US3364200A - Oxidized cellulose product and method for preparing the same - Google Patents

Oxidized cellulose product and method for preparing the same Download PDF

Info

Publication number
US3364200A
US3364200A US463440A US46344065A US3364200A US 3364200 A US3364200 A US 3364200A US 463440 A US463440 A US 463440A US 46344065 A US46344065 A US 46344065A US 3364200 A US3364200 A US 3364200A
Authority
US
United States
Prior art keywords
cellulose
oxidized
oxidized cellulose
percent
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US463440A
Inventor
William H Ashton
Charles E Moser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson
Original Assignee
Johnson and Johnson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson filed Critical Johnson and Johnson
Priority to US463440A priority Critical patent/US3364200A/en
Application granted granted Critical
Publication of US3364200A publication Critical patent/US3364200A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/64Use of materials characterised by their function or physical properties specially adapted to be resorbable inside the body
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • D10B2201/24Viscose

Definitions

  • oxidized cotton hemostats which normally vary from off-white to pale yellow in color when fresh, turn yellow or brown, lose their tensile strength and eventually disintegrate, when stored at room temperature for more than 3-6 months. Exposure of oxidized cotton to strong light and elevated temperatures, such as those encountered in the tropics or in the summer months in temperate zones, greatly accelerates deterioration. It is necessary, therefore, to use previously available oxidized cotton hemostats within a short time after they are manufactured and to store them under refrigeration until used.
  • the present invention by means of which the above and other objects are achieved, is based upon the surprising discovery that the stability of oxidized cellulose is adversely affected by water which has been used previously to remove the acidic by-products of the oxidation reaction.
  • these acidic by-prodnets are removed by washing with an aqueous alcohol solution containing not more than about 80 percent and preferably not more than 50 percent of Water by weight or, altematively, by the use of high vacuum techniques which eliminate the use of water altogether. Elimination of the usual water wash according to the present inven- 3,354,200 Patented Jan. 16, 1968 tion provides oxidized cellulose having dramatically improved stability against deterioration on storage.
  • FIG. 1 is a perspective view of an oxidized cellulose absordable hemostat of the invention in the form of a knitted fabric;
  • FIG. 2 is a much enlarged fragmental view showing the structure of the knitted fabric of FIG. 1;
  • FIG. 3 is an enlarged View of an oxidized cellulose absorbable hemostat of the invention in the form of a pledget composed of an integrated mass of staple fibers.
  • Sources of cellulose The present invention is useful for improving the stability against deterioration of oxidized cellulose derived from any source including naturally occurring cellulosic materials and regenerated cellulose. More specifically, the new method may be used to improve the stability of oxidized cellulose derived from wood pulp, cotton, cotton linters, ramie, jute, paper and similar materials and regenerated cellulose or rayon produced by either the viscose or Bernberg processes.
  • the preferred sources of cellulose are cotton and particularly regenerated cellulose since these materials are best suited for surgical purposes. Regenerated cellulose is preferred over cotton because of its uniformity of chemical and physical properties.
  • a knitted or woven fabric is generally the most useful physical form for use in surgery, although other forms such as integrated masses of staple fiber, threads, films and cellular sponges also have utility.
  • any type of regenerated cellulose may be used whether prepared by the viscose or Bemberg process, the only essential requirement being that the regenerated cellulose be a so-called bright rayon, i.e., a material which has not been dulled by the addition of titanium dioxide or similar heavy metal materials. It is obvious that heavy metals of this type and other toxic substances must be avoided if the oxidized cellulose is to be used for surgical purposes. In general the heavy metals content (lead, copper, iron) of the oxidized regenerated cellulose product should not exceed about 30 parts per million and preferably should be less than about 15 ppm.
  • the regenerated cellulose have a uniform filament diameter in order to avoid the lack of uniformity of oxidation which is characteristic of oxidized cotton.
  • the size of the filaments is determined by practical considerations. Filaments less than about 1 denier while theoretically useful have, so little tensile strength that it is not presently feasible to process them into a hemostat in the form of a knitted fabric, for example. On the other hand, filaments greater than about 9 denier, even though completely oxidized, may require a prolonged period of time for absorption in animal tissue. Therefore, as a practical matter regenerated cellulose composed of filaments of uniform diameter and having a denier of about 1-9 and preferably 1-3 are employed in the preparation of the preferred materials of the present invention.
  • regenerated cellulose is composed of a polymer made up of anhydroglucose units.
  • the average number of such units per molecule of regenerated cellulose is referred to as the degree of polymerization (D.P.) of the material.
  • the degree of polymerization of regenerated cellulose may vary from a small number of units perhaps as low as 15 up to many thousand units. Extremely low molecular weight celluloses are, of course, close to the sugars and degraded starches and thus do not have sufiicient tensile strength to be useful in the manufacture of surgical hemostats.
  • the very high molecular weight celluloses have a tendency to be less absorbable when oxidized than materials with a lower degree of polymerization. Therefore, although the degree of polymerization of cellulose for use in the present invention may vary widely, it is preferred that it be in the range from about 200-500 and is preferably about 300 when the product is to be used as an absorbable hemostat.
  • the degree of polymerization (D.P.) of a cellulosic material may be determined by the method described by R. L. Mitchell, Industrial and Engineering Chemistry, vol. 45, p. 2520 (1953).
  • the present invention is applicable to cellulosic materials in any physical form it is most useful when applied to materials in forms which are suitable for use as surgical hemostats or for other surgical purposes. While it is possible to manufacture surgical articles from previously oxidized cellulose it is generally more convenient to manufacture the surgical articles from unoxidized cellulose and subsequently oxidize the cellulose in the article. Suitable materials include gauze, integrated masses of staple fibers, and woven, braided or twisted threads of cotton or rayon. Rayon monofilaments may also be used although they are not preferred due to the difiiculty of achieving complete oxidation of the cellulose in the interior of a high denier monofilarnent.
  • woven gauze is useful, it has been found that a knitted material is preferable since it has better handling qualities than a woven fabric for surgical purposes and conforms more readily to irregularly shaped viscera.
  • the familiar absorbent cotton of commerce may also be oxidized for use as a surgical hemostat.
  • Oxidized cellulose in which the alcoholic group on the number 6 carbon atom of the anhydroglucose units has been converted to a carboxyl group, has been known for many years. It has been prepared from a variety of cellulosic materials using various oxidizing agents in both the gaseous and liquid phase. The primary consideration in the preparation of oxidized cellulose for surgical purposes is uniform oxidation of the cellulose to a predetermined degree of oxidation, i.e., percent of carboxyl content by weight. This can be achieved only by careful control of the conditions of oxidation. As noted above it is also desirable to choose a cellulosic starting material having uniform chemical and physical properties.
  • nitrogen dioxide or its dimer, nitrogen tetroxide are the most suitable oxidizing agents for cellulose.
  • nitrogen dioxide has been used previously in the gaseous phase to produce oxidized cotton for use in absorbable hemostats, it is preferred to conduct the oxidation reaction in the liquid phase since this provides more precise control of the reaction and better contact between the cellulose and oxidizing agent 7 thus promoting uniformity of oxidation.
  • the concentration of the oxidizing agent, for example nitrogen dioxide, in the reaction medium may vary from about 5-100 percent by weight. Although concentrations less than 5 percent would produce oxidation, under normal conditions an inordinately long time would be required to achieve a useful degree of oxidation. On the other hand, while percent nitrogen dioxide may be used in a gaseous phase oxidation it is not recommended in the liquid phase. This is due to the fact that pure nitrogen dioxide boils at only 20 C., thus limiting the reaction temperature which may be employed and affecting the time required to achieve the desired degree of oxidation. It is preferred to dilute the nitrogen dioxide with an inert material to reduce its concentration in the reaction mixture to about 15-75 percent.
  • Suitable diluents include inert gases such as carbon dioxide for use in a gaseous phase oxidation, or inert, nonaqueous solvents such as carbon tetrachloride, Freon 113 (CCl F-CClF and Freon 11 (CCl F) and the like for use in the liquid phase.
  • Freon 113 and Freon 11 are available from E. I. du Pont de Nemours and Co.
  • the preferred diluentoxidizing agent mixture is a liquid solution containing about 20 percent by weight of nitrogen dioxide in Freon 113.
  • reaction temperatures may be employed, although it is preferred not to employ substantially elevated temperatures since oxidized cellulose is adversely affected by heat.
  • the reaction time required to achieve a given degree of oxidation varies inversely with the temperature i.e., the higher the temperature the shorter the reaction time. It is preferred to conduct the oxidation at room temperature since this is convenient and a useful degree of oxidation can be achieved in a reasonable period of time.
  • regenerated cellulose having a denier in the range of about l-9 can be substantially completely oxidized by the liquid phase method in about 16 hours at a temperature of about 24 C. with a solution containing about 20 percent by weight of nitrogen dioxide in Freon 113.
  • oxidizing agent may be employed when it is not necessary to achieve a high carboxyl content in the product as, for example, where a hemostat having a carboxyl content of only about 13 percent by weight or a suture having a carboxyl content of only about 8 percent by weight is required. Suitable conditions for any purpose can be found by routine trial and error.
  • concentration of oxidizing agent, reaction temperature, time, physical dimensions of the cellulose and other interdependent factors all affect the rate and degree of oxidation. It is preferred to use a glass-lined reaction vessel since this eliminates the possibility of contaminating the oxidized cellulose with heavy metals or other toxic materials undesirable in a surgical product.
  • oxidation of the hydroxyl group on the number 6 carbon atom of each anhydroglucose unit in the cellulose molecule would produce oxidized cellulose having a carboxyl content of 25.6 percent by weight.
  • Such complete oxidation of cellulose is seldom desirable for surgical purposes, however, since adequate hemostatic activity and tissue absorbability are obtained at lower levels of oxidation and it has been observed that stability on storage tends to decrease as the level of oxidation is increased.
  • satisfactory oxidized cellulose absorbable hernostats should be uniformly and substantially completely absorbable in animal tissue within a period of about 15 days as judged by visual inspection although traces of the material may be identified by microscopic examination for longer periods of time.
  • oxidized cellulose fabrics are the preferred embodiments
  • the present invention also provides new and useful absorbable sutures having improved stability on storage.
  • sutures need not be hemostatic it is not necessaryy to oxidize them to the degree required in an article in which hemostatic activity is of paramount importance.
  • the blood clotting power of oxidized cellulose increases markedly with increased oxidation as does the absorbability of the material in animal tissue, although to a lesser degree.
  • Lowering the degree of polymerization of the cellulose also increases the rate of absorbability of oxidized cellulose in animal tissue. Therefore, absorbsble sutures need only be oxidized up to the point at which a further increase in carboxyl content would no longer produce a useful increase in absorba'oility.
  • oxidized cellulose sutures it might be desirable, for example, to employ a lower concentration of oxidizing agent and a longer reaction time at a lower temperature in order to maximize tissue absorbability as opposed to the hemostatic activity of the oxidized cellulose sutures.
  • the maximum stability of oxidized cellulose sutures or other articles results only when the acidic by-products of the oxidation are removed according to the present invention irrespective of whether the suture is composed of oxidized cellulose derived from continuous filaments or spun staple fibers of regenerated cellulose, staple cotton fibers, ramie, jute, linen or any other cellulosic derivative in fiber or yarn form.
  • oxidized cellulose When oxidized cellulose is to be used for surgical purposes, it is essential that all traces of toxic or non-absorbable substances be removed.
  • the method of achieving this result without adversely alfecting the stability of the oxidized cellulose is the crux of the present invention.
  • cellulose normally contains acidic and other by-products of the oxidation reaction, solvents, traces of water and residual oxidizing agent. It has been customary to remove the acidic by-products, which include nitric and other nitrogen-containing acids and low molecular weight organic acids, by the obvious expedient of washing the oxidized cellulose with water.
  • these solutions may contain as little as about 20 percent water and should not contain more than about 80 percent water by volume. Solutions containing about 50 percent of alcohol and 50 percent water by volume are preferred. The aqueous alcohol solutions should not contain sufiicient water to degrade the oxidized cellulose product in any case.
  • the new washing procedure employs three different solvents.
  • the oxidized cellulose is washed initially with a nontoxic, inert, nonaqueous solvent for the oxidizing agent. This may be the same solvent employed during the oxidation reaction or a different solvent. Carbon tetrachloride, Freon 113 and Freon 11 among others are suitable solvents when the oxidizing agent to be removed is nitrogen dioxide.
  • the oxidized cellulose is then washed with a nontoxic, aqueous alcohol solution which removes acidic by-products of the oxidation reaction such as nitric acid.
  • the product is then given a final washing with an inert, nontoxic, nonaqueous solvent having an afllnity for water, such as a substantially anhydrous lower alcohol, in order to remove traces of water from the product.
  • An aqueous solution of any alcohol sufliciently miscible in water to form a solution containing at least 20 percent alcohol by volume may be employed in the second step of the washing procedure.
  • the lower alcohols which are soluble in water, ethyl alcohol and the propyl alcohols are preferred.
  • Methyl alcohol is normally avoided because of its toxicity when the oxidized cellulose is to be used for surgical purposes.
  • the butyl alcohols may also be employed, although these are less preferred due to their limited solubility in Water and the possibility of physiological complications.
  • Isopropyl alcohol is the solvent of choice, as opposed to ethyl alcohol and n-propyl alcohol, due to its low cost.
  • the preferred solvents for removal of Water in the thi:d step of the series are lower alcohols which are sufliciently anhydrous to have an aflinity for water.
  • methyl alcohol is avoided because of its toxicity and the butyl alcohols because of their lower afi'inity for water.
  • Ethyl alcohol and the propyl alcohols are preferred.
  • Substantially anhydrous isopropyl alcohol is especially preferred because of its lower cost. Commercially available 99 percent isopropyl alcohol is preferred, although 95 percent or even percent alcohol can be used in the last step.
  • the advantages of the present invention can be obtained by any method of removing impurities, oxidizing agent, and by-products of the oxidation reaction from the oxidized cellulose as long as the cellulose is not treated with a solution containing more than about 80 percent of water by volume. Oxidized cellulose may also be subjected to a vacuum for this purpose. The latter method is not generally preferred, however, since it does not provide as complete removal of the impurities as the preferred washing procedure described above.
  • the residual anhydrous alcohol in the oxidized cellulose may be removed by drying at room temperature with a current of forced air.
  • An oxidized cellulose product obtained in this, Way is completely free from toxic, nonabsorbable substances and thus is suitable for surgical purposes.
  • oxidized cellulose When oxidized cellulose is to be used for surgical purposes, it is desirable that it be made available to the surgeon in a presterilized form since it is subject to deterioration by heat and moisture and, therefore, does not lend itself to steam sterilization by the technique usually employed in hospitals. Any method which will produce a sterile product without degrading the oxidized cellulose may be employed. Suitable sterilization methods include the electron beam technique, the use of cobalt-60 irradiation and the use of sterilizing gases. Pure ethylene oxide cannot be used since it reacts vigorously with oxidized cellulose producing heat which tends to degrade the product. Ethylene oxide can be used, however, when mixed with sufficient amounts of an inert gas such as carbon dioxide. Formaldehyde sterilization is preferred, however, because of its convenience and efliciency. It has also been discovered that sterilization with formaldehyde according to the procedure described below improves the stability of oxidized cellulose against deterioration.
  • a uniformly and completely absorbable, hemostatic surgical gauze may be prepared as follows. Continuous, uniform diameter filaments of 1.6 denier composed of bright rayon made by the viscose process are assembled by conventional means into a 90 filament yarn having a total denier of 150. This yarn is knitted on a Wildman 28 cut, spring needle knitting machine into a fabric of plain jersey construction having a weight of about one pound per 13 square yards and a count of 18 courses and 18 wales per linear inch. The knitted fabric is attached to and wound loosely around an elongated, perforated tubular core and is then placed in a glass-lined reaction vessel provided with means for uniformly circulating liquid through the perforated core and the surrounding fabric.
  • Carbon tetrachloride (Freon 113 or Freon 11 might also be used) is charged to the reaction vessel containing the oxidized cellulose, circulated through the fabric for about 15 minutes, and then drained off. This procedure is repeated twice for a total of three washes using fresh carbon tetrachloride each time. The same procedure is used to wash the material with fresh batches of an aqueous solution containing 50 percent of isopropyl alcohol by volume until the pH of the wash liquor is about 3.1. Three aqueous alcohol washes are usually sulfi- 8. cient.
  • Sterilization of the oxidized regenerated cellulose is conveniently carried out after the hemostats composed of this material have been placed in individual packages.
  • the unsealed packages are placed in a sterilization chamber. After the chamber is closed and sealed, the contents of the chamber are heated to about F. and the internal pressure is reduced to the equivalent of about 25 inches of mercury by evacuation of air.
  • a solution containing 90 parts of aqueous formaldehyde (37 percent CH O) and 10 parts of glycerin by weight is vaporized by heating in a second vessel and the resulting sterilizing vapor is introduced to the sterilization chamber.
  • Suflicient formaldehyde is employed to produce a concentration of about 10-100 mg. of formaldehyde per liter of sterilization chamber volume.
  • the sterilizing vapor raises the temperature of the material in the sterilization chamber to about F. This temperature is maintained for one hour at the end of which time the packages and their contents are sterile. After the sterilizing vapor is evacuated from the sterilization chamber, the packages are removed and sealed under sterile conditions.
  • the degree of polymerization of the regenerated cellulose from which the material of Table A above was prepared was determined several months later to be about 230.
  • Knitted fabric, absorbable, hemostats made by the procedure of Example I from regenerated cellulose filaments of 1 and 3 denier were found on analysis to have carboxyl contents of 19.8 and 19.4 percent by weight respectively.
  • EXAMPLE II Absorbable, surgical hemostats in the form of pledgets of integrated oxidized cellulose staple fibers may be prepared as follows. Chemically crimped, bright rayon staple fibers havinga staple length of 1% inches and a fiber denier of 1.6 are carded into a web by conventional means. The staple fibers may be made by the methods described in R. D. McNeer et al. US. Patent 2,821,489, issued January 28, 1958, and R. T. Carney and I. E. Corr US. patent application, Serial No. 729,084, filed April 17, 1958, now abandoned. The Web of carded staple fiber is attached to, and wound loosely around, an elongated perforated tubular core.
  • Example II The procedure of Example I is employed except that the oxidized material is washed until the aqueous isopropyl alcohol wash liquor has a pH of about 3.5 to obtain absorbable, surgical hemostats in the form of pledgets of integrated, oxidized, regenerated cellulose, staple fibers.
  • a product obtained in this way had a heavy metals content of 2-2.5 parts per million and the following additional chemical analysis.
  • Cellulosic materials as is well-known, have a tendency to degrade with age. This degradation is believed to be caused by the disintegration of the cellulose molecule into smaller molecular fragments and is evidenced by discolora tion of the cellulose and loss of tensile strength.
  • cellulosic materials are used in a variety of physical forms such as threads, integrated masses of staple fibers, and woven or knitted fabric, for example, each of which requires a different method of testing its tensile strength, it is difiicult to compare degrees of degradation of difierent forms of cellulose on the basis of loss in tensile strength alone.
  • Samples of equal size or preferably equal weight of different oxidized cellulose materials to be compared are placed in individual one ounce glass vials filled with distilled water and allowed to stand for 17 hours in a constant temperature environment at 70 F.
  • the contents of each of the vials is then filtered through a coarse fritted glass funnel.
  • the filtrate and residue from each sample are then transferred to individual tared aluminum weighing dishes, weighed, and evaporated to dryness on a hot plate.
  • the individual dishes containing the residue from each sample are then cooled and weighed again.
  • the weight of the filtrate is obtained by substracting the weight of the dish and residue from the total weight of filtrate, dish and residue prior to the evaporation.
  • the percentage of water soluble material in each sample is then determined by the following formula.
  • filtrate soluble material in the sample by weight
  • the percentage of soluble material in the samples of oxidized cellulose is then compared. A high percentage of soluble material in a sample indicates a high degree of degradation and consequently a material of poor stability.
  • the samples of oxidized cellulose of the present invention were prepared bythe procedure of Example I.
  • the oxidized cellulose of the prior art was prepared as described in Example I except that the aqueous alcohol wash was omitted and a wash with Water substituted.
  • the third sample of oxidized cellulose was prepared according to the procedure of Example I, and according to the present invention except for the addition of sufiicient concentrated nitric acid to the Freon 113-nitrogen dioxide reaction mixture to give a concentration of 2 percent by weight.
  • Samples of the three batches of oxidized cellulose were placed in constant temperature storage at 11 70, 120, and 140 F. and the percentage of soluble material in each of the materials was determined after 2 months and 3 months aging at each of the three temperatures.
  • the new oxidized cellulose can be readily distinguished from that prepared according to the teachings of the prior art by the fact that it invariably has a water soluble content of less than about 15 and usually less than 10 percent by weight after dry storage at 70 F. for 3 months whereas the prior art materials invariably have a water soluble content of more than about 10 percent and normally more than percent by weight after storage under these conditions.
  • oxidized cellulose treated to remove acidic by-products of the oxidation reaction without contacting the material with water or aqueous solutions containing more than about percent water are so much more stable than similar materials of the prior art that they are useful for surgical purposes long after the prior art materials have lost sulficient tensile strength for this purpose.
  • the data also show the unexpected beneficial effect on the stability of oxidized cellulose which is obtained by sterilization of these materials according to the procedure of Example I. It is noted, further, that the formaldehyde sterilization has a greater beneficial effect on the stability of oxidized regenerated cellulose than it does on oxidized cotton.
  • Hemoslatic activity of the oxidized cellulose materials of the present invention maybe measured by the following procedure.
  • Four dogs are anesthetized with sodiurn pentobarbitol (33 mg./kg. of body Weight) and their spleens exposed. Multiple tests are carried out on each spleen as follows: criss-cross incised wounds, about 4 mm. in depth and 8 mm. in diameter are inflicted, and the sample of the oxidized cellulose under investigation is applied over the wound.
  • a plastic plate with a circular hole 8 mm. in diameter is placed over the test material in such a way that all blood flowing from the wound must pass through the oxidized cellulose.
  • the time required for the test material to control bleeding i.e., arrest the flow of blood, is observed.
  • the time required to arrest bleeding affords a basis for comparing the hemostatic activity of different materials.
  • the normal blood clotting time in dogs is about 6 minutes when no artificial hemostasis is applied.
  • a knitted fabric of oxidized cellulose prepared according to the procedure described in Example I was tested and observed to arrest bleeding in about 2.5 minutes.
  • Oxidized regenerated cellulose prepared as described above is inherently hemostatic. When exposed to whole human blood it is converted into a dark brown or black gelatinous mass, which appears to form, in effect, an artificially produced clot within the openings of the bleeding vessels and in the surrounding area. Hemostasis becomes 13 complete in approximately one or two minutes in humans. The material does not enter into the normal physiologic clotting mechanism per se, and for that reason is effective in controlling bleeding in many cases of hemophilia, thrombocytopenic purpura and other blood dyscrasiae.
  • Oxidized regenerated cellulose produced as described above has been intensively studied both experimentally and clinically to determine the rate and extent of its absorption in body tissue.
  • Pieces of the knitted and carded fiber types, of uniform size weighing 75 mg. where implanted subcutaneously in rats by the Frantz-Lattes technique and the gross appearance of the subcutaneous implants and surrounding sites recorded.
  • the oxidized regenerated cellulose implants had the appearance of a soft gelatinous mass; tissue reaction being slight.
  • the implanted material was observed to be completely absorbed with no evidence of inflammation. Necropsy studies in humans have been reported in whom the material was implanted in the course of various surgical procedures, and who died of causes not directly related to their surgery.
  • the absorbable hemostatic knitted fabric, carded fiber pads, sutures and other articles of the present invention have broad surgical applications.
  • the new materials extend the range of surgical procedures which may be undertaken with relatively greater safety.
  • Complete absorption without tissue reaction raises the ratio of normal recoveries, particularly in dificult surgical procedures.
  • the knitted fabric is particularly useful in general surgery for the control of capillary or venous bleeding or small arterial hemorrhage where conventional means of control are technically impractical.
  • Such bleeding may occur in gall bladder and bile duct surgery, partial hepatecomy, resections or injuries of the pancreas, spleen, kidneys, prostate, bowel, breast, or thyroid and in amputations of the extremities.
  • the material was found to be effective and well accepted physiologically in such major procedures as liver biopsy, advanced malignancies, extensive thoracic and cardiovascular surgery, and general abdominal procedures including cholecystectomy and colectomy.
  • the new hemostatic material was considered life-saving. In no instance was wound infection, toxic reaction or death attributed to the absorbable hemostats of the invention.
  • the new knitted fabric hemostat lends itself very well indeed to tamponade of bleeding from solid viscera, when used as a bolster beneath mattress sutures.
  • Reported cases include many types of urologic surgery in addition to prostatectomy, speno-renal shunts, pancreatomy, excision of acute aneurysm, and other major vascular procedures. Another investigator has recorded the use of these materials in a series of 100 patients in various surgical situations where rapid hemostasis was desirable. In 41 cholecystecomy cases, hemostasis was found to be excellent or good in all instances where the material was implanted in the gall bladder bed. In all instances, healing occurred without incident.
  • the knitted fabric absorbable hemostat was also used in 34 hemorrhoidectomies with completely effective hemostasis. There is relatively little bulk to the material so that sphincteric spasm (and consequent pain) due to bulk per se (e.g., a petroleum jelly pack) was minimized. There is no need to remove the new hemostats manually as the material becomes jelly-like and is passed spontaneously in 23 days in the Weg bath. Finally, as the material is reabsorbed by the body, there is no need to anticipate any foreign body granuloma formation as has been observed with other types of hemostatic packing.
  • Neurologic procedures offer an important field of usefulness for the carded fiber pads of oxidized regenerated cellulose in controlling punctate bleeding from the brain itself and for many other purposes. Oozing from the calvarium during prosthetic repair of a skull defect, for instance, is controlled simply by laying a pad over the under surface of the flap at the time it is turned back and then removing it on completion of the operation. Hemorrhage from the dura or brain tissue is controlled simply by applying a small pledget of the carded fiber 15 to the bleeding point. In quickly adheres and is completely absorbed with no local reaction or neurologic irritation, makin removal unnecessary.
  • Both the new absorbable hemostatic gauze fabric and carded fiber pads are well adapted to many otolaryngologic procedures.
  • the material When used to control spontaneous nasal hemorrhage that requires packing, the material not only provides prompt hemostasis, but is easily removed after 12 to 24 hours without causing secondary hemorrhage.
  • Other indications include: control of postoperative adenoid hemorrhage postnasal packing, packing following radical mastoidectorny, submucous resection of the nasal septum, radical ethmoidectomy, and control of the oozing which may occur during tonsillectomy.
  • the material need not be left in place, but can usually be gently removed at the conclusion of the procedure without re-initiating bleeding. It should be emphasized, however, that this is not a substitute for ligation of bleeding points wherever possible, since disregard of this point may lead to secondary hemorrhage.
  • the new absorbabie hemostats find many applications in oral surgery. Bleeding problems are controlled following single or multiple tooth removal, alveolectomy, intermediate or secondary hemorrhage, inipactions, biopsies and other procedures in the oral cavity.
  • a strip of hemostatic material may be used on the ridge area of immediate dentures to prevent seepage into the denture. Inasmuch as the new materials achieve hemostasis by virtually providing an artificially produced clot, independent of normal blood-clotting mechanisms in the wound, it is extremely useful and often life-saving in the control of post-extraction or other operative bleeding in hemophilia, thrombocytopenic purpura and other blood dyscrasiae.
  • the knitted fabric of the invention has been used in over 200 surgical procedures about the oral cavity and the control of severe nosebleed.
  • the investigator was as irnpressed with the ease of handling as he was with the superior hemostatic effect of the new oxidized regenerated cellulose materials.
  • optimal results are achieved by Opening up the material slightly to cover a greater surface area with a thin layer so that the gauze can be laid over the sockets lightly. It is not necessary or desirable to use large amounts for effective hemostasis. Indeed, excessive wadding may delay healing or cause other possible complications. Results were also excellent when the hemostats were used in excision of lesions in the mouth, on the tongue, and during other radical maxillo-facial procedures. Unless the material was misused, healing was always excellent and uncomplicated. Best results were obtained when small amounts of the fabric were held gently over the bleeding surface.

