Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3360547 A
Tipo de publicaciónConcesión
Fecha de publicación26 Dic 1967
Fecha de presentación23 Feb 1965
Fecha de prioridad1 May 1961
Número de publicaciónUS 3360547 A, US 3360547A, US-A-3360547, US3360547 A, US3360547A
InventoresCharles W Hequembourg, Earl W Wilson
Cesionario originalEastman Kodak Co
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Polyesters of tetraalkylcyclobutanediol
US 3360547 A
Resumen  disponible en
Imágenes(4)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent 3,360,547 POLYESTERS 0F TETRAALKYL- CYCLUBUTANEDIOL Earl W. Wilson and Charles W. Hequembourg, Kingsport, Tenn, assignors to Eastman Kodak Company, Rochester, N.Y., a corporation of New Jersey No Drawing. Filed Feb. 23, 1965, Ser. No. 434,684 Claims. (Cl. 260-485) This application is a continuation-in-part application of copending US. Ser. No. 106,550 filed May 1, 1961, of which US. Ser. No. 361,926 of Apr. 6, 1964, now abandoned is a division.

This invention relates to lubricant compositions and more particularly to novel complex esters useful as thickeners for synthetic lubricants.

Synthetic ester lubricants are widely used today for a number of purposes for which they have advantages over mineral oil lubricants. A principal use is as lubricants for jet aircraft engines, which require a lubricant that can be used over wide ranges of temperature. The lubricant must remain fluid at very low temperatures yet must retain sufficient viscosity at the high operating temperatures of jet engines to lubricate properly. In addition to other stringent requirements, it must be thermally stable at such high temperatures and must not be excessively corrosive to metals with which it comes in contact.

Because no single type of ester appears to possess all of the desirable properties, it has been the practice to mix modifier ingredients with a synthetic ester that serves as the base oil of the synthetic lubricant. For instance, most base oils for synthetic lubricants require thickening to meet high temperature viscosity requirements. However, the thickeners known in the art are often not sufficently stable thermally or they are too corrosive to metals to meet specification requirements. In accordance with the present invention, we have developed novel complex esters that are useful as thickeners for ester base oils and are characterized by excellent thermal stability and low corrosivity.

In general the novel esters of our invention are complex esters or polyesters formed by reacting a dicarboxylic acid with a tetraalkylcyclobutanediol and with a chainterminating monohydric alcohol or monocarboxylic acid. The products have the general structure:

when a monohydric alcohol is used for terminating the polyester chain, or the general structure:

when a monocarboxylic acid is used for terminating the polyester chain.

In Formula I, R is the alkyl residue of the monohydric alcohol, R is the alkylene radical of the dicarboxylic acid, R is a lower alkyl radical and x is an integer from 1 to 10.

In Formula II, R is the alkyl residue of the monocarboxylic acid and the other symbols are as indicated for Formula I.

An essential feature of the complex esters of the invention is that they are derived from a tetraalkylcyclobutanediol of the formula:

wherein the substituents, R, are the same or different straight or branched chain lower alkyl groups, i.e. alkyl groups of from about 1 to 4 carbon atoms. Such diols are advantageously prepared by the method described in the patent to R. H. Hasek and E. U. Elam, U.S. 2,936,324.

The acids used in preparing the complex esters are aliphatic, dicarboxylic acids of the formula,

wherein R is an alkylene radical of about 4 to 10 carbon atoms. Examples of particularly suitable acids include adipic acid, azelaic acid, sebacic acid and decane- 1,10-dicarboxylic acid.

The rnonohydroxy alcohols used in the preparation of the novel esters of Formula I are of the formula, R OH, wherein R is a straight or branched chain alkyl group of from 1 to 20 carbon atoms. The alcohol preferably is a primary alcohol of 4 to 12 carbons atoms. Certain secondary and tertiary aliphatic alcohols can be used but are less desirable because they are less reactive and their products have lower thermal stability. The especially preferred alcohols are 2,2-disubstituted, aliphatic, primary alcohols of from 6 to 12 carbon atoms, of which 2,2-dimethyl butanol, 2,2,4-trimethylpentanol and 2,2-dimethyl decanol are examples. Such alcohols having a beta quaternary alkyl radical, are especially preferred because of the superior stability of the resulting complex ester product. Other suitable alcohols include methanol, ethanol, n-butanol, isobutanol, 2-ethylhexanol, Z-methylpentanol, Z-ethylbutanol, 3,5,5-trimethylhexanol, l-methyl petanol, lauryl alcohol, mixtures of C saturated, branched chain rnonohydroxy alcohols derived from the well-known 0x0 synthesis, cetyl alcohol, no-octadecanol, n-eicosanol, and the like.

