox Corporation Low surface energy photoreceptors
US6528226B1 (en) 2000-11-28 2003-03-04 Xerox Corporation Enhancing adhesion of organic electrostatographic imaging member overcoat and anticurl backing layers
US20040248027A1 (en) * 2001-10-31 2004-12-09 Campbell James Stanley Phthalocyanine based inks with absorption maxima in the near infra red and visible spectrum
WO2003038003A1 (en) 2001-10-31 2003-05-08 Avecia Limited Phthalocyanine based inks with absorption maxima in the near infra red and visible spectrum
US7070646B2 (en) * 2001-10-31 2006-07-04 Avecia Limited Phthalocyanine based inks with absorption maxima in the near infra-red and visible spectrum
US20040151996A1 (en) * 2003-01-30 2004-08-05 Xerox Corporation Photoconductive members
US7037630B2 (en) 2003-01-30 2006-05-02 Xerox Corporation Photoconductive members
US6959161B2 (en) 2003-10-28 2005-10-25 Xerox Corporation Photoreceptor for highlight color printing machine
US6970673B2 (en) 2003-10-28 2005-11-29 Xerox Corporation Highlight color printing machine
US20050089344A1 (en) * 2003-10-28 2005-04-28 Xerox Corporation Photoreceptor for highlight color printing machine
US20050089348A1 (en) * 2003-10-28 2005-04-28 Xerox Corporation Highlight color printing machine
US7108947B2 (en) 2003-12-19 2006-09-19 Xerox Corporation Sol-gel processes for photoreceptor layers
US20050136348A1 (en) * 2003-12-19 2005-06-23 Xerox Corporation Sol-gel processes for photoreceptor layers
US20050133147A1 (en) * 2003-12-23 2005-06-23 Xerox Corporation Process for producing an imaging member belt having a butt-lap seam
US6918978B2 (en) 2003-12-23 2005-07-19 Xerox Corporation Process for producing an imaging member belt having a butt-lap seam
US20050158452A1 (en) * 2004-01-16 2005-07-21 Xerox Corporation Dip coating process using viscosity to control coating thickness
US20080268357A1 (en) * 2004-03-04 2008-10-30 Mitsubishi Chemical Corporation Phthalocyanine Composition and Photoconductive Material, Electrophotographic Photoreceptor Cartridge, and Image-Forming Apparatus Each Employing the Composition
US7981581B2 (en) 2004-03-04 2011-07-19 Mitsubishi Chemical Corporation Phthalocyanine composition and photoconductive material, electrophotographic photoreceptor cartridge, and image-forming apparatus each employing the composition
US7205079B2 (en) 2004-07-09 2007-04-17 Xerox Corporation Imaging member
US7312008B2 (en) 2005-02-10 2007-12-25 Xerox Corporation High-performance surface layer for photoreceptors
US20060177748A1 (en) * 2005-02-10 2006-08-10 Xerox Corporation High-performance surface layer for photoreceptors
US20060204872A1 (en) * 2005-03-08 2006-09-14 Xerox Corporation Hydrolyzed semi-conductive nanoparticles for imaging member undercoating layers
US7309551B2 (en) 2005-03-08 2007-12-18 Xerox Corporation Electron conductive overcoat layer for photoreceptors
US7476479B2 (en) 2005-03-08 2009-01-13 Xerox Corporation Hydrolyzed semi-conductive nanoparticles for imaging member undercoating layers
US20060292466A1 (en) * 2005-06-28 2006-12-28 Xerox Corporation Photoreceptor with three-layer photoconductive layer
US7390598B2 (en) 2005-06-28 2008-06-24 Xerox Corporation Photoreceptor with three-layer photoconductive layer
US7491989B2 (en) 2005-07-28 2009-02-17 Xerox Corporation Positive charging photoreceptor
US20070023747A1 (en) * 2005-07-28 2007-02-01 Xerox Corporation Positive charging photoreceptor
US8016968B2 (en) 2005-07-29 2011-09-13 Xerox Corporation Process for producing an imaging member belt having an angular seam
US20070022861A1 (en) * 2005-07-29 2007-02-01 Xerox Corporation. Apparatus for producing an imaging member belt having an angular seam
US20070023133A1 (en) * 2005-07-29 2007-02-01 Xerox Corporation Process for producing an imaging member belt having an angular seam
US7685913B2 (en) 2005-07-29 2010-03-30 Xerox Corporation Apparatus for producing an imaging member belt having an angular seam
US20070054208A1 (en) * 2005-09-07 2007-03-08 Xerox Corporation Imaging member
US7829252B2 (en) 2005-09-07 2010-11-09 Xerox Corporation Imaging member
US20070059620A1 (en) * 2005-09-09 2007-03-15 Xerox Corporation High sensitive imaging member with intermediate and/or undercoat layer
US20070059616A1 (en) * 2005-09-12 2007-03-15 Xerox Corporation Coated substrate for photoreceptor
US20070099101A1 (en) * 2005-10-28 2007-05-03 Xerox Corporation Imaging member
US7642029B2 (en) 2005-10-28 2010-01-05 Xerox Corporation Imaging member
US7527903B2 (en) 2005-10-28 2009-05-05 Xerox Corporation Imaging member
US20070141490A1 (en) * 2005-12-19 2007-06-21 Jin Wu Imaging member
US7527904B2 (en) 2005-12-19 2009-05-05 Xerox Corporation Imaging member
US20070178395A1 (en) * 2006-02-02 2007-08-02 Xerox Corporation Imaging members
US20090324281A1 (en) * 2008-06-27 2009-12-31 Ricoh Company, Ltd. Electrophotographic photoreceptor, image forming apparatus using the electrophotographic photoreceptor, and method of producing electrophotographic photoreceptor
EP2138899A1 (en) 2008-06-27 2009-12-30 Ricoh Company, Limited Electrophotographic photoreceptor, image forming apparatus using the electrophotographic photoreceptor, and method of producing electrophotographic photoreceptor
US8178266B2 (en) 2008-06-27 2012-05-15 Ricoh Company, Ltd. Electrophotographic photoreceptor, image forming apparatus using the electrophotographic photoreceptor, and method of producing electrophotographic photoreceptor
US20100129112A1 (en) * 2008-11-26 2010-05-27 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the photoreceptor
US8568945B2 (en) 2008-11-26 2013-10-29 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the photoreceptor