Description

Jan. 16, 1968 w. H. ASHTON ETAL 3,364,200
OXIDIZED CELLULOSE PRODUCT AND METHOD FOR PREPARING THE SAME 2 SheetsSheet 1 Original Filed Nov. 29, 1961 w. H. ASHTON ETAL 3,364,200
Jan. 16, 1968 OXIDIZED CELLULOSE PRODUCT AND METHOD FOR PREPARING THE SAME 2 Sheets-Sheet 2 Original Filed Nov. 29, 1961 United States Patent 3,364,200 QXEDKZED CELLULOSE PRODUfJT AND METHOD FOR PREPARING THE SAME William H. Ashton, Philadelphia, and Charles E. Maser,
Levittorvn, Pa, assignors to Johnson & Johnson, a corporation of New Jersey Continuation of application Ser. No. 157,034, Nov. 29, 1961, which is a continuation-in-part of application Ser. No. 17,840, Mar. 28, 1960. This application May 19, 1965, Ser. No. 463,440
4 Claims. (Cl. 260-212) The present invention relates to surgical materials for control of bleeding and more particularly, to materials of this type composed of oxidized cellulose. This application is a continuation of our co-pending application Serial No. 157,034, filed Nov. 29, 1961 and now abandoned, which in turn is a continuation-in-part of our application Ser. No. 17,840, filed Mar. 28, 1960, now abandoned.
The control of bleeding is a serious problem in certain surgical procedures and in various types of emergency wounds. Bleeding from the kidney, brain, or liver or the persistent oozing from severed capillaries and veins, for example, is particularly difficult to control by conventional means such as suturing or ligature and in many cases is serious enough to endanger life. Surgical hemostats consisting of conventional gauze pads or similar articles impregnated with a hemostatic material such as ferric chloride, thrombin or the like, have been used for many years to arrest bleeding. Hemostats of this type cannot be left in situ in a closed wound, however, since foreign body tissue reaction would result. This is a serious disadvantage inasmuch as removal of the hemostate from the bleeding site frequently disrupts any blood clot which has formed and causes renewed bleeding. It was obvious, therefore, that a vital need existed for a hemostatic material which could be left in place in a closed wound without causing serious local tissue reaction. It was hoped that this need had been satisfied when it was discovered that oxidized cellulose not only had hemostatic properties but was absorbable in animal tissue. This led to the production and use of hemostats composed of oxidized cotton. It was found, however, that the oxidation of cotton substantially increased the inherent tendency of this material to deteriorate with age. Available oxidized cotton hemostats, which normally vary from off-white to pale yellow in color when fresh, turn yellow or brown, lose their tensile strength and eventually disintegrate, when stored at room temperature for more than 3-6 months. Exposure of oxidized cotton to strong light and elevated temperatures, such as those encountered in the tropics or in the summer months in temperate zones, greatly accelerates deterioration. It is necessary, therefore, to use previously available oxidized cotton hemostats within a short time after they are manufactured and to store them under refrigeration until used.
It is, therefore, a primary object of the present invention to provide oxidized cellulose absorbable hemostats having improved stability against deterioration on storage.
The present invention, by means of which the above and other objects are achieved, is based upon the surprising discovery that the stability of oxidized cellulose is adversely affected by water which has been used previously to remove the acidic by-products of the oxidation reaction. In the present invention these acidic by-prodnets are removed by washing with an aqueous alcohol solution containing not more than about 80 percent and preferably not more than 50 percent of Water by weight or, altematively, by the use of high vacuum techniques which eliminate the use of water altogether. Elimination of the usual water wash according to the present inven- 3,354,200 Patented Jan. 16, 1968 tion provides oxidized cellulose having dramatically improved stability against deterioration on storage.
The invention will now be described in greater detail in conjunction with the accompanying drawings in which:
FIG. 1 is a perspective view of an oxidized cellulose absordable hemostat of the invention in the form of a knitted fabric;
FIG. 2 is a much enlarged fragmental view showing the structure of the knitted fabric of FIG. 1; and
FIG. 3 is an enlarged View of an oxidized cellulose absorbable hemostat of the invention in the form of a pledget composed of an integrated mass of staple fibers.
Sources of cellulose The present invention is useful for improving the stability against deterioration of oxidized cellulose derived from any source including naturally occurring cellulosic materials and regenerated cellulose. More specifically, the new method may be used to improve the stability of oxidized cellulose derived from wood pulp, cotton, cotton linters, ramie, jute, paper and similar materials and regenerated cellulose or rayon produced by either the viscose or Bernberg processes. Inasmuch as the invention has its greatest utility in the surgical field, the preferred sources of cellulose are cotton and particularly regenerated cellulose since these materials are best suited for surgical purposes. Regenerated cellulose is preferred over cotton because of its uniformity of chemical and physical properties. A knitted or woven fabric is generally the most useful physical form for use in surgery, although other forms such as integrated masses of staple fiber, threads, films and cellular sponges also have utility.
As noted above, previously available oxidized cellulose absorbable hemostats have been derived from cotton. Although hemostats of this type represent a step forward in the art or" controlling bleeding they have certain inherent disadvantages in addition to their poor stability against deterioration on storage. These disadvantages are believed to stem from the lack of uniformity of the chemical and physical properties of cotton. Inasmuch as cotton is a natural product its composition is affected by growing conditions and thus batches of cotton grown in different years or different geographical areas vary in chemical and physical properties. Furthermore, cotton fibers do not have a uniform diameter throughout their length. This lack of physical uniformity makes it impossible to oxidize cotton uniformly. When oxidation conditions are chosen which would result in complete oxidation of the thicker portions of the cotton fiber, the smaller diameter portions will be over oxidized and thus will have a tendency to deteriorate rapidly. On the other hand, when oxidation conditions are chosen which would oxidize the smaller diameter portions of the cotton fiber to the desired degree, the larger diameter portions of the fiber may not be oxidized sufficiently. This is disadvantageous since the partially oxidized cotton may not be readily absorbable in animal tissue. It is apparent that the inherent lack of uniformity of cotton ultimately leads to lack of uniformity of absorption of oxidized cotton in animal tissue. Therefore, although the present invention is useful in improving the shelf life of oxidized cotton hemostats, it is preferred to employ a more uniform starting material such as regenerated cellulose in the preparation of absorbable hemostats.
Any type of regenerated cellulose may be used whether prepared by the viscose or Bemberg process, the only essential requirement being that the regenerated cellulose be a so-called bright rayon, i.e., a material which has not been dulled by the addition of titanium dioxide or similar heavy metal materials. It is obvious that heavy metals of this type and other toxic substances must be avoided if the oxidized cellulose is to be used for surgical purposes. In general the heavy metals content (lead, copper, iron) of the oxidized regenerated cellulose product should not exceed about 30 parts per million and preferably should be less than about 15 ppm.
Although not essential, it is also important that the regenerated cellulose have a uniform filament diameter in order to avoid the lack of uniformity of oxidation which is characteristic of oxidized cotton. The size of the filaments is determined by practical considerations. Filaments less than about 1 denier while theoretically useful have, so little tensile strength that it is not presently feasible to process them into a hemostat in the form of a knitted fabric, for example. On the other hand, filaments greater than about 9 denier, even though completely oxidized, may require a prolonged period of time for absorption in animal tissue. Therefore, as a practical matter regenerated cellulose composed of filaments of uniform diameter and having a denier of about 1-9 and preferably 1-3 are employed in the preparation of the preferred materials of the present invention.
As is well-known, regenerated cellulose is composed of a polymer made up of anhydroglucose units. The average number of such units per molecule of regenerated cellulose is referred to as the degree of polymerization (D.P.) of the material. The degree of polymerization of regenerated cellulose may vary from a small number of units perhaps as low as 15 up to many thousand units. Extremely low molecular weight celluloses are, of course, close to the sugars and degraded starches and thus do not have sufiicient tensile strength to be useful in the manufacture of surgical hemostats. The very high molecular weight celluloses, on the other hand, have a tendency to be less absorbable when oxidized than materials with a lower degree of polymerization. Therefore, although the degree of polymerization of cellulose for use in the present invention may vary widely, it is preferred that it be in the range from about 200-500 and is preferably about 300 when the product is to be used as an absorbable hemostat. The degree of polymerization (D.P.) of a cellulosic material may be determined by the method described by R. L. Mitchell, Industrial and Engineering Chemistry, vol. 45, p. 2520 (1953).
Although the present invention is applicable to cellulosic materials in any physical form it is most useful when applied to materials in forms which are suitable for use as surgical hemostats or for other surgical purposes. While it is possible to manufacture surgical articles from previously oxidized cellulose it is generally more convenient to manufacture the surgical articles from unoxidized cellulose and subsequently oxidize the cellulose in the article. Suitable materials include gauze, integrated masses of staple fibers, and woven, braided or twisted threads of cotton or rayon. Rayon monofilaments may also be used although they are not preferred due to the difiiculty of achieving complete oxidation of the cellulose in the interior of a high denier monofilarnent. Although woven gauze is useful, it has been found that a knitted material is preferable since it has better handling qualities than a woven fabric for surgical purposes and conforms more readily to irregularly shaped viscera. The familiar absorbent cotton of commerce may also be oxidized for use as a surgical hemostat. Here again, however, it is preferred to employ a similar material composed of staple fibers of regenerated cellulose which are formed into an integrated mass by carding, needling or other conventional means.
Preparation of oxidized cellulose Oxidized cellulose, in which the alcoholic group on the number 6 carbon atom of the anhydroglucose units has been converted to a carboxyl group, has been known for many years. It has been prepared from a variety of cellulosic materials using various oxidizing agents in both the gaseous and liquid phase. The primary consideration in the preparation of oxidized cellulose for surgical purposes is uniform oxidation of the cellulose to a predetermined degree of oxidation, i.e., percent of carboxyl content by weight. This can be achieved only by careful control of the conditions of oxidation. As noted above it is also desirable to choose a cellulosic starting material having uniform chemical and physical properties. Experience has shown that nitrogen dioxide or its dimer, nitrogen tetroxide, are the most suitable oxidizing agents for cellulose. Further, although nitrogen dioxide has been used previously in the gaseous phase to produce oxidized cotton for use in absorbable hemostats, it is preferred to conduct the oxidation reaction in the liquid phase since this provides more precise control of the reaction and better contact between the cellulose and oxidizing agent 7 thus promoting uniformity of oxidation.
The concentration of the oxidizing agent, for example nitrogen dioxide, in the reaction medium may vary from about 5-100 percent by weight. Although concentrations less than 5 percent would produce oxidation, under normal conditions an inordinately long time would be required to achieve a useful degree of oxidation. On the other hand, while percent nitrogen dioxide may be used in a gaseous phase oxidation it is not recommended in the liquid phase. This is due to the fact that pure nitrogen dioxide boils at only 20 C., thus limiting the reaction temperature which may be employed and affecting the time required to achieve the desired degree of oxidation. It is preferred to dilute the nitrogen dioxide with an inert material to reduce its concentration in the reaction mixture to about 15-75 percent. Suitable diluents include inert gases such as carbon dioxide for use in a gaseous phase oxidation, or inert, nonaqueous solvents such as carbon tetrachloride, Freon 113 (CCl F-CClF and Freon 11 (CCl F) and the like for use in the liquid phase. Freon 113 and Freon 11 are available from E. I. du Pont de Nemours and Co. The preferred diluentoxidizing agent mixture is a liquid solution containing about 20 percent by weight of nitrogen dioxide in Freon 113.
A wide range of reaction temperatures may be employed, although it is preferred not to employ substantially elevated temperatures since oxidized cellulose is adversely affected by heat. As would be expected the reaction time required to achieve a given degree of oxidation varies inversely with the temperature i.e., the higher the temperature the shorter the reaction time. It is preferred to conduct the oxidation at room temperature since this is convenient and a useful degree of oxidation can be achieved in a reasonable period of time. For example, regenerated cellulose having a denier in the range of about l-9 can be substantially completely oxidized by the liquid phase method in about 16 hours at a temperature of about 24 C. with a solution containing about 20 percent by weight of nitrogen dioxide in Freon 113. Much shorter reaction times, lower temperatures or lower concentrations of oxidizing agent may be employed when it is not necessary to achieve a high carboxyl content in the product as, for example, where a hemostat having a carboxyl content of only about 13 percent by weight or a suture having a carboxyl content of only about 8 percent by weight is required. Suitable conditions for any purpose can be found by routine trial and error. The concentration of oxidizing agent, reaction temperature, time, physical dimensions of the cellulose and other interdependent factors all affect the rate and degree of oxidation. It is preferred to use a glass-lined reaction vessel since this eliminates the possibility of contaminating the oxidized cellulose with heavy metals or other toxic materials undesirable in a surgical product.
Theoretically, oxidation of the hydroxyl group on the number 6 carbon atom of each anhydroglucose unit in the cellulose molecule would produce oxidized cellulose having a carboxyl content of 25.6 percent by weight. Such complete oxidation of cellulose is seldom desirable for surgical purposes, however, since adequate hemostatic activity and tissue absorbability are obtained at lower levels of oxidation and it has been observed that stability on storage tends to decrease as the level of oxidation is increased. Experience has shown that satisfactory oxidized cellulose absorbable hernostats should be uniformly and substantially completely absorbable in animal tissue within a period of about 15 days as judged by visual inspection although traces of the material may be identified by microscopic examination for longer periods of time. Oxidized cellulose of the present invention having an individual filament or fiber denier in the range of about 1-9 and a carboxyl content of about 12-25 percent by weight, is satisfactorily absorbable according to the above standard. It should be noted that low denier and high carboxyl content favor absorbability. Therefore, the low denier materials may be satisfactorily absorbable when oxidized to a carboxyl content of only 12-13 percent by weight whereas the higher denier materials may tend to be more slowly absorbable at this level of oxidation. It is preferred, therefore, to oxidize cellulose for use as absorbable hemostats to a carboxyl content of about 1822 percent since material having a denier in the preferred range of 19 is always satisfactorily absorbable at these levels of oxidation.
Although oxidized cellulose fabrics are the preferred embodiments, the present invention also provides new and useful absorbable sutures having improved stability on storage. However, inasmuch as sutures need not be hemostatic it is not necesary to oxidize them to the degree required in an article in which hemostatic activity is of paramount importance. In general, the blood clotting power of oxidized cellulose increases markedly with increased oxidation as does the absorbability of the material in animal tissue, although to a lesser degree. Lowering the degree of polymerization of the cellulose also increases the rate of absorbability of oxidized cellulose in animal tissue. Therefore, absorbsble sutures need only be oxidized up to the point at which a further increase in carboxyl content would no longer produce a useful increase in absorba'oility. Further oxidation would be of no utility since it would only increase the hemostatic activity of the suture which is of no importance. Therefore, satisfactory absorbable sutures can be produced having a carboxyl content of only about 3-l3 percent by weight Whereas maximum hemostatic activity is not obtained until oxidized cellulose has a carboxyl content above about 12 percent by weight. Further, inasmuch as absorbable sutures usually differ from surgical hemostats in their hemostatic and other properties it is obvious that somewhat dilferent reaction conditions are indicated for the oxidation reaction. The ratio of reactants, for example, should be chosen to produce the physical and physiological properties optimum for sutures rather than to produce optimum blood clotting power as would be required in a hemostat. It might be desirable, for example, to employ a lower concentration of oxidizing agent and a longer reaction time at a lower temperature in order to maximize tissue absorbability as opposed to the hemostatic activity of the oxidized cellulose sutures. In any case the maximum stability of oxidized cellulose sutures or other articles results only when the acidic by-products of the oxidation are removed according to the present invention irrespective of whether the suture is composed of oxidized cellulose derived from continuous filaments or spun staple fibers of regenerated cellulose, staple cotton fibers, ramie, jute, linen or any other cellulosic derivative in fiber or yarn form.
Removal of impurities When oxidized cellulose is to be used for surgical purposes, it is essential that all traces of toxic or non-absorbable substances be removed. The method of achieving this result without adversely alfecting the stability of the oxidized cellulose is the crux of the present invention. Subsequent to its oxidation, cellulose normally contains acidic and other by-products of the oxidation reaction, solvents, traces of water and residual oxidizing agent. It has been customary to remove the acidic by-products, which include nitric and other nitrogen-containing acids and low molecular weight organic acids, by the obvious expedient of washing the oxidized cellulose with water. It has now been found, however, that more than brief contact of oxidized cellulose with washes of water or an aqueous solution containing more than about percent water by volume by passing them through the perforated core and the surrounding cellulose layers gives rise to fused and charred portions and degrades the oxidized cellulose, and thus makes the material unsuitable as a hemostat. In the present invention the use of water to remove the acidic materials from the oxidized cellulose is avoided by the use of high vacuum to remove the impurities or by substituting an aqueous alcohol for water in the washing procedure. Alcoholic solutions for the latter purpose should contain at least about 20 percent alcohol and may contain as much as about 80 percent alcohol by volume. Conversely these solutions may contain as little as about 20 percent water and should not contain more than about 80 percent water by volume. Solutions containing about 50 percent of alcohol and 50 percent water by volume are preferred. The aqueous alcohol solutions should not contain sufiicient water to degrade the oxidized cellulose product in any case.
The new washing procedure employs three different solvents. The oxidized cellulose is washed initially with a nontoxic, inert, nonaqueous solvent for the oxidizing agent. This may be the same solvent employed during the oxidation reaction or a different solvent. Carbon tetrachloride, Freon 113 and Freon 11 among others are suitable solvents when the oxidizing agent to be removed is nitrogen dioxide. The oxidized cellulose is then washed with a nontoxic, aqueous alcohol solution which removes acidic by-products of the oxidation reaction such as nitric acid. The product is then given a final washing with an inert, nontoxic, nonaqueous solvent having an afllnity for water, such as a substantially anhydrous lower alcohol, in order to remove traces of water from the product.
An aqueous solution of any alcohol sufliciently miscible in water to form a solution containing at least 20 percent alcohol by volume may be employed in the second step of the washing procedure. Of the lower alcohols, which are soluble in water, ethyl alcohol and the propyl alcohols are preferred. Methyl alcohol is normally avoided because of its toxicity when the oxidized cellulose is to be used for surgical purposes. The butyl alcohols may also be employed, although these are less preferred due to their limited solubility in Water and the possibility of physiological complications. Isopropyl alcohol is the solvent of choice, as opposed to ethyl alcohol and n-propyl alcohol, due to its low cost.
The preferred solvents for removal of Water in the thi:d step of the series are lower alcohols which are sufliciently anhydrous to have an aflinity for water. Here again methyl alcohol is avoided because of its toxicity and the butyl alcohols because of their lower afi'inity for water. Ethyl alcohol and the propyl alcohols are preferred. Substantially anhydrous isopropyl alcohol is especially preferred because of its lower cost. Commercially available 99 percent isopropyl alcohol is preferred, although 95 percent or even percent alcohol can be used in the last step.
The advantages of the present invention can be obtained by any method of removing impurities, oxidizing agent, and by-products of the oxidation reaction from the oxidized cellulose as long as the cellulose is not treated with a solution containing more than about 80 percent of water by volume. Oxidized cellulose may also be subjected to a vacuum for this purpose. The latter method is not generally preferred, however, since it does not provide as complete removal of the impurities as the preferred washing procedure described above.
When the preferred washing procedure is employed, the residual anhydrous alcohol in the oxidized cellulose may be removed by drying at room temperature with a current of forced air. An oxidized cellulose product obtained in this, Way is completely free from toxic, nonabsorbable substances and thus is suitable for surgical purposes.
Sterilization When oxidized cellulose is to be used for surgical purposes, it is desirable that it be made available to the surgeon in a presterilized form since it is subject to deterioration by heat and moisture and, therefore, does not lend itself to steam sterilization by the technique usually employed in hospitals. Any method which will produce a sterile product without degrading the oxidized cellulose may be employed. Suitable sterilization methods include the electron beam technique, the use of cobalt-60 irradiation and the use of sterilizing gases. Pure ethylene oxide cannot be used since it reacts vigorously with oxidized cellulose producing heat which tends to degrade the product. Ethylene oxide can be used, however, when mixed with sufficient amounts of an inert gas such as carbon dioxide. Formaldehyde sterilization is preferred, however, because of its convenience and efliciency. It has also been discovered that sterilization with formaldehyde according to the procedure described below improves the stability of oxidized cellulose against deterioration.
The following specific examples illustrate the best mode of practicing the invention presently known. They should not, however, be construed as limiting the scope of the invention.
EXAMPLE I A uniformly and completely absorbable, hemostatic surgical gauze may be prepared as follows. Continuous, uniform diameter filaments of 1.6 denier composed of bright rayon made by the viscose process are assembled by conventional means into a 90 filament yarn having a total denier of 150. This yarn is knitted on a Wildman 28 cut, spring needle knitting machine into a fabric of plain jersey construction having a weight of about one pound per 13 square yards and a count of 18 courses and 18 wales per linear inch. The knitted fabric is attached to and wound loosely around an elongated, perforated tubular core and is then placed in a glass-lined reaction vessel provided with means for uniformly circulating liquid through the perforated core and the surrounding fabric. Twelve pounds of Freon 113 (CClQE-CCIE), the chosen reaction medium, is charged to the reaction vessel per pound of cellulose and circulated through the fabric. Three pounds of dinitrogen tetroxide (N is then charged to the reaction vessel per pound of cellulose to bring the concentration of the oxidizing agent to about 20 percent by weight of the liquid phase. The liquid phase is maintained at a temperature of about 24 C. and continuously circulated through the fabric for about 15.5 hours at the end of which time the rayon is uniformly oxidized to the desired extent i.e., about 18-22 percent carboxyl by weight. The liquid phase is then drained from the reaction vessel. The fabric is now ready for the critical washing procedure which provides the oxidized cellulose with its hitherto unobtainable stability against deterioration.
Carbon tetrachloride (Freon 113 or Freon 11 might also be used) is charged to the reaction vessel containing the oxidized cellulose, circulated through the fabric for about 15 minutes, and then drained off. This procedure is repeated twice for a total of three washes using fresh carbon tetrachloride each time. The same procedure is used to wash the material with fresh batches of an aqueous solution containing 50 percent of isopropyl alcohol by volume until the pH of the wash liquor is about 3.1. Three aqueous alcohol washes are usually sulfi- 8. cient. It is the substitution of these aqueous alcohol washes for the usual water wash which provides the increased stability against deterioration which is characteristic of the new oxidized cellulose of the present invention. The washing procedure is then repeated twice more with fresh batches of 99 percent isopropyl alcohol to remove residual water from the fabric. The fabric is then dried at room temperature by means of forced air. The oxidized fabric is then cut into pieces of appropriate size for surgical purposes, packaged and sterilized.