The novel esters of the invention also include those of Formula II that are terminated with a monocarboxylic acid. The alcohol-terminated esters of Formula I have the advantage of being less corrosive than the acid-terminated esters of Formula 11. However, in uses for which acid corrosion is not a problem, the products of Formula II are valuable and exhibit in general the same useful properties as lubricant components that characterize the alcohol-terminated products. The monocarboxylic acids used in the preparation of the novel esters of Formula II are of the formula R COOH, wherein R is a straight or branched chain alkyl radical of from 1 to 19 carbon atoms, thus including acids of from 2 to 20 carbon atoms. Examples of suitable acids include acetic, propionic, nbutyric, isobutyric, 2-ethylhexanoic, pivalic, pelargonic, lauric, stearic and eicosanoic acids and the like. Preferably R is a straight or branched chain alkyl radical of from 3 to 11 carbon atoms, as in the alkanoic acids in the range from butyric to lauric.

The complex esters of our invention can be prepared by heating a mixture of the tetraalkylcyclobutanediol, the dicarboxylic acid and the rnonohydroxy alcohol or monocarboxylic acid in the presence of an esterification catalyst. Catalysts providing the most satisfactory results include: titanium esterification catalysts such as disclosed in Caldwell and Wellman, U.S. Patent No. 2,727,881, particularly titanium alkoxides such as tetraisopropyl titanate: tin esterification catalysts such as disclosed in Caldwell, U.S. Patent No. 2,720,507, and especialy tin akoxides' such as dibutyl tin oxide and alkyl tin compounds such as tetrabutyl tin: as well as various zinc salts, calcium salts, magnesium salts, and the like, known "in the. art as esterification catalysts. The esterification catalysts are usually employed in concentrations varying from 0.001 to 2 weight percent of the reaction mixture, although somewhat higher or lower concentrations can be used.

The reaction is carried out in an inert atmosphere at a temperature in the range of about 80-250 C., preferably at atmospheric pressure. When a titanium catalyst is employed, the temperature should be at least about 180 C. To avoid product decomposition, the temperature should not exceed about 220 C.

Approximately equal molar proportions of the dicarboxylic acid and the diol are employed in the reaction.

, The molar proportions of the chain terminator, i.e., the

monohydroxy alcohol or monocarboxylic acid, with respect to the other reactants can be varied, depending upon the desired chain length of the complex ester product. For a low molecular weight product, a molar proportion of the chain terminator approaching that of the diacid or the diol will be used. For products of longer chain length and higher molecular weight, the amount of the chain terminator will be substantially less than 1 mole per mole of diacid or diol. The preferred products of our invention have an average molecular weight of about 900 to 1800. (Number-average molecular weight as defined by Flory, Principles of Polymer Chemistry, Cornell University Press, 1953, pp. 273 et seq.) For obtaining such products, the proportion of the chain terminating alcohol or acid in the reaction mixture should be in the range of about 20 to 80 mole percent of the amount of diacid or diol employed.

Preferably an inert organic solvent such as benzene, toluene or xylene that forms an azeotrope with water is employed to aid in. distilling water from the reaction mixture. The reaction is continued until a product of the desired molecular weight is obtained, i.e., until the average chain length of the complex ester comprises from 1 to repeating units of the structure illustrated above (number-average molecular weight about 600-6000), and preferably until the number-average molecular weight of the product is in the range of 900 to 1800. Conveniently, the degree of completion of the reaction can be followed by measuring the acid number of the reaction mixture, stopping the reaction when the acid number drops to a level corresponding to that determined by previous tests as corresponding to the desired product. Upon comple tion of the reaction the product is normally treated with alkali to neutralize any free acid, washed with water until neutral, and further purified by distillation, preferably at subatmospheric pressure.

The complex esters of the invention are employed as minorcomponents of lubricating compositions having as amajor component a synthetic ester base oil. The complex esters of the invention are useful for improving the temperature-viscosity relationship of synthetic ester lubricants in general, including, for example, monohydroxy alcohol diesters of dibasic acids, as exemplified by the diesters of acids such as adipic, azelaic and sebacic with alcohols such as 2-ethylhexanol, 2,2,4-trimethylpentanol, 2-methylbutanol and the like; monobasic acid diesters of dihydroxy alcohols, as exemplified by the diesters of glycols such as diethylene glycol, triethylene glycol and 3-methyl-1,5-pentanediol with acids such as propionic, isobutyric, hexanoic, 2-ethylhexanoic and the like; as well as triesters such as the 'heptanoic and hexanoic acid vtriesters of trimethylolpropane.