Also Published As

Publication number Publication date
FR1508173A (en) 1968-01-05
GB1169901A (en) 1969-11-05
DE1619654A1 (en) 1970-08-27
NL6615262A (en) 1967-05-02

Similar Documents

Publication Publication Date Title
US3357989A (en) Metal free phthalocyanine in the new x-form
US4298526A (en) Preparation of easily dispersible and deeply colored pigmentary forms
EP0072520B1 (en) Process for producing ground crude pigment
Nittala et al. Chlorinated withanolides from Withania somnifera and Acnistus breviflorus
US2556728A (en) Process of producing tinctorially stable phthalocyanine coloring matters
USRE27117E (en) Metal free tothalocyanine in the new x-porm
US3287147A (en) Process for manufacture of quinacridone pigment compositions
CN103146253B (en) Preparation method of special phthalocyamine blue 15:4 pigment for methylbenzene ink
JPH0598174A (en) Production of titanium phthalocyanine
DE1794329B2 (en) Metal-free unsubstituted phthalocyanine in the X form. Eliminated from: 1497205
US3264300A (en) 2, 9-dimethylquinacridone in a "yellow" crystalline form
Doyle et al. Isolation and structure of bohemamine (1a. beta., 2. alpha., 6a. beta., 6b. beta.)-3-methyl-N-(1a, 6, 6a, 6b-tetrahydro-2, 6a-dimethyl-6-oxo-2H-oxireno [a] pyrrolizin-4-yl)-2-butenamide
EP0584753B1 (en) Process for preparing chlorogallium phthalocyanine crystals
JP4750143B2 (en) Method for producing titanyl phthalocyanine having specific crystal modification
US2910482A (en) Phthalocyanine coloring matters in pigmentary form
US2791589A (en) Process for the production of finely dispersed phthalocyanine pigments which are stable in solvents
CA1140921A (en) Metal free phthalocyanine complexes, method of preparation, and phthalocyanine purification processes
JP4590439B2 (en) Method for producing α-type titanyl phthalocyanine and electrophotographic photoreceptor using α-type titanyl phthalocyanine
US2669569A (en) Process of producing phthalocyanine pigments
JP2911613B2 (en) Method for producing oxytitanium phthalocyanine
US4098795A (en) Method for the preparation of x-form metal free phthalocyamine
JPS60501760A (en) Hydroxy aluminum phthalocyanine with reduced green absorption
JPH03134065A (en) Preparation of oxytitanium phthalocyanine crystal
JPS6020969A (en) Novel metal-free phthalocyanine crystal polymorphism and production thereof
US2699444A (en) Preparation of phthalocyanine pigments