Sterilization of the oxidized regenerated cellulose is conveniently carried out after the hemostats composed of this material have been placed in individual packages. The unsealed packages are placed in a sterilization chamber. After the chamber is closed and sealed, the contents of the chamber are heated to about F. and the internal pressure is reduced to the equivalent of about 25 inches of mercury by evacuation of air. A solution containing 90 parts of aqueous formaldehyde (37 percent CH O) and 10 parts of glycerin by weight is vaporized by heating in a second vessel and the resulting sterilizing vapor is introduced to the sterilization chamber. Suflicient formaldehyde is employed to produce a concentration of about 10-100 mg. of formaldehyde per liter of sterilization chamber volume. Introduction of the sterilizing vapor raises the temperature of the material in the sterilization chamber to about F. This temperature is maintained for one hour at the end of which time the packages and their contents are sterile. After the sterilizing vapor is evacuated from the sterilization chamber, the packages are removed and sealed under sterile conditions.
A sample of oxidized regenerated cellulose produced as described in this example was found to have a total heavy metals content of 7.5 parts per million and the following adidtional chemical analysis:
TABLE A Oxidized rayon Percent by knitted fabric: weight CH O 0.36 COOH 19.1-20.3 N 0.24 Ash 0.145
The degree of polymerization of the regenerated cellulose from which the material of Table A above was prepared was determined several months later to be about 230.
Knitted fabric, absorbable, hemostats made by the procedure of Example I from regenerated cellulose filaments of 1 and 3 denier were found on analysis to have carboxyl contents of 19.8 and 19.4 percent by weight respectively.
EXAMPLE II Absorbable, surgical hemostats in the form of pledgets of integrated oxidized cellulose staple fibers may be prepared as follows. Chemically crimped, bright rayon staple fibers havinga staple length of 1% inches and a fiber denier of 1.6 are carded into a web by conventional means. The staple fibers may be made by the methods described in R. D. McNeer et al. US. Patent 2,821,489, issued January 28, 1958, and R. T. Carney and I. E. Corr US. patent application, Serial No. 729,084, filed April 17, 1958, now abandoned. The Web of carded staple fiber is attached to, and wound loosely around, an elongated perforated tubular core. The core and web are then placed in a glass-lined reaction vessel provided with means for circulating liquid through the perforated core and the surrounding web. The procedure of Example I is employed except that the oxidized material is washed until the aqueous isopropyl alcohol wash liquor has a pH of about 3.5 to obtain absorbable, surgical hemostats in the form of pledgets of integrated, oxidized, regenerated cellulose, staple fibers. A product obtained in this way had a heavy metals content of 2-2.5 parts per million and the following additional chemical analysis.
ABLE B Percent by weight The above procedure may also be employed to treat an interwoven mat of the staple fiber formed by conventional carding and needle looming procedures. Au oxidized cellulose mat obtained in this way was washed until the pH of the aqueous isopropyl alcohol solution was 3.7. The product had a heavy metals content of about 9 parts per million and the following additional chemical analysis.
TABLE C Oxidized rayon carded and ncedled staple Percent by fiber pledgets: weight CH O 0.776 COG'H 191-212 N .29 Ash 0.146
Solubility characteristics of oxidized cellulose It has been observed that the absorbability of oxidized cellulose in animal tissue is related to the solubility of this material in aqueous alkaline solutions and that both of these characteristics are affected by the physical dimensions such as the denier and the degree of oxidation of the oxidized cellulose. In general, low denier and high carboxyl content favor solubility in alkaline solutions and absorbability in animal tissue. Materials which will be satisfactorily absorbable in animal tissue within a short enough period of time to obviate the possibility of causing serious tissue reaction are generally those which are soluble in a 1.0 percent aqueous solution of sodium hydroxide within minutes. Samples of oxidized cellulose prepared accordin to the present invention from regenerated cellulose filaments of various deniers had a heavy metals content of about 6 parts per million and the following additional chemical analysis.
TABLE I) Oxidized regenerated Percent by cellulose: weight CH O 0.34 COOH 19.7 N 0.22 Ash 0.04
The solubility-denier characteristics of these samples are shown in Table E below.
TABLE E Time Required for Complete Solution Denier of Cellulose Prior to 1.0 Fercent 2.5 Percent 3.0 Percent Oxidation Aqueous Aqueous Aqueous NaOH Na CO NaHCO 13 see 10 min. 45 sec 18 hrs. 16 sec 11 min. 20 sec 26 hrs. 26 sec 11 min. 52 sec 72 hrs. 2 min. 10 sec 12 min. 30 sec of oxidized cellulose to select satisfactorily adsorbable materials.
Stability Cellulosic materials, as is well-known, have a tendency to degrade with age. This degradation is believed to be caused by the disintegration of the cellulose molecule into smaller molecular fragments and is evidenced by discolora tion of the cellulose and loss of tensile strength. Inasmuch as cellulosic materials are used in a variety of physical forms such as threads, integrated masses of staple fibers, and woven or knitted fabric, for example, each of which requires a different method of testing its tensile strength, it is difiicult to compare degrees of degradation of difierent forms of cellulose on the basis of loss in tensile strength alone. Experience has shown, however, that the loss in tensile strength of cellulosic materials in any physical form is directly proportional to the percentage of the material which is soluble in water. It has been found convenient, therefore, to compare the stability against deterioration of different samples of oxidized cellulose on the basis of the percentages of the materials which are soluble in Water under standardized conditions. The following standard test procedure is used for this purpose.
Samples of equal size or preferably equal weight of different oxidized cellulose materials to be compared are placed in individual one ounce glass vials filled with distilled water and allowed to stand for 17 hours in a constant temperature environment at 70 F. The contents of each of the vials is then filtered through a coarse fritted glass funnel. The filtrate and residue from each sample are then transferred to individual tared aluminum weighing dishes, weighed, and evaporated to dryness on a hot plate. The individual dishes containing the residue from each sample are then cooled and weighed again. The weight of the filtrate is obtained by substracting the weight of the dish and residue from the total weight of filtrate, dish and residue prior to the evaporation. The percentage of water soluble material in each sample is then determined by the following formula.
mg. filtrate soluble material in the sample by weight The percentage of soluble material in the samples of oxidized cellulose is then compared. A high percentage of soluble material in a sample indicates a high degree of degradation and consequently a material of poor stability.
The standard test described above was applied to samples of oxidized cellulose prepared according to the present invention and the results compared with those obtained by testing samples of oxidized cellulose prepared according to the methods of the prior art which employed a water wash subsequent to oxidation of the cellulose. Samples of oxidized cellulose were also tested in which 2 percent by weight of concentrated nitric acid had been added to the reaction mixture during the oxidation of the cellulose in order to illustrate the deleterious effect of the acidic lay-products of the oxidation reaction on the stability of oxidized cellulose and thus the necessity for complete removal of these materials.
The samples of oxidized cellulose of the present invention were prepared bythe procedure of Example I. The oxidized cellulose of the prior art was prepared as described in Example I except that the aqueous alcohol wash was omitted and a wash with Water substituted. The third sample of oxidized cellulose was prepared according to the procedure of Example I, and according to the present invention except for the addition of sufiicient concentrated nitric acid to the Freon 113-nitrogen dioxide reaction mixture to give a concentration of 2 percent by weight. Samples of the three batches of oxidized cellulose were placed in constant temperature storage at 11 70, 120, and 140 F. and the percentage of soluble material in each of the materials was determined after 2 months and 3 months aging at each of the three temperatures. The results of these tests are summarized in 70 and 120 F. The Water soluble content of the two materials was determined by the standard procedure described above prior to aging and at the end of 1 and 3 months aging respectively. The data obtained are set out Table F below. 5 in Table G below.
TABLE F Percentage of Water Soluble Percentage of Water Soluble Material After 2 Months Material After 3 Months Oxidized Cellulose Sample Aging Aging 70 F. 120 F. 140 F. 70 F. 120 F. 140 F.
Washed with 50 Percent (v./v.) Aqueous Isopropyl Alcohol 7. 06 11.2 30. 6 5.0 18. 3 33.1 Washed With Water 8. 4 l5. 95.0 18. 5 66.1 92. 5 Nitric Acid Added During Oxidation Washed With 50 Percent (v./v.) Aqueous Isopropyl Alcohol 6.7 G 1. 5 7. 5 9. 1 92.0 96. 0
TABLE G Percentage Percentage of Percentage of of Water Water Soluble \Vater Soluble Soluble Material After Material After Oxidized Cellulose Sample Material 1 Months Aging 3 Months Aging Prior to Aging 70 F 120 F. 70 F 120 F.
OxidizedRayon Unsterilized 1. 3 7. 8 9. 4 8. 9 17. 7 Oxidized Rayon Sterilized by 01120 1. 3 5. 2 7. 6 4. 5 12. 7 Oxidized Cotton Unster zed 7. 6 25.0 30. 8 18. 8 54. 5 Oxidized Cotton St A comparison of the percentages of water soluble material in the various samples tested is dramatic evidence of the substantial improvement in stability against deterioration which is characteristic of oxidized cellulose prepared according to the present invention. The new oxidized cellulose can be readily distinguished from that prepared according to the teachings of the prior art by the fact that it invariably has a water soluble content of less than about 15 and usually less than 10 percent by weight after dry storage at 70 F. for 3 months whereas the prior art materials invariably have a water soluble content of more than about 10 percent and normally more than percent by weight after storage under these conditions.
The data in Table F above, showing the percentage of water soluble material in aged oxidized cellulose prepared in the presence of added nitric acid, when compared with the data on material prepared by the invention, clearly shows the adverse effect of nitric acid, a by-prodnot of the oxidation reaction on the stability of oxidized cellulose and thus the necessity for complete removal of this material.
It may be seen, therefore, that oxidized cellulose treated to remove acidic by-products of the oxidation reaction without contacting the material with water or aqueous solutions containing more than about percent water are so much more stable than similar materials of the prior art that they are useful for surgical purposes long after the prior art materials have lost sulficient tensile strength for this purpose.
A quantity of freshly prepared commercially available unsterilized oxidized cotton surgical hemostatic material was obtained for comparison with freshly prepared oxidized regenerated cellulose produced according to Example I. It is believed that the oxidized cotton was prepared according to the methods of the prior art in which the oxidation is conducted in the gaseous phase and followed by washing the product with water. Samples of the oxidized rayon and oxidized cotton, both unsterilized and sterilized with formaldehyde according to the procedure of Example I were aged under identical conditions at The data in Table G above clearly show that oxidized regenerated cellulose of the present invention is markedly superior to commercially available oxidized cotton in stability against deterioration. The data also show the unexpected beneficial effect on the stability of oxidized cellulose which is obtained by sterilization of these materials according to the procedure of Example I. It is noted, further, that the formaldehyde sterilization has a greater beneficial effect on the stability of oxidized regenerated cellulose than it does on oxidized cotton.
Hemoslatic activity The hernostatic activity of the oxidized cellulose materials of the present invention maybe measured by the following procedure. Four dogs are anesthetized with sodiurn pentobarbitol (33 mg./kg. of body Weight) and their spleens exposed. Multiple tests are carried out on each spleen as follows: criss-cross incised wounds, about 4 mm. in depth and 8 mm. in diameter are inflicted, and the sample of the oxidized cellulose under investigation is applied over the wound. A plastic plate with a circular hole 8 mm. in diameter is placed over the test material in such a way that all blood flowing from the wound must pass through the oxidized cellulose. The time required for the test material to control bleeding i.e., arrest the flow of blood, is observed. The time required to arrest bleeding affords a basis for comparing the hemostatic activity of different materials. The normal blood clotting time in dogs is about 6 minutes when no artificial hemostasis is applied. A knitted fabric of oxidized cellulose prepared according to the procedure described in Example I was tested and observed to arrest bleeding in about 2.5 minutes.
Clinical experience Oxidized regenerated cellulose prepared as described above is inherently hemostatic. When exposed to whole human blood it is converted into a dark brown or black gelatinous mass, which appears to form, in effect, an artificially produced clot within the openings of the bleeding vessels and in the surrounding area. Hemostasis becomes 13 complete in approximately one or two minutes in humans. The material does not enter into the normal physiologic clotting mechanism per se, and for that reason is effective in controlling bleeding in many cases of hemophilia, thrombocytopenic purpura and other blood dyscrasiae.
Oxidized regenerated cellulose produced as described above has been intensively studied both experimentally and clinically to determine the rate and extent of its absorption in body tissue. Pieces of the knitted and carded fiber types, of uniform size weighing 75 mg. where implanted subcutaneously in rats by the Frantz-Lattes technique and the gross appearance of the subcutaneous implants and surrounding sites recorded. Seven days after implantation, the oxidized regenerated cellulose implants had the appearance of a soft gelatinous mass; tissue reaction being slight. At the end of fifteen days, the implanted material was observed to be completely absorbed with no evidence of inflammation. Necropsy studies in humans have been reported in whom the material was implanted in the course of various surgical procedures, and who died of causes not directly related to their surgery. In such patients, autopsies were performed at intervals of from 1 to 77 days postoperatively. In the longer term specimens the fabric could not be identified grossly, although microscopically small shreds of debris could be detected in areas of subsiding tissue reaction. As a matter of record, no toxic or other untoward reaction has been observed in the course of either extensive animal or h man use.
The absorbable hemostatic knitted fabric, carded fiber pads, sutures and other articles of the present invention have broad surgical applications. By helping to reduce the risk of uncontrollable hemorrhage, the new materials extend the range of surgical procedures which may be undertaken with relatively greater safety. Complete absorption without tissue reaction raises the ratio of normal recoveries, particularly in dificult surgical procedures. The knitted fabric is particularly useful in general surgery for the control of capillary or venous bleeding or small arterial hemorrhage where conventional means of control are technically impractical. Such bleeding may occur in gall bladder and bile duct surgery, partial hepatecomy, resections or injuries of the pancreas, spleen, kidneys, prostate, bowel, breast, or thyroid and in amputations of the extremities. In well over 160 consecutive human cases ranging in age from two months to 77 years, the material was found to be effective and well accepted physiologically in such major procedures as liver biopsy, advanced malignancies, extensive thoracic and cardiovascular surgery, and general abdominal procedures including cholecystectomy and colectomy. In several instances the new hemostatic material was considered life-saving. In no instance was wound infection, toxic reaction or death attributed to the absorbable hemostats of the invention. Apparently the presence of local infection is not in itself a contraindication to the use of these materials although, needless to say, no obstruction to drainage should exist under such conditions. One investigator found no evidence of untoward postoperative effect even in the presence of grossly contaminated wounds or leakage of infected urine.
In addition, owing to its toughness, the new knitted fabric hemostat lends itself very well indeed to tamponade of bleeding from solid viscera, when used as a bolster beneath mattress sutures. Reported cases include many types of urologic surgery in addition to prostatectomy, speno-renal shunts, pancreatomy, excision of acute aneurysm, and other major vascular procedures. Another investigator has recorded the use of these materials in a series of 100 patients in various surgical situations where rapid hemostasis was desirable. In 41 cholecystecomy cases, hemostasis was found to be excellent or good in all instances where the material was implanted in the gall bladder bed. In all instances, healing occurred without incident. The knitted fabric absorbable hemostat was also used in 34 hemorrhoidectomies with completely effective hemostasis. There is relatively little bulk to the material so that sphincteric spasm (and consequent pain) due to bulk per se (e.g., a petroleum jelly pack) was minimized. There is no need to remove the new hemostats manually as the material becomes jelly-like and is passed spontaneously in 23 days in the Sitz bath. Finally, as the material is reabsorbed by the body, there is no need to anticipate any foreign body granuloma formation as has been observed with other types of hemostatic packing. In more massive types of surgery, such as the resection of large intra-abdominal neoplasms, abdominoperineal resections and vagotomies, it was found that persistent oozing could be effectively controlled with the new hemostats in all cases without any postoperative problems resulting from leaving the material in situ.
These materials have also been found to be extremely effective in controlling bleeding from the lacerated surface of the liver esulting from stab wounds of the abdomen. In referring to eight such cases an investigator has commented that all patients recovered and none required re-operation. There were no untoward results attributed to the use of the hemostat. In thirteen instances of abdominal stabbings, the material, in addition to being used in some cases to control bleeding from a traumatized viscus, was also used locally to control bleeding in the surface wound. All wounds healed per primarn, and no side reactions were observed. The new absorbable hemostat also is useful as a primary dressing for donor sites. Several investigators have noted that when so used, primary bleeding is quickly controlled and potentially copious secondary ooze is prevented. As healing progresses, that portion of the hemostatic material which becomes wetted with blood gradually dissolves so that the dressing is easily removed without sticking or reactivation of bleeding at the time of removal (7-10 days). There is no delay in healing, so that not only is bleeding adequately controlled, but epitheliazation is completed normally. Somewhat the same considerations apply to the use of the new materials in the treatment of minor emergency wounds with loss of substance. When used as a primary dressing on such wounds, bleeding is quickly controlled, thus often avoiding the necessity of suturing or more extensive procedures. The dressing can subsequently be removed without sticking. In the light of the evidence presented, the new material has been found excellent for the prompt control of hemorrhage under emergency or less than ideal conditions such as may occur in accidental situations.
One of the most dramatic fields of usefulness for oxidized regenerated cellulose is found in cardiovascular surgery. Investigators have found the fabric type adjunctively useful in connection with the implantation of large textile grafts, including those of the abdominal aorta. Many such grafts leak or weep considerably, even when pre-clotted. Such seepage can be controlled by covering the graft with a layer or two of the oxidized regenerated cellulose gauze prior to release of the proximal and distal clamps. There is usually sufiicient blood in the field to react with the gauze and form a closely adherent sheath-like clot about the graft which effectively prevents oozing when the clamps are released. When the flow has been re-established and all bleeding controlled, the fabric can either be removed or left in situ since absorption of the gauze has been shown to occur Without constriction of the graft or other untoward incident.
Neurologic procedures offer an important field of usefulness for the carded fiber pads of oxidized regenerated cellulose in controlling punctate bleeding from the brain itself and for many other purposes. Oozing from the calvarium during prosthetic repair of a skull defect, for instance, is controlled simply by laying a pad over the under surface of the flap at the time it is turned back and then removing it on completion of the operation. Hemorrhage from the dura or brain tissue is controlled simply by applying a small pledget of the carded fiber 15 to the bleeding point. In quickly adheres and is completely absorbed with no local reaction or neurologic irritation, makin removal unnecessary.
Both the new absorbable hemostatic gauze fabric and carded fiber pads are well adapted to many otolaryngologic procedures. When used to control spontaneous nasal hemorrhage that requires packing, the material not only provides prompt hemostasis, but is easily removed after 12 to 24 hours without causing secondary hemorrhage. Other indications include: control of postoperative adenoid hemorrhage postnasal packing, packing following radical mastoidectorny, submucous resection of the nasal septum, radical ethmoidectomy, and control of the oozing which may occur during tonsillectomy. The material need not be left in place, but can usually be gently removed at the conclusion of the procedure without re-initiating bleeding. It should be emphasized, however, that this is not a substitute for ligation of bleeding points wherever possible, since disregard of this point may lead to secondary hemorrhage.
The new absorbabie hemostats find many applications in oral surgery. Bleeding problems are controlled following single or multiple tooth removal, alveolectomy, intermediate or secondary hemorrhage, inipactions, biopsies and other procedures in the oral cavity. A strip of hemostatic material may be used on the ridge area of immediate dentures to prevent seepage into the denture. Inasmuch as the new materials achieve hemostasis by virtually providing an artificially produced clot, independent of normal blood-clotting mechanisms in the wound, it is extremely useful and often life-saving in the control of post-extraction or other operative bleeding in hemophilia, thrombocytopenic purpura and other blood dyscrasiae. The knitted fabric of the invention has been used in over 200 surgical procedures about the oral cavity and the control of severe nosebleed. The investigator was as irnpressed with the ease of handling as he was with the superior hemostatic effect of the new oxidized regenerated cellulose materials. In the postoperative management of full mouth extractions, optimal results are achieved by Opening up the material slightly to cover a greater surface area with a thin layer so that the gauze can be laid over the sockets lightly. It is not necessary or desirable to use large amounts for effective hemostasis. Indeed, excessive wadding may delay healing or cause other possible complications. Results were also excellent when the hemostats were used in excision of lesions in the mouth, on the tongue, and during other radical maxillo-facial procedures. Unless the material was misused, healing was always excellent and uncomplicated. Best results were obtained when small amounts of the fabric were held gently over the bleeding surface.
In View of the foregoin disclosures, variations or modifications thereof will be apparent, and it is intended to include within the invention all such variations and modifications except those which do not come within the scope of the appended claims.
What is claimed is:
1. In the preparation of oxidized cellulose by the process of treating cellulose wound in layers around a perforated core with an oxidizing agent selected from the group consisting of nitrogen dioxide, nitrogen tetroxide and mixtures thereof, washing the resulting oxidized cellulose With a nontoxic water-immiscible solvent for said oxidizing agent, washing said oxidized cellulose first with a water soluble lower aliphatic alcohol, and subsequently washing the oxidized cellulose with a substantially anhydrous lower aliphatic alcohol having an affinity for water, wherein said oxidation by said oxidizing agent and said washings are effected by passing them through said perforated core and the surrounding cellulose layers, the improvement wherein washes consisting of an aqueous solution of a water soluble lower aliphatic alcohol containing said alcohol in a concentration range from about 20 percent to 80 percent alcohol by volume are substituted for the first of said alcohol washes.
2. In the preparation of oxidized cellulose by the process of treating cellulose wound in layers around a perforated core with nitrogen dioxide, washing the resulting oxidized cellulose with a nontoxic water-immiscible solvent for said oxidizing agent, washing said oxidized cellulose first with a water soluble lower aliphatic alcohol, and subsequently washing the oxidized cellulose with a substantially anhydrous lower aliphatic alcohol having an afiinity for water, wherein said oxidation by said nitrogen doxide and said washings are effected by passing them through said perforated core and the surrounding cellulose layers, the improvement wherein washes consisting of an aqueous solution of a water soluble lower aliphatic alcohol containing said alcohol in a concentration range rom about 20 percent to 80 percent alcohol by volume are substituted for the first of said alcohol washes.
3. In the preparation of oxidized cellulose by the process of treating cellulose wound in layers around a perforated core with nitrogen dioxide, washing the resulting oxidized cellulose with carbon tetrachloride, washing said oxidized cellulose first with a water soluble lower aliphatic alcohol, and subsequently washing the oxidized cellulose with a substantially anhydrous lower aliphatic alcohol having an affinity for water, wherein said oxidation by said nitrogen dioxide and said washings are effected by passing them through said perforated core and the surrounding cellulose layers, the improvement wherein washes consisting of an aqueous solution of isopropanol containing about percent alcohol by volume are substituted for the first of said alcohol washes.
4. In the preparation of oxidized cellulose by the process of treating cellulose wound in layers around a perforated core with nitrogen dioxide, washing the resulting oxidized cellulose with CCl FCClF washing said oxidized cellulose first with a water soluble lower aliphatic alcohol, and subsequently washing the oxidized cellulose with a substantially anhydrous lower aliphatic alcohol having an afiinity for water, wherein said oxidation by said nitrogen dioxide and said washings are effected by passing them through said perforated core and the surrounding cellulose layers, the improvement wherein washes consisting of an aqueous solution of isopropanol containing about 50 percent alcohol by volume are substit uted for the first of said alcohol washes.
References Cited UNlTED STATES PATENTS 9/1948 Kenyon et al. 260-212 XR OTHER REFERENCES DONALD E. CZAJA, Primary Examiner.
LEON 3. BERCOVITZ, Examiner.
R. N. MULCAHY, Assistant Examiner,