The amount of complex ester added to the base oil should be sufficient to improve the viscosity-temperature relationship of the oil, that is, to form a mixture having a high-temperatureviscosity, e.g. at 210 F., higher than that of the base oil while having a low-temperature viscosity, e.g. at 40 F., not excessively higher than that of the base oil. Generally, an amount of complex ester in the range of about 5 to 40 weight percent of the base oil will provide the desired thickening result.

In addition to the ester base oil and the complex ester thickener, the lubricant compositions of the invention can include minor amounts of various additives such as rust inhibitors, oxidation inhibitors, V. I. improvers, pour point depressants, anti-foam additives and the like.

The following example illustrates the preparation of an especially preferred complex ester of the invention. This ester is prepared from azelaic acid, 2,2,4,4-tetramethylcyclobutanediol and 2,2,4-trimethylpentanol-1, and is characterized by exceptionally good heat stability and low corrosivity toward lead. The latter property is especially desirable for jet engine lubricants that come in contact with lead or Babbitt metal bearings.

Example In a three-liter flask fitted with a stirrer, thermometer, nitrogen inlet tube,.steam condenser connected to a Dean Stark moisture trap which in turn is connected to two water cooled condensers, are charged the following:

Grams Azelaic acid 1017 2,2,4,4-tetramethyl-1,3-cyclobutanediol 730 2,2,4-trimethylpentanol 257 Xylol All of the above ingredients were heated simultaneously under a nitrogen atmosphere to 90 C. and tetraisopropyl titanate (1.9 grams) was added as the catalyst. Water of esterification removed from the reaction at C.200 C. totaled 193 grams or 98.5% of theoretical. The reaction time, including 2.5 hours of vacuum stripping at 200 C. and 1-5 mm. of mercury, was 20.5 hours. The final crude product was diluted with heptane, washed with 5% NaOH solution and washed with water until neutral. The crude mixture was filtered through a diatomaceous earth and stripped of low boilers to 90 C. at 150-200 mm. The final product was vacuum stripped to 200 C. at 50-200 microns. The final acid number was 0.2 and the number-average molecular weight was 1100.

Table I below records physical properties of a complex ester of the invention, A, prepared as described in the above example. It also records comparative data for two complex esters B and C prepared from diols other than the tetraalkylcyclobutanediol used in preparing our complex esters. Specifically, the two comparative complex esters were prepared by the reaction of azelaic acid and 2,2,4-trimethylpentanol with 2-,methyl-1,3-pentanediol or with 2,2-dimethyl-1,3-propanediol.

Table II below records properties of synthetic ester lubricant compositions employing the complex esters of Table I as thickeners. In each of the three compositions the base oil is bis(2,2,4-trimethylpentyl)azelate. The table shows that the complex ester of our invention (A) prepared from 2,2,4,4-tetranrethyl-1,3-cyclobutanediol imparted good high-temperature viscosity to the lubricant composition without having the mentioned drawbacks of known thickening agents. The table further shows reresults of other important lubricant tests. The foaming properties of jet engine lubricants is significant because foaming in the lubricant reservoir system of the jet engine would lead to bearing starvation and ultimate failure. Our composition demonstrates satisfactorily low foaming characteristics. The lead corrosion test indicates whether or not the lubricant will be corrosive to the lead-indium alloy in the jet engine bearing. The panel coking test is an indication of the amount of coking that the lubricant will undergo in tubing, bearing, bearing housing and other areas within the hot spots of the engine. Table II shows that the lubricant composition of our invention containing polyester A was markedly superior to the compositions containing polyesters B" and C in the lead corrosion, panel coking and thermal stability tests.

and

CH CHs TABLE II.-PROPERTIES OF LUBRICANT COMPOSITIONS [Lube base, bis(2,2,4-trimethylpentyl) azelate] Viscosity (centlstokes) Foaming, Initial (r301, ml; collapse, Lead Test 2 mm. Weight Percent Panel 3 536 F.,

