US3388977A - Pour point depressant for middle distillates - Google Patents

Pour point depressant for middle distillates Download PDF

Info

Publication number
US3388977A
US3388977A US423870A US42387065A US3388977A US 3388977 A US3388977 A US 3388977A US 423870 A US423870 A US 423870A US 42387065 A US42387065 A US 42387065A US 3388977 A US3388977 A US 3388977A
Authority
US
United States
Prior art keywords
ethylene
copolymer
polymer
oxidized
terpolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US423870A
Inventor
Herbert G Burkard
Edward N Kresge
Irwin J Gardner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US423870A priority Critical patent/US3388977A/en
Application granted granted Critical
Publication of US3388977A publication Critical patent/US3388977A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1641Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1666Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing non-conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds

Definitions

  • the present invention is broadly concerned with an improved pour depressing additive for middle distillates and with its method of manufacture.
  • the additive of the present invention in essence is a terpolymer or copolymer of ethylene that has been oxidized to form hydroperoxy materials followed by reduction to form reduced oxygenated compounds useful as additives for petroleum products.
  • a preferred polymer is a terpolymer of ethylene, propylene and 5-methylene-Z-norbornene, particularly the terpolymer which has been oxidized and reduced.
  • the additives of the present invention are particularly effective when used in conjunction with an ethylene-vinyl acetate copolymer.
  • Aviation turbo-jet fuels in which the polymers may be used normally boil between about 250 and about 550 F. and are used in both military and civilian aircraft. Such fuels are more fully defined by US. Military Specifications MIL-'F-5624C, MIL- F-25554A, MIL-F-25558A, and amendments thereto.
  • Kerosenes and heating oils will normally have boiling ranges between about 300 and about 750 F. and are more fully described in ASTM Specification D-396-48T and supplements thereto, where they are referred to as No. 1 and No. 2 fuel oils.
  • Diesel fuels in which the polymers may be employed are described in detail in ASTM Specification D-975-53T and later versions of the same specification.
  • the polymeric pour depressants may, in accordance with the invention, be employed in conjunction with a variety of other additives commonly used in fuels such as those set forth above.
  • additives are 3,388,977 Patented June 18, 1968 "ice rust inhibitors, anti-emulsifying agents, corrosion inhibitors, anti-oxidants, dispersants, dyes, dye stabilizers, haze inhibitors, anti-static agents, and the like. It will frequently be found convenient to prepare additive concentrates for use in the various types of fuels and thus add all of the additives simultaneously.
  • the present invention is concerned with an oxidized ethylene/ propylene copolymer.
  • the ethylenepropylene copolymer is of the linear type having a number average molecular weight in the range from about 500 to 49,000, preferably in the range of about 1,000 to 15,000. Th amount of ethylene present .as compared to the amount of propylene present is in the range from about 5 to mole percent, the preferred range being from 20 to 80 mole percent ethylene.
  • the copolymer is manufactured by Zieglercatalyzed solution copolymerization of ethylene and propylene gas to the rubbery copolymer.
  • the Ziegler catalyst used generally consists of a transition metal halide such as Titanium tetrachloride, Vanadium tetrachloride or Vanadium oxytri chloride, and an aluminum alkyl compound such as aluminum triethyl or aluminum diethyl chloride.
  • the copolymer may have an inherent viscosity of about 1.5 to 3.5 decaliters per gram in decaline at 135 C. and are known in the art as ethylene-propylene rubbers.
  • the additives of the present invention cannot be successfully manufactured by copolymerization of oxygen-containing compounds with 2-olefins. Such oxygen-containing compounds cannot be polymerized since they poison the catalyst.
  • the ethylene/ propylene copolymer may be oxidized to form the hydroperoxy materials by any one of several methods.