Claims (1)

1. IN THE PREPARATION OF OXIDIZED CELLULOSE BY THE PROCESS OF TREATING CELLULOSE WOUND IN LAYERS AROUND A PERFORATED CORE WITH AN OXIDIZING AGENT SELECTED FROM THE GROUP CONSISTING OF NITROGEN TETROXIDE AND MIXTURES THEREOF, WASHING THE RESULTING OXIDIZED CELLULOSE WITH A NONTOXIC WATER-IMMISCIBLE SOLVENT FOR SAID OXIDIZING AGENT, WASHING SAID OXIDIZED CELLULOSE FIRST WITH A WATER SOLUBLE LOWER ALIPHATIC ALCOHOL, AND SUBSEQUENTLY WASHING THE OXIDIZED CELLULOSE WITH A SUBSTNATIALLY ANHYDROUS LOWER ALIPHATIC ALCOHOL HAVING AN AFFINITY FOR WATER, WHEREIN SAID OXIDATION BY SAID OXIDIZING AGENT AND SAID WASHINGS ARE EFFECTED BY PASSING THEM THROUGH SAID PREFORATED CORE AND THE SURROUNDING CELLULOSE LAYERS, THE IMPROVEMENT WHEREIN WASHES CONSISTING OF AN AQUEOUS SOLUTION OF A WATER SOLUBLE LOWER ALIPHATIC ALCOHOL CONTAINING SAID ALCOHOL IN A CONCENTRATION RANGE FROM ABOUT 20 PERCENT TO 80 PERCENT ALCOHOL BY VOLUME ARE SUBSTITUTED FOR THE FIRST OF SAID ALCOHOL WASHES.
US463440A 1960-03-28 1965-05-19 Oxidized cellulose product and method for preparing the same Expired - Lifetime US3364200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US463440A US3364200A (en) 1960-03-28 1965-05-19 Oxidized cellulose product and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1784060A 1960-03-28 1960-03-28
US463440A US3364200A (en) 1960-03-28 1965-05-19 Oxidized cellulose product and method for preparing the same

Publications (1)

Publication Number Publication Date
US3364200A true US3364200A (en) 1968-01-16

Family

ID=26690383

Family Applications (1)

Application Number Title Priority Date Filing Date
US463440A Expired - Lifetime US3364200A (en) 1960-03-28 1965-05-19 Oxidized cellulose product and method for preparing the same

Country Status (1)

Country Link
US (1) US3364200A (en)