Polyester Coking Thermal 4 Sequence 1, Sequence Sequence 3, Stored 2 Stability 100 F. 210 F. 40 F. 75 F. 2, 200 F. 75 after Initial Weeks 21% A" 38. 5 7. 70 9,190 Non-Foam. /0. 2 N on-Foam 0. 3 2. 6 1. 0 16.5%8- 36. 54 7. 74 8,561 .do l0/0.2 d0 0.0 0.2 4.7 52. 27% O 37.24 7. 48 10,003 .-..-d0 25/03 .....d0 12.7 -82 23.7 6.2

1 Fed. Test Meth., Standard No. 791, Meth. 3211.1; AS'IM D892-46l. 2 Lead Corrosion Test, Fed. Test Method Standard N o. 791, Meth. 5321.

wherein R is an alkyl radical of from 1 to 20 carbon atoms, R is an alkylene radical of from 4 to 10 carbon atoms, the substituents, R, are lower alkyl radicals, R is an alkyl radical of 1 to 19 carbon atoms and x is an integer from 1 to 10.

2. A complex ester of the structure selected from the group consisting of C CH3 X 3 Fed. Test Meth., Standard N o. 791, Meth. 3462. 4 D. E. R. B. 2487, Issue 3, par. 6.7, Thermal Stability.

wherein R is an alkyl radical of from 1 to 20 carbon atoms, R is the alkylene radical of an acid selected from the group consisting of adipic, azelaic, sebacic and decane-l,l0-dicarboxylic acids, R is an alkyl radical of 1 to 19 carbon atoms and x is an integer from 1 to 10 corresponding to a complex ester of average molecular weight in the range 600 to 3000.

4. A complex ester of the structure selected from the group consisting of:

wherein R is a beta quaternary alkyl radical containing from 6 to 12 carbon atoms, R is the alkylene radical of an acid selected from the group consisting of adipic, azelaic, sebacic, and decane-l,l0-dicarboxylic acids, R is an alkyl radical of 3 to 11 carbon atoms, and x is an 7 integer from 1 to 10 corresponding to a complex ester of average molecular weight in the range 600 to 3000.

5. A complex ester according to claim 4 in which R is the 2,2,4-trimethylpentyl radical and R is the alkylene radical of azelaic acid.

References Cited UNITED STATES PATENTS 2,319,575 5/1943 Agens 260-77 Muskat 260-77 Szayna 260--77 Cashman et a1. 252-56 Matuszak 252-56 Examiners.