  • the copolymer may be oxidized in solution, or as a solid with an oxygen-containing gas with or without a free radical initiator such as peroxides, azo compounds or metal salts.
  • An effective method of oxidizing the copolymer is to dissolve from about 1 to 20 weight percent in a hydrocarbon diluent such as heptane or benzene and to pass air or oxygen through the solution at the desired temperature until oxidation of the required level is reached.
  • the type of solvent is not critical to the invention; however, some solvents may be used to advantage.
  • the copolymer may also be oxidized as an emulsion or as a suspension in any fiuid such as water.
  • the solvent or suspending fluid need not be inert to oxidation under the conditions employed to oxidize the copolymer.
  • the temperature and pressure conditions will vary with the type of solvent used for oxidation. Temperatures in the range of about 45 C. to 250 C. and pressures in the range of about 0.5 to atmospheres are satisfactory.
  • the oxygen-containing gas is preferably passed through the polymer solution or suspension in excess.
  • Free radical initiators such as peroxides, hydroperoxides, azo compounds, diazo compounds, peresters, peracids, ozone, hydrogen peroxide, disulfides, persulfides, hydrozines may be used in concentrations of about 0.001 weight percent and higher.
  • Metal salts well known in the art may also be used to promote the oxidation. Such compounds contain transition metal ions that are easily oxidized and reduced. Examples are iron, cobalt, vanadium, cerium or manganese salts. Soluble salts such as acetylacetonates or tallates of the metals are preferred for the hydrocarbon solutions, while water-soluble salts such as chlorides are preferred for the emulsions.
  • the oxidized material is then reduced as follows: the oxidized material, while still in solution, or suspension or as a solid, is contacted with a reducing agent.
  • a reducing agent should be capable of reaction with oxidized groups on the polymer.
  • Applicable methods include the reaction with sodium sulphite, lithium aluminum hydride, sodium borohydride, tertiary phosphines, triethyl phosphite, hydrazine hydrate, aluminum amalgam, alkaline sodium sulphide, hydriodic acid and zine dustacetic acid. Reaction with acids or alkali as well as thermal treatment may also remove active oxygen-containing groups from the oxidized polymer. Removal of these groups is desirable, since the polymer is less reactive after reduction and may be conveniently stored without further reaction taking place.
  • the product produced by the oxidation procedure is a soluble polymer of lower molecular Weight than the starting copolymer.
  • the molecular weight depends on the extent and conditions employed during the oxidation.
  • the number average molecular Weight is in the range from about 500 to 49,000, wherein the amount of active oxygen before reduction is in the range from about 2 to 500 milliequivalents per 100 g. of polymer as determined iodometrically.
  • Examination of the polymers by infrared spectroscopy shows that oxygenated groups are introduced on the polymer during oxidation and are retained during reduction. No active oxygen in the form of peroxides, hydroperoxides, or peracids is detected after reduction by any of the preferred methods.
  • the polymer is recovered from solution by steam distillation of the solvent or by precipitation with an acetonemethanol mixture (3: 1) and dried in a vacuum.
  • the preferred polymer is a terpolymer of ethylene/propylene containing a third unsaturated monomer, such as cyclopentadiene, methylene norbornene, hexadiene.
  • the amount of third monomer present is in the range from about 0.5 to 20 mole percent, preferably about 1 to 7 mole percent based on the total amount of ethylene and propylene present.
  • third unsaturated monomers are bicyclic, alicyclic and aliphatic nonconjugated diolefins having from about 6 to 15 carbon atoms such as dicyclopentadiene, tetrahydroindene, -vinyl-2-norbornene, Z-methylnorbornadiene, 2,4-dimethyl-2,7-octadiene, 3 methallyl cyclopentane, tctradecene, and 3 (2-methyl-1-propene) cyclopentene.
  • the terpolymer may be oxidized by substantially the same methods used for the copolymer and previously described herein.