Cited By (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3478751A (en) * 1968-07-16 1969-11-18 Sutton Res Corp Method for preparation of smoking product with selective reduction following selective oxidation
US3478752A (en) * 1968-07-16 1969-11-18 Sutton Res Corp Cellulosic smoking product and method in the preparation of same
US3482578A (en) * 1968-07-16 1969-12-09 Sutton Res Corp Preparation of smoking product from cellulosic material and processes in treatment thereof
US3491766A (en) * 1968-07-16 1970-01-27 Sutton Res Corp Preparation of smoking product of cellulose derivatives and process
US3512536A (en) * 1968-07-17 1970-05-19 Sutton Res Corp Smoking material of oxidized cellulosic material and method of making same
US3516416A (en) * 1968-07-16 1970-06-23 Sutton Res Corp Method of preparing a smokable material
US3556110A (en) * 1968-07-17 1971-01-19 Sutton Res Corp Method for producing a smoking product of cellulosic material
US3556109A (en) * 1968-07-17 1971-01-19 Sutton Res Corp Method of making a smoking product of oxidized cellulosic materials containing ashing ingredients
US3575177A (en) * 1968-07-17 1971-04-20 Sutton Res Corp Smoking product of cellulosic material subjected to a nitrogen dioxide oxidation and a mild oxidation with peroxide
US3608560A (en) * 1968-11-07 1971-09-28 Sutton Res Corp Smokable product of oxidized cellulosic material
US3666750A (en) * 1969-12-15 1972-05-30 Johnson & Johnson Hemostatic material
US4100341A (en) * 1973-03-29 1978-07-11 Gallaher Limited Uronic oxidation of cellulose
FR2504011A1 (en) * 1981-04-17 1982-10-22 Kh Khim Farmatsevtich Absorbable surgical thread prodn. from cellulose - by oxidn. with nitrogen oxide(s) followed by treatment with protophilic solvent
US4505282A (en) * 1978-05-12 1985-03-19 American Brands, Inc. Innerliner wrap for smoking articles
EP0177064A2 (en) * 1984-10-05 1986-04-09 JOHNSON & JOHNSON MEDICAL, INC. Surgical hemostat comprising oxidized cellulose
EP0262890A2 (en) * 1986-09-29 1988-04-06 JOHNSON & JOHNSON MEDICAL, INC. Heparin-containing adhesion prevention barrier and process
US5180398A (en) * 1990-12-20 1993-01-19 Johnson & Johnson Medical, Inc. Cellulose oxidation by a perfluorinated hydrocarbon solution of nitrogen dioxide
US5326350A (en) * 1992-05-11 1994-07-05 Li Shu Tung Soft tissue closure systems
US5405953A (en) * 1993-08-03 1995-04-11 Biocontrol Incorporated Microfibrillated oxycellulose
US5414079A (en) * 1993-08-03 1995-05-09 Biocontrol Incorporated Oxidized cellulose
WO1998033822A1 (en) * 1997-01-30 1998-08-06 Alpenstock Holdings Limited Cellulose derivatives
US5914003A (en) * 1998-06-09 1999-06-22 Mach I, Inc. Cellulose oxidation
US6350274B1 (en) 1992-05-11 2002-02-26 Regen Biologics, Inc. Soft tissue closure systems
US20020138025A1 (en) * 2001-03-09 2002-09-26 Scimed Life Systems, Inc. Medical slings
US20020151910A1 (en) * 2001-03-09 2002-10-17 Gellman Barry N. System for implanting an implant and method thereof
US20030024662A1 (en) * 2001-07-11 2003-02-06 Besemer Arie Cornelis Cationic fibres
US6582559B2 (en) 2000-05-04 2003-06-24 Sca Hygiene Products Zeist B.V. Aldehyde-containing polymers as wet strength additives
US6627749B1 (en) * 1999-11-12 2003-09-30 University Of Iowa Research Foundation Powdered oxidized cellulose
US6666817B2 (en) 2001-10-05 2003-12-23 Scimed Life Systems, Inc. Expandable surgical implants and methods of using them
US20040001879A1 (en) * 2002-06-28 2004-01-01 Guo Jian Xin Hemostatic wound dressing and method of making same
US20040005350A1 (en) * 2002-06-28 2004-01-08 Looney Dwayne Lee Hemostatic wound dressings and methods of making same
US6689047B2 (en) 2000-11-15 2004-02-10 Scimed Life Systems, Inc. Treating urinary incontinence
US20040039246A1 (en) * 2001-07-27 2004-02-26 Barry Gellman Medical slings
US20040037866A1 (en) * 2002-08-20 2004-02-26 Semertzides John N. Composition and method for the treatment and prevention of adhesions
US20040040096A1 (en) * 2002-09-03 2004-03-04 Lowell Saferstein Concomitant scouring and oxidation process for making oxidized regenerated cellulose
US20040073234A1 (en) * 2001-03-09 2004-04-15 Chu Michael S.H. Medical implant
US20040101548A1 (en) * 2002-11-26 2004-05-27 Pendharkar Sanyog Manohar Hemostatic wound dressing containing aldehyde-modified polysaccharide
US20040101546A1 (en) * 2002-11-26 2004-05-27 Gorman Anne Jessica Hemostatic wound dressing containing aldehyde-modified polysaccharide and hemostatic agents
US20040101547A1 (en) * 2002-11-26 2004-05-27 Pendharkar Sanyog Manohar Wound dressing containing aldehyde-modified regenerated polysaccharide
US20040106344A1 (en) * 2002-06-28 2004-06-03 Looney Dwayne Lee Hemostatic wound dressings containing proteinaceous polymers
US20040116944A1 (en) * 2002-12-17 2004-06-17 Scimed Life Systems, Inc. Spacer for sling delivery system
US20040120993A1 (en) * 2002-12-20 2004-06-24 Guanghui Zhang Hemostatic wound dressing and fabric and methods of making and using same
US6755781B2 (en) 2001-07-27 2004-06-29 Scimed Life Systems, Inc. Medical slings
US20040156708A1 (en) * 2003-02-10 2004-08-12 Allam Mahdy A. Turbine balancing
US20040241212A1 (en) * 2003-05-30 2004-12-02 Pendharkar Sanyog Manohar Biodegradable hemostatic wound dressings
US20040265371A1 (en) * 2003-06-25 2004-12-30 Looney Dwayne Lee Hemostatic devices and methods of making same
US20050175659A1 (en) * 2004-02-09 2005-08-11 Macomber Laurel R. Collagen device and method of preparing the same
US20050226916A1 (en) * 1998-11-12 2005-10-13 Cochrum Kent C Hemostatic polymer useful for RAPID blood coagulation and hemostasis
US20050283256A1 (en) * 2004-02-09 2005-12-22 Codman & Shurtleff, Inc. Collagen device and method of preparing the same
US7019191B2 (en) 2003-03-25 2006-03-28 Ethicon, Inc. Hemostatic wound dressings and methods of making same
US20060084338A1 (en) * 2004-10-20 2006-04-20 Shetty Dhanuraj S Reinforced absorbable multilayered fabric for use in medical devices
WO2006044879A2 (en) 2004-10-20 2006-04-27 Ethicon, Inc. Absorbable hemostat
US20060258995A1 (en) * 2004-10-20 2006-11-16 Pendharkar Sanyog M Method for making a reinforced absorbable multilayered fabric for use in medical devices
US20060257457A1 (en) * 2004-10-20 2006-11-16 Gorman Anne J Method for making a reinforced absorbable multilayered hemostatic wound dressing
US20070032805A1 (en) * 2005-08-03 2007-02-08 Sofradim Production Oxydized cellulose prosthesis
US20070073415A1 (en) * 2005-09-29 2007-03-29 Codman And Shurtleff, Inc. Dural graft and method of preparing the same
US20070190110A1 (en) * 2006-02-10 2007-08-16 Pameijer Cornelis H Agents and devices for providing blood clotting functions to wounds
US20070248653A1 (en) * 2006-04-20 2007-10-25 Cochrum Kent C Hemostatic compositions and methods for controlling bleeding
JP2008508387A (en) * 2004-07-29 2008-03-21 サーントゥル ナシオナル ドゥ ラ ルシェルシュ シャーンティフィク Method for controlled oxidation of polysaccharides
JP2008509253A (en) * 2004-08-05 2008-03-27 ザイロス コーポレーション Cellulose oxidation by nitrogen dioxide in perfluorotertiary amine solvents.
US7361138B2 (en) 2003-07-31 2008-04-22 Scimed Life Systems, Inc. Bioabsorbable casing for surgical sling assembly
US20080138387A1 (en) * 2006-12-07 2008-06-12 Machiraju Venkat R Hemostatic sponge and article
US20090036996A1 (en) * 2007-08-03 2009-02-05 Roeber Peter J Knit PTFE Articles and Mesh
US20090130184A1 (en) * 2004-06-04 2009-05-21 Ethicon, Inc. Compositions and methods for preventing or reducing postoperative ileus and gastric stasis
US20090156711A1 (en) * 2007-12-18 2009-06-18 Van Holten Robert W Hemostatic device
US20090187197A1 (en) * 2007-08-03 2009-07-23 Roeber Peter J Knit PTFE Articles and Mesh
US20090192532A1 (en) * 2007-12-03 2009-07-30 Linda Spinnler Implant for parastomal hernia
US20090246238A1 (en) * 2004-10-20 2009-10-01 Anne Jessica Gorman Reinforced absorbable multilayered hemostatic wound dressing
US20090269413A1 (en) * 2008-04-23 2009-10-29 Codman & Shurtleff, Inc. Flowable collagen material for dural closure
US20090306363A1 (en) * 2006-03-10 2009-12-10 Synthesia, A.S. Preparation Method of Bioresorbable Oxidized Cellulose
US20090318843A1 (en) * 2007-12-18 2009-12-24 Ethicon, Inc. Surgical barriers having adhesion inhibiting properties
US20100015868A1 (en) * 2007-06-27 2010-01-21 Philippe Gravagna Reinforced composite implant
US20100016872A1 (en) * 2008-06-27 2010-01-21 Yves Bayon Biosynthetic implant for soft tissue repair
US20100087854A1 (en) * 2008-08-12 2010-04-08 Joshua Stopek Medical device for wound closure and method of use
EP2177239A2 (en) 2008-10-17 2010-04-21 Confluent Surgical Inc. Hemostatic Implant
EP2279711A1 (en) 2009-07-29 2011-02-02 Confluent Surgical Inc. System and method of laparoscopic use of hemostatic patch
US20110045047A1 (en) * 2008-10-17 2011-02-24 Confluent Surgical, Inc. Hemostatic implant
FR2949474A1 (en) * 2009-09-03 2011-03-04 Sofradim Production PROCESS FOR WASHING A POLYSACCHARIDE-BASED MATERIAL HAVING OXIDATION
US20110070288A1 (en) * 2009-09-22 2011-03-24 Sasa Andjelic Composite layered hemostasis device
US20110081397A1 (en) * 2009-10-01 2011-04-07 Tyco Healthcare Group Lp Mesh Implant
EP2319471A2 (en) 2009-11-10 2011-05-11 Tyco Healthcare Group LP Hermostatic tapes and dispensers thereof
US20110112572A1 (en) * 2009-11-10 2011-05-12 Tyco Healthcare Group Lp Hemostatic Tapes and Dispensers Therefor
EP2335703A1 (en) 2006-06-13 2011-06-22 Ethicon, Incorporated Compositions and Methods for Preventing or Reducing Postoperative Ileus and Gastric Stasis in Mammals
US20110262706A1 (en) * 2008-11-07 2011-10-27 Sofradim Production Template for bacterial cellulose implant processed within bioreactor
WO2011135463A2 (en) 2010-04-30 2011-11-03 Sofradim Production Cellulose-containing medical device having a multi-layer structure produced without adhesive
WO2011144916A1 (en) 2010-05-20 2011-11-24 Fujifilm Manufacturing Europe Bv Hemostatic compositions
EP2397165A2 (en) 2010-06-21 2011-12-21 Confluent Surgical, Inc. Hemostatic patch
WO2012022421A1 (en) 2010-08-18 2012-02-23 Carl Freudenberg Kg Method for the production of oxidized cellulose fibers, oxidized cellulose fiber sheet materials or oxidized cellulose nonwovens, and use thereof
US8129359B2 (en) 2004-06-04 2012-03-06 Ethicon, Inc. Composition and method for treating post-surgical pain
WO2012064687A2 (en) 2010-11-10 2012-05-18 Ethicon, Inc. A resorbable laparoscopically deployable hemostat
EP2478848A2 (en) 2011-01-25 2012-07-25 Confluent Surgical, Inc. Hemostatic patch
EP2497793A2 (en) 2011-03-11 2012-09-12 Tyco Healthcare Group LP Application of supercritical fluid technology for manufacturing soft tissue repair medical articles
US8273369B2 (en) 2010-05-17 2012-09-25 Ethicon, Inc. Reinforced absorbable synthetic matrix for hemostatic applications
WO2013049049A1 (en) 2011-09-30 2013-04-04 Advanced Technologies And Regenerative Medicine, Llc Adhesion prevention fabric
US8487017B2 (en) 2011-06-27 2013-07-16 Covidien Lp Biodegradable materials for orthopedic devices based on polymer stereocomplexes
WO2013177242A1 (en) 2012-05-25 2013-11-28 Ethicon, Inc. Oxidized regenerated cellulose hemostatic powders and methods of making
EP2668942A1 (en) 2012-05-31 2013-12-04 Confluent Surgical, Inc. Microspheres including oxidized cellulose
EP2668943A1 (en) 2012-05-31 2013-12-04 Confluent Surgical, Inc. Microspheres including oxidized cellulose
EP2679602A1 (en) 2012-06-28 2014-01-01 Covidien LP Dissolution of oxidized cellulose and particle preparation by cross-linking with multivalent cations
EP2679603A1 (en) 2012-06-28 2014-01-01 Covidien LP Dissolution of oxidized cellulose and particle preparation by solvent and non-solvent precipitation
EP2679601A1 (en) 2012-06-28 2014-01-01 Covidien LP Dissolution of oxidized cellulose and particle preparation by dispersion and neutralization
EP2679253A2 (en) 2012-06-28 2014-01-01 Covidien LP Medical devices based on cellulose
EP2708226A1 (en) 2012-09-17 2014-03-19 Covidien LP Multi-Encapsulated Formulations Made With Oxidized Cellulose
EP2708227A1 (en) 2012-09-17 2014-03-19 Covidien LP Multi-Encapsulated Formulations Made With Oxidized Cellulose For In-Situ Reactions
US8814025B2 (en) 2011-09-15 2014-08-26 Ethicon Endo-Surgery, Inc. Fibrin pad matrix with suspended heat activated beads of adhesive
US8899464B2 (en) 2011-10-03 2014-12-02 Ethicon Endo-Surgery, Inc. Attachment of surgical staple buttress to cartridge
US20140356767A1 (en) * 2012-02-15 2014-12-04 Toppan Printing Co., Ltd. Carbon fiber composite, method for producing same, catalyst support and polymer electrolyte fuel cell
US8985429B2 (en) 2011-09-23 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with adjunct material application feature
US8998060B2 (en) 2011-09-13 2015-04-07 Ethicon Endo-Surgery, Inc. Resistive heated surgical staple cartridge with phase change sealant
US8998059B2 (en) 2011-08-01 2015-04-07 Ethicon Endo-Surgery, Inc. Adjunct therapy device having driver with cavity for hemostatic agent
US9010610B2 (en) 2012-02-24 2015-04-21 Covidien Lp Buttress retention system for linear endostaplers
US9084602B2 (en) 2011-01-26 2015-07-21 Covidien Lp Buttress film with hemostatic action for surgical stapling apparatus
US9089326B2 (en) 2011-10-07 2015-07-28 Ethicon Endo-Surgery, Inc. Dual staple cartridge for surgical stapler
US9101359B2 (en) 2011-09-13 2015-08-11 Ethicon Endo-Surgery, Inc. Surgical staple cartridge with self-dispensing staple buttress
US9107665B2 (en) 2011-03-10 2015-08-18 Covidien Lp Surgical instrument buttress attachment
US9107667B2 (en) 2011-11-04 2015-08-18 Covidien Lp Surgical stapling apparatus including releasable buttress
US9125649B2 (en) 2011-09-15 2015-09-08 Ethicon Endo-Surgery, Inc. Surgical instrument with filled staple
US9138489B2 (en) 2012-05-31 2015-09-22 Covidien Lp Oxidized cellulose miczrospheres including visualization agents
US9186144B2 (en) 2012-01-26 2015-11-17 Covidien Lp Buttress support design for EEA anvil
US9198663B1 (en) 2007-06-22 2015-12-01 Covidien Lp Detachable buttress material retention systems for use with a surgical stapling device
US9198644B2 (en) 2011-09-22 2015-12-01 Ethicon Endo-Surgery, Inc. Anvil cartridge for surgical fastening device
US9237893B2 (en) 2011-12-14 2016-01-19 Covidien Lp Surgical stapling apparatus including buttress attachment via tabs
US9254180B2 (en) 2011-09-15 2016-02-09 Ethicon Endo-Surgery, Inc. Surgical instrument with staple reinforcement clip
US9364234B2 (en) 2007-06-18 2016-06-14 Covidien Lp Interlocking buttress material retention system
US9393018B2 (en) 2011-09-22 2016-07-19 Ethicon Endo-Surgery, Inc. Surgical staple assembly with hemostatic feature
US9402623B2 (en) 2001-10-23 2016-08-02 Covidien Lp Surgical fasteners
EP3061471A1 (en) 2015-02-27 2016-08-31 Covidien LP Medical devices with sealing properties
US9445883B2 (en) 2011-12-29 2016-09-20 Sofradim Production Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit
EP3085396A1 (en) 2015-04-23 2016-10-26 Covidien LP Resorbable oxidized cellulose embolization solution
US9486215B2 (en) 2009-03-31 2016-11-08 Covidien Lp Surgical stapling apparatus
US9492170B2 (en) 2011-08-10 2016-11-15 Ethicon Endo-Surgery, Inc. Device for applying adjunct in endoscopic procedure
US9499927B2 (en) 2012-09-25 2016-11-22 Sofradim Production Method for producing a prosthesis for reinforcing the abdominal wall
US9510928B2 (en) 2008-11-07 2016-12-06 Sofradim Production Composite mesh including a 3D mesh and a non porous film of oxidized cellulose from bacterial cellulose origin
US9522963B2 (en) 2011-06-29 2016-12-20 Covidien Lp Dissolution of oxidized cellulose
US9526603B2 (en) 2011-09-30 2016-12-27 Covidien Lp Reversible stiffening of light weight mesh
US9554887B2 (en) 2011-03-16 2017-01-31 Sofradim Production Prosthesis comprising a three-dimensional and openworked knit
US9597077B2 (en) 2011-12-14 2017-03-21 Covidien Lp Buttress attachment to the cartridge surface
US9622843B2 (en) 2011-07-13 2017-04-18 Sofradim Production Umbilical hernia prosthesis
WO2017079059A1 (en) 2015-11-06 2017-05-11 Ethicon, Inc. Compacted hemostatic cellulosic aggregates
WO2017077526A1 (en) 2015-11-08 2017-05-11 Omrix Biopharmaceuticals Ltd. Hemostatic mixture of cellulose-based short and long fibers
US9750837B2 (en) 2012-09-25 2017-09-05 Sofradim Production Haemostatic patch and method of preparation
US9775617B2 (en) 2012-01-26 2017-10-03 Covidien Lp Circular stapler including buttress
US9782430B2 (en) 2013-03-15 2017-10-10 Covidien Lp Resorbable oxidized cellulose embolization solution
US9782173B2 (en) 2013-03-07 2017-10-10 Covidien Lp Circular stapling device including buttress release mechanism
US9820843B2 (en) 2016-04-26 2017-11-21 Tela Bio, Inc. Hernia repair grafts having anti-adhesion barriers
US9839505B2 (en) 2012-09-25 2017-12-12 Sofradim Production Prosthesis comprising a mesh and a strengthening means
US9844378B2 (en) 2014-04-29 2017-12-19 Covidien Lp Surgical stapling apparatus and methods of adhering a surgical buttress thereto
US9877820B2 (en) 2014-09-29 2018-01-30 Sofradim Production Textile-based prosthesis for treatment of inguinal hernia
EP3281646A1 (en) 2016-08-12 2018-02-14 Covidien LP Thixotropic oxidized cellulose solutions and medical applications thereof
WO2018052608A1 (en) 2016-09-16 2018-03-22 Ethicon, Inc. Method of laminating absorbable semi-crystalline polymeric films
US9925030B2 (en) 2015-06-30 2018-03-27 Tela Bio, Inc. Corner-lock stitch patterns
US9932695B2 (en) 2014-12-05 2018-04-03 Sofradim Production Prosthetic porous knit
US9931198B2 (en) 2015-04-24 2018-04-03 Sofradim Production Prosthesis for supporting a breast structure
US9956172B2 (en) 2015-07-28 2018-05-01 Board Of Regents, The University Of Texas System Implant compositions for the unidirectional delivery of therapeutic compounds to the brain
US9980802B2 (en) 2011-07-13 2018-05-29 Sofradim Production Umbilical hernia prosthesis
US9999408B2 (en) 2011-09-14 2018-06-19 Ethicon Endo-Surgery, Inc. Surgical instrument with fluid fillable buttress
US10080639B2 (en) 2011-12-29 2018-09-25 Sofradim Production Prosthesis for inguinal hernia
US10154840B2 (en) 2004-10-18 2018-12-18 Covidien Lp Annular adhesive structure
US10159555B2 (en) 2012-09-28 2018-12-25 Sofradim Production Packaging for a hernia repair device
US10184032B2 (en) 2015-02-17 2019-01-22 Sofradim Production Method for preparing a chitosan-based matrix comprising a fiber reinforcement member
US10213283B2 (en) 2013-06-07 2019-02-26 Sofradim Production Textile-based prosthesis for laparoscopic surgery
US10285704B2 (en) 2012-10-10 2019-05-14 Covidien Lp Buttress fixation for a circular stapler
US10293553B2 (en) 2009-10-15 2019-05-21 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US10328095B2 (en) 2013-03-15 2019-06-25 Covidien Lp Resorbable oxidized cellulose embolization microspheres
US10328178B2 (en) 2014-05-30 2019-06-25 Sofradim Production Implant comprising oxidized cellulose and method for preparing such an implant
US10327882B2 (en) 2014-09-29 2019-06-25 Sofradim Production Whale concept—folding mesh for TIPP procedure for inguinal hernia
US10357249B2 (en) 2011-12-14 2019-07-23 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US10363690B2 (en) 2012-08-02 2019-07-30 Sofradim Production Method for preparing a chitosan-based porous layer
US10368868B2 (en) 2017-03-09 2019-08-06 Covidien Lp Structure for attaching buttress material to anvil and cartridge of surgical stapling instrument
US10405960B2 (en) 2013-06-07 2019-09-10 Sofradim Production Textile-based prothesis for laparoscopic surgery
US10413566B2 (en) 2013-03-15 2019-09-17 Covidien Lp Thixotropic oxidized cellulose solutions and medical applications thereof
US10420864B2 (en) * 2016-05-03 2019-09-24 Medtronic, Inc. Hemostatic devices and methods of use
US10420556B2 (en) 2012-11-09 2019-09-24 Covidien Lp Surgical stapling apparatus including buttress attachment
US10426587B2 (en) 2015-07-21 2019-10-01 Tela Bio, Inc. Compliance control stitching in substrate materials
US10449152B2 (en) 2014-09-26 2019-10-22 Covidien Lp Drug loaded microspheres for post-operative chronic pain
US10470767B2 (en) 2015-02-10 2019-11-12 Covidien Lp Surgical stapling instrument having ultrasonic energy delivery
US10470771B2 (en) 2005-03-15 2019-11-12 Covidien Lp Circular anastomosis structures
US10549015B2 (en) 2014-09-24 2020-02-04 Sofradim Production Method for preparing an anti-adhesion barrier film
US10576298B2 (en) 2009-10-15 2020-03-03 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US10617419B2 (en) 2008-12-16 2020-04-14 Covidien Lp Surgical apparatus including surgical buttress
WO2020089883A2 (en) 2018-11-01 2020-05-07 Omrix Biopharmaceuticals Ltd. Compositions comprising oxidized cellulose
US10646321B2 (en) 2016-01-25 2020-05-12 Sofradim Production Prosthesis for hernia repair
US10675137B2 (en) 2017-05-02 2020-06-09 Sofradim Production Prosthesis for inguinal hernia repair
US10682215B2 (en) 2016-10-21 2020-06-16 Sofradim Production Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained
US10695066B2 (en) 2012-01-26 2020-06-30 Covidien Lp Surgical device including buttress material
US10722234B2 (en) 2013-02-28 2020-07-28 Covidien Lp Adherence concepts for non-woven absorbable felt buttresses
US10743976B2 (en) 2015-06-19 2020-08-18 Sofradim Production Synthetic prosthesis comprising a knit and a non porous film and method for forming same
US10758237B2 (en) 2018-04-30 2020-09-01 Covidien Lp Circular stapling apparatus with pinned buttress
US10786255B2 (en) 2011-12-14 2020-09-29 Covidien Lp Buttress assembly for use with surgical stapling device
US10806459B2 (en) 2018-09-14 2020-10-20 Covidien Lp Drug patterned reinforcement material for circular anastomosis
US10835216B2 (en) 2014-12-24 2020-11-17 Covidien Lp Spinneret for manufacture of melt blown nonwoven fabric
US10849625B2 (en) 2017-08-07 2020-12-01 Covidien Lp Surgical buttress retention systems for surgical stapling apparatus
US10865505B2 (en) 2009-09-04 2020-12-15 Sofradim Production Gripping fabric coated with a bioresorbable impenetrable layer
US10874768B2 (en) 2017-01-20 2020-12-29 Covidien Lp Drug eluting medical device
US10881395B2 (en) 2012-08-20 2021-01-05 Covidien Lp Buttress attachment features for surgical stapling apparatus
WO2021024159A1 (en) 2019-08-07 2021-02-11 Omrix Biopharmaceuticals Ltd. Expandable hemostat composed of oxidized cellulose
US10925607B2 (en) 2017-02-28 2021-02-23 Covidien Lp Surgical stapling apparatus with staple sheath
US10945733B2 (en) 2017-08-23 2021-03-16 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US10952729B2 (en) 2018-10-03 2021-03-23 Covidien Lp Universal linear buttress retention/release assemblies and methods
US10959731B2 (en) 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
US10960021B2 (en) 2015-08-14 2021-03-30 Omrix Biopharmaceuticals Ltd. Method of treating a disease using a glycolytic dependent compound
US11020578B2 (en) 2015-04-10 2021-06-01 Covidien Lp Surgical stapler with integrated bladder
US11026686B2 (en) 2016-11-08 2021-06-08 Covidien Lp Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument
US11045200B2 (en) 2004-10-18 2021-06-29 Covidien Lp Support structures and methods of using the same
US11065000B2 (en) 2018-02-22 2021-07-20 Covidien Lp Surgical buttresses for surgical stapling apparatus
US11096610B2 (en) 2017-03-28 2021-08-24 Covidien Lp Surgical implants including sensing fibers
US11141151B2 (en) 2017-12-08 2021-10-12 Covidien Lp Surgical buttress for circular stapling
US11219460B2 (en) 2018-07-02 2022-01-11 Covidien Lp Surgical stapling apparatus with anvil buttress
US11229720B2 (en) 2016-08-15 2022-01-25 Guangzhou Bioseal Biotech Co., Ltd. Hemostatic compositions and methods of making thereof
WO2022018611A1 (en) 2020-07-21 2022-01-27 Ethicon, Inc. Sealant dressing with removable intermediate separating layer
WO2022043796A1 (en) 2020-08-31 2022-03-03 Ethicon, Inc. Sealant dressing with protected reactive components
US11284896B2 (en) 2018-05-09 2022-03-29 Covidien Lp Surgical buttress loading and attaching/detaching assemblies
CN114349872A (en) * 2021-12-21 2022-04-15 赵建 Preparation process of oxidized regenerated cellulose material
US11337699B2 (en) 2020-04-28 2022-05-24 Covidien Lp Magnesium infused surgical buttress for surgical stapler
US11399833B2 (en) 2020-10-19 2022-08-02 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11413335B2 (en) 2018-02-13 2022-08-16 Guangzhou Bioseal Biotech Co. Ltd Hemostatic compositions and methods of making thereof
US11426163B2 (en) 2018-05-09 2022-08-30 Covidien Lp Universal linear surgical stapling buttress
US11432818B2 (en) 2018-05-09 2022-09-06 Covidien Lp Surgical buttress assemblies
US11446130B2 (en) 2019-03-08 2022-09-20 Tela Bio, Inc. Textured medical textiles
US11471257B2 (en) 2018-11-16 2022-10-18 Sofradim Production Implants suitable for soft tissue repair
US11478245B2 (en) 2019-05-08 2022-10-25 Covidien Lp Surgical stapling device
US11510670B1 (en) 2021-06-23 2022-11-29 Covidien Lp Buttress attachment for surgical stapling apparatus
US11510668B2 (en) 2007-03-06 2022-11-29 Covidien Lp Surgical stapling apparatus
US11523824B2 (en) 2019-12-12 2022-12-13 Covidien Lp Anvil buttress loading for a surgical stapling apparatus
US11534170B2 (en) 2021-01-04 2022-12-27 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11547407B2 (en) 2020-03-19 2023-01-10 Covidien Lp Staple line reinforcement for surgical stapling apparatus
US11571208B2 (en) 2019-10-11 2023-02-07 Covidien Lp Surgical buttress loading units
US11590262B2 (en) 2018-03-09 2023-02-28 Tela Bio, Inc. Surgical repair graft
US11596399B2 (en) 2021-06-23 2023-03-07 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11596403B2 (en) 2019-05-08 2023-03-07 Covidien Lp Surgical stapling device
US11672538B2 (en) 2021-06-24 2023-06-13 Covidien Lp Surgical stapling device including a buttress retention assembly
US11678879B2 (en) 2021-07-01 2023-06-20 Covidien Lp Buttress attachment for surgical stapling apparatus
US11684368B2 (en) 2021-07-14 2023-06-27 Covidien Lp Surgical stapling device including a buttress retention assembly
US11707276B2 (en) 2020-09-08 2023-07-25 Covidien Lp Surgical buttress assemblies and techniques for surgical stapling
US11730472B2 (en) 2019-04-25 2023-08-22 Covidien Lp Surgical system and surgical loading units thereof
US11751875B2 (en) 2021-10-13 2023-09-12 Coviden Lp Surgical buttress attachment assemblies for surgical stapling apparatus
US11801052B2 (en) 2021-08-30 2023-10-31 Covidien Lp Assemblies for surgical stapling instruments
US11806017B2 (en) 2021-11-23 2023-11-07 Covidien Lp Anvil buttress loading system for surgical stapling apparatus
US11925543B2 (en) 2011-12-29 2024-03-12 Sofradim Production Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2448892A (en) * 1945-01-01 1948-09-07 Eastman Kodak Co Oxidation of cellulose