I. VAUGHN, Assistant Examiner.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US2319575 *27 Mar 194018 May 1943Gen ElectricResinous composition
US2415366 *16 Ene 19434 Feb 1947Marco Chemicals IncPolymerizable diester compounds and method of making same
US2824840 *1 Abr 195325 Feb 1958Exxon Research Engineering CoLubricating oil composition
US2889312 *7 Nov 19552 Jun 1959Us Rubber CoAlkyd resins modified with mono-allyl maleate end groups
US3016353 *15 Dic 19549 Ene 1962Exxon Research Engineering CoEster type synthetic lubricants
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US5705575 *2 Oct 19966 Ene 1998Shell Oil CompanyCopolyester composition
US5998340 *6 Mar 19987 Dic 1999Hitachi Maxell, Ltd.Lubricant and magnetic recording medium using the same
US746268428 Mar 20069 Dic 2008Eastman Chemical CompanyPreparation of transparent, multilayered articles containing polyesters comprising a cyclobutanediol and homogeneous polyamide blends
US751076828 Mar 200631 Mar 2009Eastman Chemical CompanyThermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US7517838 *22 Ago 200314 Abr 2009New Japan Chemical Co., Ltd.Lubricating oil for bearing
US757617128 Mar 200618 Ago 2009Eastman Chemical CompanyPacifiers comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US77046054 Feb 200927 Abr 2010Eastman Chemical CompanyThermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US77372467 Dic 200615 Jun 2010Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol, cyclohexanedimethanol, and ethylene glycol and manufacturing processes therefor
US774094129 Ene 200922 Jun 2010Eastman Chemical CompanyThermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US778156228 Mar 200624 Ago 2010Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US778625227 Feb 200631 Ago 2010Eastman Chemical CompanyPreparation of transparent multilayered articles
US780343928 Mar 200628 Sep 2010Eastman Chemical CompanyBlood therapy containers comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US780344028 Mar 200628 Sep 2010Eastman Chemical CompanyBottles comprising polyester compositions which comprise cyclobutanediol
US780344128 Mar 200628 Sep 2010Eastman Chemical CompanyIntravenous components comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US780777428 Mar 20065 Oct 2010Eastman Chemical CompanyVending machines comprising polyester compositions formed from 2,2,4,4,-tetramethyl-1,3,-cyclobutanediol and 1,4-cyclohexanedimethanol
US780777528 Mar 20065 Oct 2010Eastman Chemical CompanyPoint of purchase displays comprising polyester compositions formed from 2,2,4,4-tetramethyl-1, 3,-cyclobutanediol and 1,4-cyclohexanedimethanol
US781211128 Mar 200612 Oct 2010Eastman Chemical CompanyLCD films comprising polyester compositions formed from 2,2,4,4-tetramethy1-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US781211228 Mar 200612 Oct 2010Eastman Chemical CompanyOutdoor signs comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US783412928 Mar 200616 Nov 2010Eastman Chemical CompanyRestaurant smallware comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US783862028 Mar 200623 Nov 2010Eastman Chemical CompanyThermoformed sheet(s) comprising polyester compositions which comprise cyclobutanediol
US784277628 Mar 200630 Nov 2010Eastman Chemical CompanyAppliance parts comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US785526728 Mar 200621 Dic 2010Eastman Chemical CompanyFilm(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol and have a certain combination of inherent viscosity and moderate glass transition temperature
US786812828 Mar 200611 Ene 2011Eastman Chemical CompanySkylights and windows comprising polyester compositions formed from 2,2,4,4,-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US789318728 Mar 200622 Feb 2011Eastman Chemical CompanyGlass laminates comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US789318828 Mar 200622 Feb 2011Eastman Chemical CompanyBaby bottles comprising polyester compositions which comprise cyclobutanediol
US790232028 Mar 20068 Mar 2011Eastman Chemical CompanyGraphic art films comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US790621116 Mar 201015 Mar 2011Eastman Chemical CompanyThermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US790621216 Mar 201015 Mar 2011Eastman Chemical CompanyThermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US790661028 Mar 200615 Mar 2011Eastman Chemical CompanyFood service products comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US791537628 Mar 200629 Mar 2011Eastman Chemical CompanyContainers comprising polyester compositions which comprise cyclobutanediol
US795190028 Mar 200631 May 2011Eastman Chemical CompanyDialysis filter housings comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US795553327 Feb 20067 Jun 2011Eastman Chemical CompanyProcess for the preparation of transparent shaped articles
US795567428 Mar 20067 Jun 2011Eastman Chemical CompanyTransparent polymer blends containing polyesters comprising a cyclobutanediol and articles prepared therefrom
US795983628 Mar 200614 Jun 2011Eastman Chemical CompanyProcess for the preparation of transparent, shaped articles containing polyesters comprising a cyclobutanediol
US795999828 Mar 200614 Jun 2011Eastman Chemical CompanyTransparent, oxygen-scavenging compositions containing polyesters comprising a cyclobutanediol and articles prepared therefrom
US796425827 Feb 200621 Jun 2011Eastman Chemical CompanyTransparent, oxygen-scavenging compositions and articles prepared therefrom
US796816427 Feb 200628 Jun 2011Eastman Chemical CompanyTransparent polymer blends and articles prepared therefrom
US798582728 Mar 200626 Jul 2011Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol having certain cis/trans ratios
US806317228 Mar 200622 Nov 2011Eastman Chemical CompanyFilm(s) and/or sheet(s) made using polyester compositions containing low amounts of cyclobutanediol