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2448892A (en) * 1945-01-01 1948-09-07 Eastman Kodak Co Oxidation of cellulose

Cited By (438)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3478751A (en) * 1968-07-16 1969-11-18 Sutton Res Corp Method for preparation of smoking product with selective reduction following selective oxidation
US3478752A (en) * 1968-07-16 1969-11-18 Sutton Res Corp Cellulosic smoking product and method in the preparation of same
US3482578A (en) * 1968-07-16 1969-12-09 Sutton Res Corp Preparation of smoking product from cellulosic material and processes in treatment thereof
US3491766A (en) * 1968-07-16 1970-01-27 Sutton Res Corp Preparation of smoking product of cellulose derivatives and process
US3516416A (en) * 1968-07-16 1970-06-23 Sutton Res Corp Method of preparing a smokable material
US3512536A (en) * 1968-07-17 1970-05-19 Sutton Res Corp Smoking material of oxidized cellulosic material and method of making same
US3556110A (en) * 1968-07-17 1971-01-19 Sutton Res Corp Method for producing a smoking product of cellulosic material
US3556109A (en) * 1968-07-17 1971-01-19 Sutton Res Corp Method of making a smoking product of oxidized cellulosic materials containing ashing ingredients
US3575177A (en) * 1968-07-17 1971-04-20 Sutton Res Corp Smoking product of cellulosic material subjected to a nitrogen dioxide oxidation and a mild oxidation with peroxide
US3608560A (en) * 1968-11-07 1971-09-28 Sutton Res Corp Smokable product of oxidized cellulosic material
US3666750A (en) * 1969-12-15 1972-05-30 Johnson & Johnson Hemostatic material
US4100341A (en) * 1973-03-29 1978-07-11 Gallaher Limited Uronic oxidation of cellulose
US4505282A (en) * 1978-05-12 1985-03-19 American Brands, Inc. Innerliner wrap for smoking articles
FR2504011A1 (en) * 1981-04-17 1982-10-22 Kh Khim Farmatsevtich Absorbable surgical thread prodn. from cellulose - by oxidn. with nitrogen oxide(s) followed by treatment with protophilic solvent
EP0177064A2 (en) * 1984-10-05 1986-04-09 JOHNSON & JOHNSON MEDICAL, INC. Surgical hemostat comprising oxidized cellulose
US4626253A (en) * 1984-10-05 1986-12-02 Johnson & Johnson Products, Inc. Surgical hemostat comprising oxidized cellulose
EP0177064A3 (en) * 1984-10-05 1988-04-27 Johnson & Johnson Products Inc. Surgical hemostat comprising oxidized cellulose
AU580337B2 (en) * 1984-10-05 1989-01-12 Johnson & Johnson Products, Inc. Surgical hemostat comprising oxidized cellulose
EP0262890A2 (en) * 1986-09-29 1988-04-06 JOHNSON & JOHNSON MEDICAL, INC. Heparin-containing adhesion prevention barrier and process
EP0262890A3 (en) * 1986-09-29 1989-08-16 Johnson & Johnson Products Inc. Heparin-containing adhesion prevention barrier and process
US5180398A (en) * 1990-12-20 1993-01-19 Johnson & Johnson Medical, Inc. Cellulose oxidation by a perfluorinated hydrocarbon solution of nitrogen dioxide
US6350274B1 (en) 1992-05-11 2002-02-26 Regen Biologics, Inc. Soft tissue closure systems
US5571181A (en) * 1992-05-11 1996-11-05 Li; Shu-Tung Soft tissue closure systems
US5326350A (en) * 1992-05-11 1994-07-05 Li Shu Tung Soft tissue closure systems
US5405953A (en) * 1993-08-03 1995-04-11 Biocontrol Incorporated Microfibrillated oxycellulose
US5414079A (en) * 1993-08-03 1995-05-09 Biocontrol Incorporated Oxidized cellulose
US5580974A (en) * 1993-08-03 1996-12-03 Biocontrol Incorporated Microfibrillated oxycellulose dispersions
US6372718B2 (en) 1997-01-30 2002-04-16 Alpenstock Holdings Limited Composition containing stable microdispersed polyanhydroglucuronic acids and salts thereof
GB2335921A (en) * 1997-01-30 1999-10-06 Alpenstock Holdings Ltd Cellulose derivatives
GB2335921B (en) * 1997-01-30 2000-08-02 Alpenstock Holdings Ltd Microdispersed polyanhydroglucuronic acid and salts thereof
WO1998033822A1 (en) * 1997-01-30 1998-08-06 Alpenstock Holdings Limited Cellulose derivatives
US20030077231A1 (en) * 1997-01-30 2003-04-24 Alpenstock Holdings Limited Cellulose derivatives
US20070036730A1 (en) * 1997-01-30 2007-02-15 Alpenstock Holding Limited Cellulose derivatives
US5914003A (en) * 1998-06-09 1999-06-22 Mach I, Inc. Cellulose oxidation
US20050226916A1 (en) * 1998-11-12 2005-10-13 Cochrum Kent C Hemostatic polymer useful for RAPID blood coagulation and hemostasis
US20070255238A1 (en) * 1998-11-12 2007-11-01 Cochrum Kent C Hemostatic Polymer Useful for Rapid Blood Coagulation and Hemostasis
US6627749B1 (en) * 1999-11-12 2003-09-30 University Of Iowa Research Foundation Powdered oxidized cellulose
US6582559B2 (en) 2000-05-04 2003-06-24 Sca Hygiene Products Zeist B.V. Aldehyde-containing polymers as wet strength additives
US20030205165A1 (en) * 2000-05-04 2003-11-06 Thornton Jeffrey W. Alehyde-containing polymers as wet strength additives
US6896725B2 (en) 2000-05-04 2005-05-24 Sca Hygiene Products Zeist B.V. Aldehyde-containing polymers as wet strength additives
US7014607B2 (en) 2000-11-15 2006-03-21 Boston Scientific Scimed, Inc. Treating urinary incontinence
US6689047B2 (en) 2000-11-15 2004-02-10 Scimed Life Systems, Inc. Treating urinary incontinence
US20070060788A1 (en) * 2000-11-15 2007-03-15 Boston Scientific Scimed Inc. Systems and methods for delivering a medical implant to an anatomical location in a patient
US6991597B2 (en) 2001-03-09 2006-01-31 Boston Scientific Scimed, Inc. System for implanting an implant and method thereof
US9433488B2 (en) 2001-03-09 2016-09-06 Boston Scientific Scimed, Inc. Medical slings
US7235043B2 (en) 2001-03-09 2007-06-26 Boston Scientific Scimed Inc. System for implanting an implant and method thereof
US20020138025A1 (en) * 2001-03-09 2002-09-26 Scimed Life Systems, Inc. Medical slings
US20020151910A1 (en) * 2001-03-09 2002-10-17 Gellman Barry N. System for implanting an implant and method thereof
US20020156489A1 (en) * 2001-03-09 2002-10-24 Scimed Life Systems, Inc. System for implanting an implant and method thereof
US7762969B2 (en) 2001-03-09 2010-07-27 Boston Scientific Scimed, Inc. Medical slings
US20040073234A1 (en) * 2001-03-09 2004-04-15 Chu Michael S.H. Medical implant
US20100287761A1 (en) * 2001-03-09 2010-11-18 Boston Scientific Scimed, Inc. Medical slings
US8033983B2 (en) 2001-03-09 2011-10-11 Boston Scientific Scimed, Inc. Medical implant
US7025772B2 (en) 2001-03-09 2006-04-11 Scimed Life Systems, Inc. System for implanting an implant and method thereof
US8617048B2 (en) 2001-03-09 2013-12-31 Boston Scientific Scimed, Inc. System for implanting an implant and method thereof
US20020156488A1 (en) * 2001-03-09 2002-10-24 Gellman Barry N. System for implanting an implant and method thereof
US20030009181A1 (en) * 2001-03-09 2003-01-09 Gellman Barry N. System for implanting an implant and method thereof
US8162816B2 (en) 2001-03-09 2012-04-24 Boston Scientific Scimed, Inc. System for implanting an implant and method thereof
US6953428B2 (en) 2001-03-09 2005-10-11 Boston Scientific Scimed, Inc. Medical slings
US6936052B2 (en) 2001-03-09 2005-08-30 Boston Scientific Scimed, Inc. System for implanting an implant and method thereof
US20030024662A1 (en) * 2001-07-11 2003-02-06 Besemer Arie Cornelis Cationic fibres
US6849156B2 (en) 2001-07-11 2005-02-01 Arie Cornelis Besemer Cationic fibers
US9549803B2 (en) 2001-07-27 2017-01-24 Boston Scientific Scimed, Inc. Medical slings
US20040039246A1 (en) * 2001-07-27 2004-02-26 Barry Gellman Medical slings
US20060195013A1 (en) * 2001-07-27 2006-08-31 Boston Scientific Scimed, Inc. Medical slings
US6755781B2 (en) 2001-07-27 2004-06-29 Scimed Life Systems, Inc. Medical slings
US7981022B2 (en) 2001-07-27 2011-07-19 Boston Scientific Scimed, Inc. Medical slings
US7070558B2 (en) 2001-07-27 2006-07-04 Boston Scientific Scimed, Inc. Medical slings
US8764622B2 (en) 2001-07-27 2014-07-01 Boston Scientific Scimed, Inc. Medical slings
US8376928B2 (en) 2001-10-05 2013-02-19 Boston Scientific Scimed, Inc. Expandable surgical implants and methods of using them
US7465270B2 (en) 2001-10-05 2008-12-16 Boston Scientific Scimed, Inc. Expandable surgical implants and methods of using them
US6666817B2 (en) 2001-10-05 2003-12-23 Scimed Life Systems, Inc. Expandable surgical implants and methods of using them
US20090076318A1 (en) * 2001-10-05 2009-03-19 Boston Scientific Scimed, Inc. Expandable surgical implants and methods of using them
US9402623B2 (en) 2001-10-23 2016-08-02 Covidien Lp Surgical fasteners
US20040001879A1 (en) * 2002-06-28 2004-01-01 Guo Jian Xin Hemostatic wound dressing and method of making same
US20040005350A1 (en) * 2002-06-28 2004-01-08 Looney Dwayne Lee Hemostatic wound dressings and methods of making same
US20040106344A1 (en) * 2002-06-28 2004-06-03 Looney Dwayne Lee Hemostatic wound dressings containing proteinaceous polymers
US7252837B2 (en) 2002-06-28 2007-08-07 Ethicon, Inc. Hemostatic wound dressing and method of making same
US7279177B2 (en) 2002-06-28 2007-10-09 Ethicon, Inc. Hemostatic wound dressings and methods of making same
US20040037866A1 (en) * 2002-08-20 2004-02-26 Semertzides John N. Composition and method for the treatment and prevention of adhesions
EP1400624A1 (en) * 2002-09-03 2004-03-24 Ethicon, Inc. Concomitant scouring and oxidation process for making oxidized regenerated cellulose
US20040040096A1 (en) * 2002-09-03 2004-03-04 Lowell Saferstein Concomitant scouring and oxidation process for making oxidized regenerated cellulose
US20040101546A1 (en) * 2002-11-26 2004-05-27 Gorman Anne Jessica Hemostatic wound dressing containing aldehyde-modified polysaccharide and hemostatic agents
US20040101548A1 (en) * 2002-11-26 2004-05-27 Pendharkar Sanyog Manohar Hemostatic wound dressing containing aldehyde-modified polysaccharide
US20060159733A1 (en) * 2002-11-26 2006-07-20 Pendharkar Sanyog M Method of providing hemostasis to a wound
US20040101547A1 (en) * 2002-11-26 2004-05-27 Pendharkar Sanyog Manohar Wound dressing containing aldehyde-modified regenerated polysaccharide
EP1424085A1 (en) * 2002-11-26 2004-06-02 Ethicon, Inc. Hemostatic wound dressing containing aldehyde-modified polysaccharide
US8632453B2 (en) 2002-12-17 2014-01-21 Boston Scientific Scimed, Inc. Spacer for sling delivery system
US20040116944A1 (en) * 2002-12-17 2004-06-17 Scimed Life Systems, Inc. Spacer for sling delivery system
US7402133B2 (en) 2002-12-17 2008-07-22 Boston Scientific Scimed, Inc. Spacer for sling delivery system
US20040120993A1 (en) * 2002-12-20 2004-06-24 Guanghui Zhang Hemostatic wound dressing and fabric and methods of making and using same
US20040156708A1 (en) * 2003-02-10 2004-08-12 Allam Mahdy A. Turbine balancing
US7019191B2 (en) 2003-03-25 2006-03-28 Ethicon, Inc. Hemostatic wound dressings and methods of making same
US20040241212A1 (en) * 2003-05-30 2004-12-02 Pendharkar Sanyog Manohar Biodegradable hemostatic wound dressings
US20060233869A1 (en) * 2003-06-25 2006-10-19 Looney Dwayne L Hemostatic devices and methods of making same
US20040265371A1 (en) * 2003-06-25 2004-12-30 Looney Dwayne Lee Hemostatic devices and methods of making same
US8709463B2 (en) 2003-06-25 2014-04-29 Ethicon, Inc. Hemostatic devices and methods of making same
US7361138B2 (en) 2003-07-31 2008-04-22 Scimed Life Systems, Inc. Bioabsorbable casing for surgical sling assembly
US7824326B2 (en) 2003-07-31 2010-11-02 Boston Scientific Scimed, Inc. Bioabsorbable casing for surgical sling assembly
US8795710B2 (en) 2004-02-09 2014-08-05 Codman & Shurtleff, Inc. Collagen device and method of preparing the same
US20050175659A1 (en) * 2004-02-09 2005-08-11 Macomber Laurel R. Collagen device and method of preparing the same
US20050283256A1 (en) * 2004-02-09 2005-12-22 Codman & Shurtleff, Inc. Collagen device and method of preparing the same
US8377906B2 (en) 2004-06-04 2013-02-19 Ethicon, Inc. Compositions and methods for preventing or reducing postoperative ileus and gastric stasis
US8129359B2 (en) 2004-06-04 2012-03-06 Ethicon, Inc. Composition and method for treating post-surgical pain
US20090130184A1 (en) * 2004-06-04 2009-05-21 Ethicon, Inc. Compositions and methods for preventing or reducing postoperative ileus and gastric stasis
JP2008508387A (en) * 2004-07-29 2008-03-21 サーントゥル ナシオナル ドゥ ラ ルシェルシュ シャーンティフィク Method for controlled oxidation of polysaccharides
JP2008509253A (en) * 2004-08-05 2008-03-27 ザイロス コーポレーション Cellulose oxidation by nitrogen dioxide in perfluorotertiary amine solvents.
US11045200B2 (en) 2004-10-18 2021-06-29 Covidien Lp Support structures and methods of using the same
US10154840B2 (en) 2004-10-18 2018-12-18 Covidien Lp Annular adhesive structure
US10813636B2 (en) 2004-10-18 2020-10-27 Covidien Lp Annular adhesive structure
EP2837393A1 (en) 2004-10-20 2015-02-18 Ethicon, Inc. Absorbable hemostat
US20060084930A1 (en) * 2004-10-20 2006-04-20 Sridevi Dhanaraj Reinforced absorbable multilayered fabric for use in medical devices
EP2345430A1 (en) 2004-10-20 2011-07-20 Ethicon, Inc. A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture
US20080260810A1 (en) * 2004-10-20 2008-10-23 Guanghui Zhang Hemostat
US20060084338A1 (en) * 2004-10-20 2006-04-20 Shetty Dhanuraj S Reinforced absorbable multilayered fabric for use in medical devices
US20090246238A1 (en) * 2004-10-20 2009-10-01 Anne Jessica Gorman Reinforced absorbable multilayered hemostatic wound dressing
US9358318B2 (en) 2004-10-20 2016-06-07 Ethicon, Inc. Method of making a reinforced absorbable multilayered hemostatic wound dressing
US7666803B2 (en) 2004-10-20 2010-02-23 Ethicon, Inc. Reinforced absorbable multilayered fabric for use in medical devices
WO2006044879A2 (en) 2004-10-20 2006-04-27 Ethicon, Inc. Absorbable hemostat
US9439997B2 (en) 2004-10-20 2016-09-13 Ethicon, Inc. Reinforced absorbable multilayered hemostatis wound dressing
US20060258995A1 (en) * 2004-10-20 2006-11-16 Pendharkar Sanyog M Method for making a reinforced absorbable multilayered fabric for use in medical devices
US7749204B2 (en) 2004-10-20 2010-07-06 Ethicon, Inc. Reinforced absorbable multilayered fabric for use in tissue repair and regeneration
US20060257458A1 (en) * 2004-10-20 2006-11-16 Gorman Anne J Reinforced absorbable multilayered hemostatis wound dressing
EP2052746A2 (en) 2004-10-20 2009-04-29 Ethicon, Inc. Method for making an absorbable hemostat
US20060257457A1 (en) * 2004-10-20 2006-11-16 Gorman Anne J Method for making a reinforced absorbable multilayered hemostatic wound dressing
US10470771B2 (en) 2005-03-15 2019-11-12 Covidien Lp Circular anastomosis structures
US20070032805A1 (en) * 2005-08-03 2007-02-08 Sofradim Production Oxydized cellulose prosthesis
US20070073415A1 (en) * 2005-09-29 2007-03-29 Codman And Shurtleff, Inc. Dural graft and method of preparing the same
US20080208359A1 (en) * 2005-09-29 2008-08-28 Codman & Shurtleff, Inc. Dural graft and method of preparing the same
US7429241B2 (en) 2005-09-29 2008-09-30 Codman & Shurtleff, Inc. Dural graft and method of preparing the same
WO2007095005A1 (en) * 2006-02-10 2007-08-23 Z-Medica Corporation Agents and devices for providing blood clotting functions to wounds
US20070190110A1 (en) * 2006-02-10 2007-08-16 Pameijer Cornelis H Agents and devices for providing blood clotting functions to wounds
US20090306363A1 (en) * 2006-03-10 2009-12-10 Synthesia, A.S. Preparation Method of Bioresorbable Oxidized Cellulose
US20090098193A1 (en) * 2006-04-20 2009-04-16 Crosslink-D, A California Corporation Hemostatic compositions and methods for controlling bleeding
US20070248653A1 (en) * 2006-04-20 2007-10-25 Cochrum Kent C Hemostatic compositions and methods for controlling bleeding
EP2335703A1 (en) 2006-06-13 2011-06-22 Ethicon, Incorporated Compositions and Methods for Preventing or Reducing Postoperative Ileus and Gastric Stasis in Mammals
US20080138387A1 (en) * 2006-12-07 2008-06-12 Machiraju Venkat R Hemostatic sponge and article
US11510668B2 (en) 2007-03-06 2022-11-29 Covidien Lp Surgical stapling apparatus
US9364234B2 (en) 2007-06-18 2016-06-14 Covidien Lp Interlocking buttress material retention system
US11419608B2 (en) 2007-06-18 2022-08-23 Covidien Lp Interlocking buttress material retention system
US10022125B2 (en) 2007-06-18 2018-07-17 Covidien Lp Interlocking buttress material retention system
US10675032B2 (en) 2007-06-18 2020-06-09 Covidien Lp Interlocking buttress material retention system
US9198663B1 (en) 2007-06-22 2015-12-01 Covidien Lp Detachable buttress material retention systems for use with a surgical stapling device
US20100015868A1 (en) * 2007-06-27 2010-01-21 Philippe Gravagna Reinforced composite implant
US20090036996A1 (en) * 2007-08-03 2009-02-05 Roeber Peter J Knit PTFE Articles and Mesh
US20090187197A1 (en) * 2007-08-03 2009-07-23 Roeber Peter J Knit PTFE Articles and Mesh
US20090192532A1 (en) * 2007-12-03 2009-07-30 Linda Spinnler Implant for parastomal hernia
US10368971B2 (en) 2007-12-03 2019-08-06 Sofradim Production Implant for parastomal hernia
US9308068B2 (en) 2007-12-03 2016-04-12 Sofradim Production Implant for parastomal hernia
US8299316B2 (en) 2007-12-18 2012-10-30 Ethicon, Inc. Hemostatic device
US20090156711A1 (en) * 2007-12-18 2009-06-18 Van Holten Robert W Hemostatic device
US20090318843A1 (en) * 2007-12-18 2009-12-24 Ethicon, Inc. Surgical barriers having adhesion inhibiting properties
US8629314B2 (en) 2007-12-18 2014-01-14 Ethicon, Inc. Surgical barriers having adhesion inhibiting properties
US9238088B2 (en) 2007-12-18 2016-01-19 Ethicon, Inc. Surgical barriers having adhesion inhibiting properties
US20090269413A1 (en) * 2008-04-23 2009-10-29 Codman & Shurtleff, Inc. Flowable collagen material for dural closure
US8039591B2 (en) 2008-04-23 2011-10-18 Codman & Shurtleff, Inc. Flowable collagen material for dural closure
US20100016872A1 (en) * 2008-06-27 2010-01-21 Yves Bayon Biosynthetic implant for soft tissue repair
US10070948B2 (en) 2008-06-27 2018-09-11 Sofradim Production Biosynthetic implant for soft tissue repair
US9242026B2 (en) 2008-06-27 2016-01-26 Sofradim Production Biosynthetic implant for soft tissue repair
US9271706B2 (en) 2008-08-12 2016-03-01 Covidien Lp Medical device for wound closure and method of use
US10722224B2 (en) 2008-08-12 2020-07-28 Covidien Lp Medical device for wound closure and method of use
US20100087854A1 (en) * 2008-08-12 2010-04-08 Joshua Stopek Medical device for wound closure and method of use
EP2177239A2 (en) 2008-10-17 2010-04-21 Confluent Surgical Inc. Hemostatic Implant
US9889230B2 (en) 2008-10-17 2018-02-13 Covidien Lp Hemostatic implant
EP2815774A1 (en) 2008-10-17 2014-12-24 Covidien LP Hemostatic implant
EP3150237A1 (en) 2008-10-17 2017-04-05 Covidien LP Hemostatic implant
EP2179753A2 (en) 2008-10-17 2010-04-28 Confluent Surgical Inc. Hemostatic implant
US20110045047A1 (en) * 2008-10-17 2011-02-24 Confluent Surgical, Inc. Hemostatic implant
US20110262706A1 (en) * 2008-11-07 2011-10-27 Sofradim Production Template for bacterial cellulose implant processed within bioreactor
US9510928B2 (en) 2008-11-07 2016-12-06 Sofradim Production Composite mesh including a 3D mesh and a non porous film of oxidized cellulose from bacterial cellulose origin
US9107978B2 (en) * 2008-11-07 2015-08-18 Sofradim Production Template for bacterial cellulose implant processed within bioreactor
US10617419B2 (en) 2008-12-16 2020-04-14 Covidien Lp Surgical apparatus including surgical buttress
US9486215B2 (en) 2009-03-31 2016-11-08 Covidien Lp Surgical stapling apparatus
US10368869B2 (en) 2009-03-31 2019-08-06 Covidien Lp Surgical stapling apparatus
US11666334B2 (en) 2009-03-31 2023-06-06 Covidien Lp Surgical stapling apparatus
US10595978B2 (en) 2009-07-29 2020-03-24 Covidien Lp System and method of laparoscopic use of hemostatic patch
US20110029003A1 (en) * 2009-07-29 2011-02-03 Confluent Surgical, Inc. System and Method of Laparoscopic Use of Hemostatic Patch
US9592108B2 (en) 2009-07-29 2017-03-14 Covidien Lp System and method of laparoscopic use of hemostatic patch
EP2279711A1 (en) 2009-07-29 2011-02-02 Confluent Surgical Inc. System and method of laparoscopic use of hemostatic patch
WO2011027084A1 (en) * 2009-09-03 2011-03-10 Sofradim Production Method for washing a material based on polysaccharide that has undergone oxidation
US9290583B2 (en) 2009-09-03 2016-03-22 Sofradim Production Process for washing a polysaccharide-based material which has been subjected to an oxidation
FR2949474A1 (en) * 2009-09-03 2011-03-04 Sofradim Production PROCESS FOR WASHING A POLYSACCHARIDE-BASED MATERIAL HAVING OXIDATION
US10865505B2 (en) 2009-09-04 2020-12-15 Sofradim Production Gripping fabric coated with a bioresorbable impenetrable layer
WO2011037760A2 (en) 2009-09-22 2011-03-31 Ethicon, Inc. Composite layered hemostasis device
US20110070288A1 (en) * 2009-09-22 2011-03-24 Sasa Andjelic Composite layered hemostasis device
US8349354B2 (en) 2009-09-22 2013-01-08 Ethicon, Inc. Composite layered hemostasis device
US8470355B2 (en) 2009-10-01 2013-06-25 Covidien Lp Mesh implant
EP2314254A2 (en) 2009-10-01 2011-04-27 Tyco Healthcare Group LP Mesh implant
US20110081397A1 (en) * 2009-10-01 2011-04-07 Tyco Healthcare Group Lp Mesh Implant
US10576298B2 (en) 2009-10-15 2020-03-03 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US10293553B2 (en) 2009-10-15 2019-05-21 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
EP2314225A1 (en) 2009-10-20 2011-04-27 Tyco Healthcare Group LP Medical device for wound closure
EP2759265A2 (en) 2009-10-20 2014-07-30 Covidien LP Medical device for wound closure
EP2319471A2 (en) 2009-11-10 2011-05-11 Tyco Healthcare Group LP Hermostatic tapes and dispensers thereof
EP2327426A2 (en) 2009-11-10 2011-06-01 Tyco Healthcare Group, LP Hemostatic tapes and dispensers thereof
US20110108199A1 (en) * 2009-11-10 2011-05-12 Tyco Healthcare Group Lp Hemostatic Tapes and Dispensers Therefor
US20110112572A1 (en) * 2009-11-10 2011-05-12 Tyco Healthcare Group Lp Hemostatic Tapes and Dispensers Therefor
WO2011135463A2 (en) 2010-04-30 2011-11-03 Sofradim Production Cellulose-containing medical device having a multi-layer structure produced without adhesive
US8273369B2 (en) 2010-05-17 2012-09-25 Ethicon, Inc. Reinforced absorbable synthetic matrix for hemostatic applications
US8383147B2 (en) 2010-05-17 2013-02-26 Ethicon, Inc. Reinforced absorbable synthetic matrix for hemostatic applications
WO2011144916A1 (en) 2010-05-20 2011-11-24 Fujifilm Manufacturing Europe Bv Hemostatic compositions
US8468708B2 (en) 2010-06-21 2013-06-25 Confluent Surgical, Inc. Hemostatic patch
EP2397165A2 (en) 2010-06-21 2011-12-21 Confluent Surgical, Inc. Hemostatic patch
US8302323B2 (en) 2010-06-21 2012-11-06 Confluent Surgical, Inc. Hemostatic patch
DE102010034782A1 (en) 2010-08-18 2012-02-23 Carl Freudenberg Kg Process for the preparation of oxidized cellulose fibers, oxidized cellulose fiber sheets or oxidized cellulose nonwovens and their use
WO2012022421A1 (en) 2010-08-18 2012-02-23 Carl Freudenberg Kg Method for the production of oxidized cellulose fibers, oxidized cellulose fiber sheet materials or oxidized cellulose nonwovens, and use thereof
EP2457600A2 (en) 2010-11-03 2012-05-30 Tyco Healthcare Group LP Hemostatic implant
EP2638194A4 (en) * 2010-11-10 2015-11-04 Ethicon Inc A resorbable laparoscopically deployable hemostat
KR20130101109A (en) * 2010-11-10 2013-09-12 에디컨인코포레이티드 A resorbable laparoscopically deployable hemostat
US10111782B2 (en) 2010-11-10 2018-10-30 Ethicon, Inc. Resorbable laparoscopically deployable hemostat
WO2012064687A2 (en) 2010-11-10 2012-05-18 Ethicon, Inc. A resorbable laparoscopically deployable hemostat
EP2478848A2 (en) 2011-01-25 2012-07-25 Confluent Surgical, Inc. Hemostatic patch
EP2982315A1 (en) 2011-01-25 2016-02-10 Covidien LP Cutting template and method for a hemostatic patch
US9084602B2 (en) 2011-01-26 2015-07-21 Covidien Lp Buttress film with hemostatic action for surgical stapling apparatus
US9107665B2 (en) 2011-03-10 2015-08-18 Covidien Lp Surgical instrument buttress attachment
EP2497793A2 (en) 2011-03-11 2012-09-12 Tyco Healthcare Group LP Application of supercritical fluid technology for manufacturing soft tissue repair medical articles
US11612472B2 (en) 2011-03-16 2023-03-28 Sofradim Production Prosthesis comprising a three-dimensional and openworked knit
US9554887B2 (en) 2011-03-16 2017-01-31 Sofradim Production Prosthesis comprising a three-dimensional and openworked knit
US10472750B2 (en) 2011-03-16 2019-11-12 Sofradim Production Prosthesis comprising a three-dimensional and openworked knit
US8487017B2 (en) 2011-06-27 2013-07-16 Covidien Lp Biodegradable materials for orthopedic devices based on polymer stereocomplexes
US9522963B2 (en) 2011-06-29 2016-12-20 Covidien Lp Dissolution of oxidized cellulose
US11873350B2 (en) 2011-06-29 2024-01-16 Covidien Lp Dissolution of oxidized cellulose
US10982012B2 (en) 2011-06-29 2021-04-20 Covidien Lp Dissolution of oxidized cellulose
US9980802B2 (en) 2011-07-13 2018-05-29 Sofradim Production Umbilical hernia prosthesis
US11039912B2 (en) 2011-07-13 2021-06-22 Sofradim Production Umbilical hernia prosthesis
US10709538B2 (en) 2011-07-13 2020-07-14 Sofradim Production Umbilical hernia prosthesis
US9622843B2 (en) 2011-07-13 2017-04-18 Sofradim Production Umbilical hernia prosthesis
US11903807B2 (en) 2011-07-13 2024-02-20 Sofradim Production Umbilical hernia prosthesis
US8998059B2 (en) 2011-08-01 2015-04-07 Ethicon Endo-Surgery, Inc. Adjunct therapy device having driver with cavity for hemostatic agent
US9492170B2 (en) 2011-08-10 2016-11-15 Ethicon Endo-Surgery, Inc. Device for applying adjunct in endoscopic procedure
US9101359B2 (en) 2011-09-13 2015-08-11 Ethicon Endo-Surgery, Inc. Surgical staple cartridge with self-dispensing staple buttress
US8998060B2 (en) 2011-09-13 2015-04-07 Ethicon Endo-Surgery, Inc. Resistive heated surgical staple cartridge with phase change sealant
US9999408B2 (en) 2011-09-14 2018-06-19 Ethicon Endo-Surgery, Inc. Surgical instrument with fluid fillable buttress
US8814025B2 (en) 2011-09-15 2014-08-26 Ethicon Endo-Surgery, Inc. Fibrin pad matrix with suspended heat activated beads of adhesive
US9254180B2 (en) 2011-09-15 2016-02-09 Ethicon Endo-Surgery, Inc. Surgical instrument with staple reinforcement clip
US9125649B2 (en) 2011-09-15 2015-09-08 Ethicon Endo-Surgery, Inc. Surgical instrument with filled staple
US9198644B2 (en) 2011-09-22 2015-12-01 Ethicon Endo-Surgery, Inc. Anvil cartridge for surgical fastening device
US9393018B2 (en) 2011-09-22 2016-07-19 Ethicon Endo-Surgery, Inc. Surgical staple assembly with hemostatic feature
US8985429B2 (en) 2011-09-23 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with adjunct material application feature
US9526603B2 (en) 2011-09-30 2016-12-27 Covidien Lp Reversible stiffening of light weight mesh
WO2013049049A1 (en) 2011-09-30 2013-04-04 Advanced Technologies And Regenerative Medicine, Llc Adhesion prevention fabric
US8899464B2 (en) 2011-10-03 2014-12-02 Ethicon Endo-Surgery, Inc. Attachment of surgical staple buttress to cartridge
US9089326B2 (en) 2011-10-07 2015-07-28 Ethicon Endo-Surgery, Inc. Dual staple cartridge for surgical stapler
US9107667B2 (en) 2011-11-04 2015-08-18 Covidien Lp Surgical stapling apparatus including releasable buttress
US10828034B2 (en) 2011-12-14 2020-11-10 Covidien Lp Buttress attachment to the cartridge surface
US11229434B2 (en) 2011-12-14 2022-01-25 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US10786255B2 (en) 2011-12-14 2020-09-29 Covidien Lp Buttress assembly for use with surgical stapling device
US9237893B2 (en) 2011-12-14 2016-01-19 Covidien Lp Surgical stapling apparatus including buttress attachment via tabs
US10098639B2 (en) 2011-12-14 2018-10-16 Covidien Lp Buttress attachment to the cartridge surface
US10357249B2 (en) 2011-12-14 2019-07-23 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US9597077B2 (en) 2011-12-14 2017-03-21 Covidien Lp Buttress attachment to the cartridge surface
US10321908B2 (en) 2011-12-14 2019-06-18 Covidien Lp Surgical stapling apparatus including buttress attachment via tabs
US9277922B2 (en) 2011-12-14 2016-03-08 Covidien Lp Surgical stapling apparatus including buttress attachment via tabs
US10342652B2 (en) 2011-12-29 2019-07-09 Sofradim Production Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit
US9445883B2 (en) 2011-12-29 2016-09-20 Sofradim Production Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit
US10080639B2 (en) 2011-12-29 2018-09-25 Sofradim Production Prosthesis for inguinal hernia
US11266489B2 (en) 2011-12-29 2022-03-08 Sofradim Production Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit
US11925543B2 (en) 2011-12-29 2024-03-12 Sofradim Production Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit
US11471256B2 (en) 2011-12-29 2022-10-18 Sofradim Production Prosthesis for inguinal hernia
US9775617B2 (en) 2012-01-26 2017-10-03 Covidien Lp Circular stapler including buttress
US9186144B2 (en) 2012-01-26 2015-11-17 Covidien Lp Buttress support design for EEA anvil
US10695066B2 (en) 2012-01-26 2020-06-30 Covidien Lp Surgical device including buttress material
US11419609B2 (en) 2012-01-26 2022-08-23 Covidien Lp Surgical device including buttress material
US20140356767A1 (en) * 2012-02-15 2014-12-04 Toppan Printing Co., Ltd. Carbon fiber composite, method for producing same, catalyst support and polymer electrolyte fuel cell
US9198660B2 (en) 2012-02-24 2015-12-01 Covidien Lp Buttress retention system for linear endostaplers
US9010610B2 (en) 2012-02-24 2015-04-21 Covidien Lp Buttress retention system for linear endostaplers
EP2854882B1 (en) 2012-05-25 2018-10-31 Ethicon, Inc Oxidized regenerated cellulose hemostatic powders and methods of making
EP3466455B1 (en) 2012-05-25 2022-01-19 Ethicon, Inc. Oxidized regenerated cellulose hemostatic powders and methods of making
US9539358B2 (en) 2012-05-25 2017-01-10 Ethicon, Inc. Oxidized regenerated cellulose hemostatic powders and methods of making
EP3466455A1 (en) 2012-05-25 2019-04-10 Ethicon, Inc. Oxidized regenerated cellulose hemostatic powders and methods of making
WO2013177242A1 (en) 2012-05-25 2013-11-28 Ethicon, Inc. Oxidized regenerated cellulose hemostatic powders and methods of making
EP4043042A1 (en) 2012-05-25 2022-08-17 Ethicon, Inc. Oxidized regenerated cellulose hemostatic powders and methods of making
US8815832B2 (en) 2012-05-25 2014-08-26 Ethicon, Inc. Oxidized regenerated cellulose hemostatic powders and methods of making
US9687450B2 (en) 2012-05-31 2017-06-27 Covidien Lp Oxidized cellulose microspheres
EP3111928A1 (en) 2012-05-31 2017-01-04 Covidien LP Microspheres including oxidized cellulose
US9138489B2 (en) 2012-05-31 2015-09-22 Covidien Lp Oxidized cellulose miczrospheres including visualization agents
EP2668942A1 (en) 2012-05-31 2013-12-04 Confluent Surgical, Inc. Microspheres including oxidized cellulose
US10426730B2 (en) 2012-05-31 2019-10-01 Covidien Lp Oxidized cellulose microspheres
US9271937B2 (en) 2012-05-31 2016-03-01 Covidien Lp Oxidized cellulose microspheres
US10188608B2 (en) 2012-05-31 2019-01-29 Covidien Lp Oxidized cellulose microspheres
US9168227B2 (en) 2012-05-31 2015-10-27 Covidien Lp Multi-encapsulated microspheres made with oxidized cellulose for in-situ reactions
EP2668943A1 (en) 2012-05-31 2013-12-04 Confluent Surgical, Inc. Microspheres including oxidized cellulose
US10561744B2 (en) 2012-05-31 2020-02-18 Covidien Lp Multi-encapsulated formulations made with oxidized cellulose
EP3103442A1 (en) 2012-05-31 2016-12-14 Covidien LP Microspheres including oxidized cellulose
US11065204B2 (en) 2012-05-31 2021-07-20 Covidien Lp Oxidized cellulose microspheres
EP2679253A2 (en) 2012-06-28 2014-01-01 Covidien LP Medical devices based on cellulose
US9447196B2 (en) 2012-06-28 2016-09-20 Covidien Lp Dissolution of oxidized cellulose and particle preparation by solvent and non-solvent precipitation
US11053323B2 (en) 2012-06-28 2021-07-06 Covidien Lp Dissolution of oxidized cellulose and particle preparation by cross-linking with multivalent cations
US9447197B2 (en) 2012-06-28 2016-09-20 Covidien Lp Dissolution of oxidized cellulose and particle preparation by dispersion and neutralization
EP2679601A1 (en) 2012-06-28 2014-01-01 Covidien LP Dissolution of oxidized cellulose and particle preparation by dispersion and neutralization
EP2679603A1 (en) 2012-06-28 2014-01-01 Covidien LP Dissolution of oxidized cellulose and particle preparation by solvent and non-solvent precipitation
US9499636B2 (en) 2012-06-28 2016-11-22 Covidien Lp Dissolution of oxidized cellulose and particle preparation by cross-linking with multivalent cations
US10040871B2 (en) 2012-06-28 2018-08-07 Covidien Lp Medical devices based on oxidized cellulose
EP2679602A1 (en) 2012-06-28 2014-01-01 Covidien LP Dissolution of oxidized cellulose and particle preparation by cross-linking with multivalent cations
US10363690B2 (en) 2012-08-02 2019-07-30 Sofradim Production Method for preparing a chitosan-based porous layer
US10881395B2 (en) 2012-08-20 2021-01-05 Covidien Lp Buttress attachment features for surgical stapling apparatus
EP2708227A1 (en) 2012-09-17 2014-03-19 Covidien LP Multi-Encapsulated Formulations Made With Oxidized Cellulose For In-Situ Reactions
EP2708226A1 (en) 2012-09-17 2014-03-19 Covidien LP Multi-Encapsulated Formulations Made With Oxidized Cellulose
US9499927B2 (en) 2012-09-25 2016-11-22 Sofradim Production Method for producing a prosthesis for reinforcing the abdominal wall
US9750837B2 (en) 2012-09-25 2017-09-05 Sofradim Production Haemostatic patch and method of preparation
US9839505B2 (en) 2012-09-25 2017-12-12 Sofradim Production Prosthesis comprising a mesh and a strengthening means
US10159555B2 (en) 2012-09-28 2018-12-25 Sofradim Production Packaging for a hernia repair device
US11207072B2 (en) 2012-10-10 2021-12-28 Covidien Lp Buttress fixation for a circular stapler
US10285704B2 (en) 2012-10-10 2019-05-14 Covidien Lp Buttress fixation for a circular stapler
US11759211B2 (en) 2012-10-10 2023-09-19 Covidien Lp Buttress fixation for a circular stapler
US10420556B2 (en) 2012-11-09 2019-09-24 Covidien Lp Surgical stapling apparatus including buttress attachment
US10722234B2 (en) 2013-02-28 2020-07-28 Covidien Lp Adherence concepts for non-woven absorbable felt buttresses
US9782173B2 (en) 2013-03-07 2017-10-10 Covidien Lp Circular stapling device including buttress release mechanism
US11872244B2 (en) 2013-03-15 2024-01-16 Covidien Lp Thixotropic oxidized cellulose solutions and medical applications thereof
US10328095B2 (en) 2013-03-15 2019-06-25 Covidien Lp Resorbable oxidized cellulose embolization microspheres
US9782430B2 (en) 2013-03-15 2017-10-10 Covidien Lp Resorbable oxidized cellulose embolization solution
US10413566B2 (en) 2013-03-15 2019-09-17 Covidien Lp Thixotropic oxidized cellulose solutions and medical applications thereof
US11622845B2 (en) 2013-06-07 2023-04-11 Sofradim Production Textile-based prothesis for laparoscopic surgery
US10405960B2 (en) 2013-06-07 2019-09-10 Sofradim Production Textile-based prothesis for laparoscopic surgery
US10213283B2 (en) 2013-06-07 2019-02-26 Sofradim Production Textile-based prosthesis for laparoscopic surgery
US11304790B2 (en) 2013-06-07 2022-04-19 Sofradim Production Textile-based prothesis for laparoscopic surgery
US9844378B2 (en) 2014-04-29 2017-12-19 Covidien Lp Surgical stapling apparatus and methods of adhering a surgical buttress thereto
US10328178B2 (en) 2014-05-30 2019-06-25 Sofradim Production Implant comprising oxidized cellulose and method for preparing such an implant
US10624989B2 (en) 2014-05-30 2020-04-21 Sofradim Production Implant comprising oxidized cellulose and method for preparing such an implant
US10549015B2 (en) 2014-09-24 2020-02-04 Sofradim Production Method for preparing an anti-adhesion barrier film
US10449152B2 (en) 2014-09-26 2019-10-22 Covidien Lp Drug loaded microspheres for post-operative chronic pain
US11291536B2 (en) 2014-09-29 2022-04-05 Sofradim Production Whale concept-folding mesh for TIPP procedure for inguinal hernia
US9877820B2 (en) 2014-09-29 2018-01-30 Sofradim Production Textile-based prosthesis for treatment of inguinal hernia
US10653508B2 (en) 2014-09-29 2020-05-19 Sofradim Production Textile-based prosthesis for treatment of inguinal hernia
US11589974B2 (en) 2014-09-29 2023-02-28 Sofradim Production Textile-based prosthesis for treatment of inguinal hernia
US10327882B2 (en) 2014-09-29 2019-06-25 Sofradim Production Whale concept—folding mesh for TIPP procedure for inguinal hernia
US11359313B2 (en) 2014-12-05 2022-06-14 Sofradim Production Prosthetic porous knit
US10745835B2 (en) 2014-12-05 2020-08-18 Sofradim Production Prosthetic porous knit
US9932695B2 (en) 2014-12-05 2018-04-03 Sofradim Production Prosthetic porous knit
US11713526B2 (en) 2014-12-05 2023-08-01 Sofradim Production Prosthetic porous knit
US10835216B2 (en) 2014-12-24 2020-11-17 Covidien Lp Spinneret for manufacture of melt blown nonwoven fabric
US10470767B2 (en) 2015-02-10 2019-11-12 Covidien Lp Surgical stapling instrument having ultrasonic energy delivery
US10815345B2 (en) 2015-02-17 2020-10-27 Sofradim Production Method for preparing a chitosan-based matrix comprising a fiber reinforcement member
US10184032B2 (en) 2015-02-17 2019-01-22 Sofradim Production Method for preparing a chitosan-based matrix comprising a fiber reinforcement member
US11382731B2 (en) 2015-02-27 2022-07-12 Covidien Lp Medical devices with sealing properties
EP3061471A1 (en) 2015-02-27 2016-08-31 Covidien LP Medical devices with sealing properties
US11020578B2 (en) 2015-04-10 2021-06-01 Covidien Lp Surgical stapler with integrated bladder
EP3085396A1 (en) 2015-04-23 2016-10-26 Covidien LP Resorbable oxidized cellulose embolization solution
US11439498B2 (en) 2015-04-24 2022-09-13 Sofradim Production Prosthesis for supporting a breast structure
US9931198B2 (en) 2015-04-24 2018-04-03 Sofradim Production Prosthesis for supporting a breast structure
US10660741B2 (en) 2015-04-24 2020-05-26 Sofradim Production Prosthesis for supporting a breast structure
US11826242B2 (en) 2015-06-19 2023-11-28 Sofradim Production Synthetic prosthesis comprising a knit and a non porous film and method for forming same
US10743976B2 (en) 2015-06-19 2020-08-18 Sofradim Production Synthetic prosthesis comprising a knit and a non porous film and method for forming same
US11344397B2 (en) 2015-06-30 2022-05-31 Tela Bio, Inc. Corner-lock stitch patterns
US9925030B2 (en) 2015-06-30 2018-03-27 Tela Bio, Inc. Corner-lock stitch patterns
US11864987B2 (en) 2015-06-30 2024-01-09 Tela Bio, Inc. Corner-lock stitch patterns
US10213284B2 (en) 2015-06-30 2019-02-26 Tela Bio, Inc. Corner-lock stitch patterns
US11369464B2 (en) 2015-07-21 2022-06-28 Tela Bio, Inc Compliance control stitching in substrate materials
US10426587B2 (en) 2015-07-21 2019-10-01 Tela Bio, Inc. Compliance control stitching in substrate materials
US10434063B2 (en) 2015-07-28 2019-10-08 Board Of Regents, The University Of Texas System Implant compositions for the unidirectional delivery of therapeutic compounds to the brain
US9956172B2 (en) 2015-07-28 2018-05-01 Board Of Regents, The University Of Texas System Implant compositions for the unidirectional delivery of therapeutic compounds to the brain
US11229599B2 (en) 2015-07-28 2022-01-25 Board Of Regents, The University Of Texas System Implant compositions for the unidirectional delivery of therapeutic compounds to the brain
US10960021B2 (en) 2015-08-14 2021-03-30 Omrix Biopharmaceuticals Ltd. Method of treating a disease using a glycolytic dependent compound
US10034957B2 (en) 2015-11-06 2018-07-31 Ethicon Llc Compacted hemostatic cellulosic aggregates
EP4101478A1 (en) 2015-11-06 2022-12-14 Ethicon, Inc. Compacted hemostatic cellulosic aggregates
US11235085B2 (en) 2015-11-06 2022-02-01 Cilag Gmbh International Compacted hemostatic cellulosic aggregates
US11896732B2 (en) 2015-11-06 2024-02-13 Cilag Gmbh International Compacted hemostatic cellulosic aggregates
WO2017079059A1 (en) 2015-11-06 2017-05-11 Ethicon, Inc. Compacted hemostatic cellulosic aggregates
US11007301B2 (en) 2015-11-08 2021-05-18 Omrix Biopharmaceuticals Ltd. Hemostatic mixture of cellulose-based short and long fibers
US11712495B2 (en) 2015-11-08 2023-08-01 Omrix Biopharmaceuticals Ltd. Hemostatic mixture of cellulose-based short and long fibers
WO2017077526A1 (en) 2015-11-08 2017-05-11 Omrix Biopharmaceuticals Ltd. Hemostatic mixture of cellulose-based short and long fibers
US10137221B2 (en) 2015-11-08 2018-11-27 Omrix Biopharmaceuticals Ltd. Hemostatic mixture of cellulose-based short and long fibers
EP3868414A1 (en) 2015-11-08 2021-08-25 Omrix Biopharmaceuticals Ltd. Hemostatic mixture of cellulose-based short and long fibers
US10960105B2 (en) 2015-11-08 2021-03-30 Omrix Biopharmaceuticals Ltd. Hemostatic composition
US10137220B2 (en) 2015-11-08 2018-11-27 Omrix Biopharmaceuticals Ltd. Hemostatic composition
US11007300B2 (en) 2015-11-08 2021-05-18 Omrix Biopharmaceuticals Ltd. Hemostatic composition
WO2017077525A1 (en) 2015-11-08 2017-05-11 Omrix Biopharmaceuticals Ltd. Hemostatic composition
US11389282B2 (en) 2016-01-25 2022-07-19 Sofradim Production Prosthesis for hernia repair
US10646321B2 (en) 2016-01-25 2020-05-12 Sofradim Production Prosthesis for hernia repair
US11464616B2 (en) 2016-04-26 2022-10-11 Tela Bio, Inc. Hernia repair grafts having anti-adhesion barriers
US10561485B2 (en) 2016-04-26 2020-02-18 Tela Bio, Inc. Hernia repair grafts having anti-adhesion barriers
US9820843B2 (en) 2016-04-26 2017-11-21 Tela Bio, Inc. Hernia repair grafts having anti-adhesion barriers
US10420864B2 (en) * 2016-05-03 2019-09-24 Medtronic, Inc. Hemostatic devices and methods of use
US10959731B2 (en) 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
EP3281646A1 (en) 2016-08-12 2018-02-14 Covidien LP Thixotropic oxidized cellulose solutions and medical applications thereof
US11229720B2 (en) 2016-08-15 2022-01-25 Guangzhou Bioseal Biotech Co., Ltd. Hemostatic compositions and methods of making thereof
WO2018052608A1 (en) 2016-09-16 2018-03-22 Ethicon, Inc. Method of laminating absorbable semi-crystalline polymeric films
US11135823B2 (en) 2016-09-16 2021-10-05 Ethicon, Inc. Method of laminating absorbable semi-crystalline polymeric films
US10245817B2 (en) 2016-09-16 2019-04-02 Ethicon, Inc. Method of laminating absorbable semi-crystalline polymeric films
US11696819B2 (en) 2016-10-21 2023-07-11 Sofradim Production Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained
US10682215B2 (en) 2016-10-21 2020-06-16 Sofradim Production Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained
US11026686B2 (en) 2016-11-08 2021-06-08 Covidien Lp Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument
US11596404B2 (en) 2016-11-08 2023-03-07 Covidien Lp Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument
US11571498B2 (en) 2017-01-20 2023-02-07 Covidien Lp Drug eluting medical device
US10874768B2 (en) 2017-01-20 2020-12-29 Covidien Lp Drug eluting medical device
US10925607B2 (en) 2017-02-28 2021-02-23 Covidien Lp Surgical stapling apparatus with staple sheath
US10368868B2 (en) 2017-03-09 2019-08-06 Covidien Lp Structure for attaching buttress material to anvil and cartridge of surgical stapling instrument
US11272932B2 (en) 2017-03-09 2022-03-15 Covidien Lp Structure for attaching buttress material to anvil and cartridge of surgical stapling instrument
US11096610B2 (en) 2017-03-28 2021-08-24 Covidien Lp Surgical implants including sensing fibers
US11672636B2 (en) 2017-05-02 2023-06-13 Sofradim Production Prosthesis for inguinal hernia repair
US10675137B2 (en) 2017-05-02 2020-06-09 Sofradim Production Prosthesis for inguinal hernia repair
US11426164B2 (en) 2017-08-07 2022-08-30 Covidien Lp Surgical buttress retention systems for surgical stapling apparatus
US10849625B2 (en) 2017-08-07 2020-12-01 Covidien Lp Surgical buttress retention systems for surgical stapling apparatus
US11801053B2 (en) 2017-08-23 2023-10-31 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US11446033B2 (en) 2017-08-23 2022-09-20 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US10945733B2 (en) 2017-08-23 2021-03-16 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US11653916B2 (en) 2017-12-08 2023-05-23 Covidien Lp Surgical buttress for circular stapling
US11141151B2 (en) 2017-12-08 2021-10-12 Covidien Lp Surgical buttress for circular stapling
US11413335B2 (en) 2018-02-13 2022-08-16 Guangzhou Bioseal Biotech Co. Ltd Hemostatic compositions and methods of making thereof
US11065000B2 (en) 2018-02-22 2021-07-20 Covidien Lp Surgical buttresses for surgical stapling apparatus
US11590262B2 (en) 2018-03-09 2023-02-28 Tela Bio, Inc. Surgical repair graft
US11350940B2 (en) 2018-04-30 2022-06-07 Covidien Lp Circular stapling apparatus with pinned buttress
US10758237B2 (en) 2018-04-30 2020-09-01 Covidien Lp Circular stapling apparatus with pinned buttress
US11284896B2 (en) 2018-05-09 2022-03-29 Covidien Lp Surgical buttress loading and attaching/detaching assemblies
US11426163B2 (en) 2018-05-09 2022-08-30 Covidien Lp Universal linear surgical stapling buttress
US11432818B2 (en) 2018-05-09 2022-09-06 Covidien Lp Surgical buttress assemblies
US11219460B2 (en) 2018-07-02 2022-01-11 Covidien Lp Surgical stapling apparatus with anvil buttress
US11376008B2 (en) 2018-09-14 2022-07-05 Covidien Lp Drug patterned reinforcement material for circular anastomosis
US10806459B2 (en) 2018-09-14 2020-10-20 Covidien Lp Drug patterned reinforcement material for circular anastomosis
US10952729B2 (en) 2018-10-03 2021-03-23 Covidien Lp Universal linear buttress retention/release assemblies and methods
US11627964B2 (en) 2018-10-03 2023-04-18 Covidien Lp Universal linear buttress retention/release assemblies and methods
WO2020089883A2 (en) 2018-11-01 2020-05-07 Omrix Biopharmaceuticals Ltd. Compositions comprising oxidized cellulose
WO2021224919A1 (en) 2018-11-01 2021-11-11 Omrix Biopharmaceuticals Ltd. Compositions comprising oxidized cellulose
EP4327840A2 (en) 2018-11-01 2024-02-28 Omrix Biopharmaceuticals Ltd. Compositions comprising oxidized cellulose
US11471257B2 (en) 2018-11-16 2022-10-18 Sofradim Production Implants suitable for soft tissue repair
US11446130B2 (en) 2019-03-08 2022-09-20 Tela Bio, Inc. Textured medical textiles
US11730472B2 (en) 2019-04-25 2023-08-22 Covidien Lp Surgical system and surgical loading units thereof
US11478245B2 (en) 2019-05-08 2022-10-25 Covidien Lp Surgical stapling device
US11596403B2 (en) 2019-05-08 2023-03-07 Covidien Lp Surgical stapling device
WO2021024159A1 (en) 2019-08-07 2021-02-11 Omrix Biopharmaceuticals Ltd. Expandable hemostat composed of oxidized cellulose
US11571208B2 (en) 2019-10-11 2023-02-07 Covidien Lp Surgical buttress loading units
US11523824B2 (en) 2019-12-12 2022-12-13 Covidien Lp Anvil buttress loading for a surgical stapling apparatus
US11547407B2 (en) 2020-03-19 2023-01-10 Covidien Lp Staple line reinforcement for surgical stapling apparatus
US11337699B2 (en) 2020-04-28 2022-05-24 Covidien Lp Magnesium infused surgical buttress for surgical stapler
WO2022018611A1 (en) 2020-07-21 2022-01-27 Ethicon, Inc. Sealant dressing with removable intermediate separating layer
WO2022043796A1 (en) 2020-08-31 2022-03-03 Ethicon, Inc. Sealant dressing with protected reactive components
US11707276B2 (en) 2020-09-08 2023-07-25 Covidien Lp Surgical buttress assemblies and techniques for surgical stapling
US11399833B2 (en) 2020-10-19 2022-08-02 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11534170B2 (en) 2021-01-04 2022-12-27 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11596399B2 (en) 2021-06-23 2023-03-07 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11510670B1 (en) 2021-06-23 2022-11-29 Covidien Lp Buttress attachment for surgical stapling apparatus
US11672538B2 (en) 2021-06-24 2023-06-13 Covidien Lp Surgical stapling device including a buttress retention assembly
US11678879B2 (en) 2021-07-01 2023-06-20 Covidien Lp Buttress attachment for surgical stapling apparatus
US11684368B2 (en) 2021-07-14 2023-06-27 Covidien Lp Surgical stapling device including a buttress retention assembly
US11801052B2 (en) 2021-08-30 2023-10-31 Covidien Lp Assemblies for surgical stapling instruments
US11751875B2 (en) 2021-10-13 2023-09-12 Coviden Lp Surgical buttress attachment assemblies for surgical stapling apparatus
US11806017B2 (en) 2021-11-23 2023-11-07 Covidien Lp Anvil buttress loading system for surgical stapling apparatus
CN114349872A (en) * 2021-12-21 2022-04-15 赵建 Preparation process of oxidized regenerated cellulose material