US806317328 Mar 200622 Nov 2011Eastman Chemical CompanyPolyester compositions containing low amounts of cyclobutanediol and articles made therefrom
US806752528 Mar 200629 Nov 2011Eastman Chemical CompanyFilm(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol and have a certain combination of inherent viscosity and high glass transition temperature
US810170520 May 201024 Ene 2012Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US811976128 Mar 200621 Feb 2012Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US811976210 Nov 201021 Feb 2012Eastman Chemical CompanyFilm(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol and have a certain combination of inherent viscosity and moderate glass transition temperature
US813341729 Abr 201113 Mar 2012Eastman Chemical CompanyProcess for the preparation of transparent shaped articles
US81339677 Oct 201013 Mar 2012Eastman Chemical CompanyRestaurant smallware comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US819330227 Oct 20065 Jun 2012Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol and certain phosphate thermal stabilizers, and/or reaction products thereof
US819837123 Feb 200912 Jun 2012Eastman Chemical CompanyBlends of polyesters and ABS copolymers
US828797020 Nov 200816 Oct 2012Eastman Chemical CompanyPlastic baby bottles, other blow molded articles, and processes for their manufacture
US829920427 Oct 200630 Oct 2012Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US830449929 Abr 20116 Nov 2012Eastman Chemical CompanyTransparent polymer blends and articles prepared therefrom
US835449128 Ene 201115 Ene 2013Eastman Chemical CompanyContainers comprising polyester compositions which comprise cyclobutanediol
US83949979 Dic 201012 Mar 2013Eastman Chemical CompanyProcess for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US841545012 Ene 20129 Abr 2013Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US84208689 Dic 201016 Abr 2013Eastman Chemical CompanyProcess for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US84208699 Dic 201016 Abr 2013Eastman Chemical CompanyProcess for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US850128723 Sep 20106 Ago 2013Eastman Chemical CompanyPlastic baby bottles, other blow molded articles, and processes for their manufacture
US850129228 Ago 20126 Ago 2013Eastman Chemical CompanyPlastic baby bottles, other blow molded articles, and processes for their manufacture
US850763823 Ago 201113 Ago 2013Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US85867013 Jul 200719 Nov 2013Eastman Chemical CompanyProcess for the preparation of copolyesters based on 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US889565418 Dic 200825 Nov 2014Eastman Chemical CompanyPolyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
US916934817 Ene 201127 Oct 2015Eastman Chemical CompanyBaby bottles comprising polyester compositions which comprise cyclobutanediol
US916938828 Ago 201227 Oct 2015Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US917513410 Dic 20123 Nov 2015Eastman Chemical CompanyContainers comprising polyester compositions which comprise cyclobutanediol
US918138717 Jun 201110 Nov 2015Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol having certain cis/trans ratios
US918138825 Feb 201310 Nov 2015Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US953407925 Sep 20153 Ene 2017Eastman Chemical CompanyContainers comprising polyester compositions which comprise cyclobutanediol
US959853312 Jul 201321 Mar 2017Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US976518125 Sep 201519 Sep 2017Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US976520329 Sep 201519 Sep 2017Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US20060019840 *22 Ago 200326 Ene 2006New Japan Chemical Co., Ltd.Lubricating oil for bearing
US20060197246 *27 Feb 20067 Sep 2006Hale Wesley RProcess for the preparation of transparent shaped articles
US20060199871 *27 Feb 20067 Sep 2006Hale Wesley RMultilayered, transparent articles and a process for their preparation
US20060199904 *27 Feb 20067 Sep 2006Hale Wesley RTransparent, oxygen-scavenging compositions and articles prepared therefrom
US20060199919 *27 Feb 20067 Sep 2006Hale Wesley RTransparent polymer blends and articles prepared therefrom
US20060199921 *27 Feb 20067 Sep 2006Hale Wesley RPreparation of transparent multilayered articles from polyesters and homogeneous polyamide blends
US20060226565 *28 Mar 200612 Oct 2006Hale Wesley RPreparation of transparent, multilayered articles containing polyesters comprising a cyclobutanediol and homogeneous polyamide blends
US20060228507 *28 Mar 200612 Oct 2006Hale Wesley RTransparent polymer blends containing polyesters comprising a cyclobutanediol and articles prepared therefrom
US20060234073 *28 Mar 200619 Oct 2006Hale Wesley RMultilayered, transparent articles containing polyesters comprising a cyclobutanediol and a process for their preparation
US20060235167 *28 Mar 200619 Oct 2006Hale Wesley RProcess for the preparation of transparent, shaped articles containing polyesters comprising a cyclobutanediol
US20060247388 *28 Mar 20062 Nov 2006Hale Wesley RTransparent, oxygen-scavenging compositions containing polyesters comprising a cyclobutanediol and articles prepared therefrom
US20070276065 *3 Jul 200729 Nov 2007Eastman Chemical CompanyProcess for the preparation of copolyesters based on 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US20110200774 *29 Abr 201118 Ago 2011Eastman Chemical CompanyTransparent polymer blends and articles prepared therefrom
US20110201703 *29 Abr 201118 Ago 2011Eastman Chemical CompanyProcess for the preparation of transparent shaped articles
Clasificaciones
Clasificación de EE.UU.560/193, 508/492, 528/307
Clasificación cooperativaC10M2207/281, C10M2207/304, C10M2207/283, C10M2207/282, C10M2207/302, C10M3/00, C10M2207/286, C10M2207/34
Clasificación europeaC10M3/00