Similar Documents

Publication Publication Date Title
US3364200A (en) Oxidized cellulose product and method for preparing the same
AU677118B2 (en) Calcium-modified oxidized cellulose hemostat
US4626253A (en) Surgical hemostat comprising oxidized cellulose
US2772999A (en) Hemostatic surgical compositions and dressings
KR950013460B1 (en) Heparin containing adhesion prevention barrier and process
US3988411A (en) Spinning and shaping poly-(N-acetyl-D-glucosamine)
US3666750A (en) Hemostatic material
US4074713A (en) Poly(N-acetyl-D-glucosamine) products
JP3285887B2 (en) Process for producing a neutralized oxidized cellulose product and its use
US11369713B2 (en) Degradable and absorbable hemostatic fiber material, preparation method therefor, and hemostatic fiber article thereof
JPH07108313B2 (en) Methods and materials for prevention of post-surgical adhesions
CN105056284B (en) A kind of preparation method of multi-walled carbon nanotube/chitosan/oxidized regenerated cellulose compound hemostatic material
CN105561379B (en) A kind of preparation method of novel oxidized cellulose hemostasia products
Stilwell et al. 15. Oxidized cellulose: Chemistry, processing and medical applications
JP2752782B2 (en) Soluble hemostatic fabric
KR20140121884A (en) Biodegradable non-woven material for medical purposes
US2512616A (en) Hemostatic alginic surgical dressings
NO833768L (en) ABSORBABLE HEMOSTATIC MATERIAL.
CN110644234A (en) Absorbable oxidized regenerated cellulose material and preparation method and application thereof
CN113073469A (en) Preparation method of medical antibacterial gauze
KR102416012B1 (en) Manufacturing method of medical material with hemostasis ability and controlling ability of speed of decomposition and medical material manufactured by the same
JPS5991962A (en) Absorbable hemostatic material
CN113121380B (en) Preparation method of novel medical suture material
CN114366847B (en) Freeze-dried fiber aerogel capable of rapidly stopping bleeding as well as preparation method and application thereof
CN111905139B (en) Composite dressing capable of rapidly stopping bleeding and preparation method thereof