  • the same solvents may be employed and the same temperatures and pressures are preferred.
  • the choice of free radical initiator is more critical with the terpolymer than with the copolymer. Ozone cannot be conveniently used at low temperatures.
  • the product obtained from this treatment is insoluble in all solvents and is not useful as an additive of the present invention.
  • Azo compounds, such as azobisisobutryonitrile are very effective at initiating the oxidation and any oxygen-containing gas may be used.
  • the terpolymer is reduced by any of the methods described for the copolymer or methods well known in the art for reduction of active oxygen compounds.
  • the terpolymer Prior to reduction, the terpolymer will contain from about 2 to 500 milliequivalents of active oxygen per 100 gram of terpolymer.
  • the terpolymer will also be in the molecular weight range of about 500 to 49,000 number average molecular weight.
  • the terpolymer will contain oxygen-containing groups as determined by infrared spectroscopy of the polymer sample and have substantially the same molecular weight as before reduction.
  • the preferred range of oxidation is from about 5 to 350 milliequivalents, i.e. millirnoles, of OOH/100 g. polymer as determined by the method described by A. G. ]()a9v6ies) in Organic Peroxides, Butterworths, London
  • the amount of additive used based upon the base oil is in the range from .005 to 0.25% by weight, preferably in the range from .01 to .15 by weight.
  • the additives of the present invention are particularly effective when used in conjunction with an ethylene/vinyl acetate copolymer.
  • ethylene/vinyl acetate copolymers are described in U.S. Patent No. 3,048,479 filed Aug. 7, 1962, entitled, Ethylene-Vinyl Ester Pour Depressant for Middle Distillates; inventors: Stephan Ilnyckyj and Charles B. Rupar.
  • these polymers contain from about 1 to 40% by weight of the vinyl acetate based upon the ethylene, preferably from about 15 to 30% of vinyl acetate based upon the ethylene.
  • the molecular weights of the ethylene/vinyl acetate copolymer are critical and should be in the range from about 1,000 to 3,000, preferably, in the range from about 1,500 to 2,200.
  • the molecular weights are determined by K. Rasts method (Ber. 55, 1051, 3727 (1922)).
  • the amount of ethylene/vinyl acetate copolymer used in conjunction with the ethylene/ propylene oxidized and reduced polymer is in the range from about .01 to .1, preferably in the range from about .04 to .06.
  • Example 1 An ethylene/ propylene copolymer having an inherent viscosity of about 2.5 decaliters per gram in decalin at 135 C. and containing about 50 weight percent ethylene was prepared in hexane by polymerizing ethylene and propylene using a Ziegler catalyst system. 50 grams of the copolymer was dissolved in 2 liters of n-heptane and oxidi'zed by passing 200 ml. of oxygen gas containing 10 mg. of ozone per liter of oxygen through the solution. The pressure was maintained at about 1 atmosphere and the temperature at about 70 C. After 5 /2 hours of oxidation the polymer solution was contacted with an aqueous solution of sodium sulphite for -1 hour.
  • the polymer solution was recovered and washed with distilled water 3 times.
  • the polymer was recovered by steam distillation of the n-heptane followed by vacuum drying at 40 C. for 20 hours. Prior to reduction with the sodium sulphite, the polymer was found to contain about 42 milliequivalents i.e. millimoles, of active oxygen per grams and an inherent viscosity of 0.58 decaliters per gram. 50 grams of the polymer were recovered after reaction.
  • copolymer and the reduced oxidized copolymer were added to a base oil of approximately 50/50 volume percent straight-run and catalytically-cracked stocks from a mixture of Venezuela and Gulf Coast Crudes.
  • Example 3 In another test, the polymers of the present invention were used in conjunction with the ethylene/vinyl acetate copolymer as described with the following results.
  • copolymers 1 and terpolymers 1 show appreciable activity as middle distillate pour depressants. Several of these polymers also function as fiow improvers in middle distillate of a 660 FBP.
  • This fuel when treat ed with .03 weight percent of an ethylene/vinyl acetate copolymer, has a cloud point of +18 and a pour point of 20, but plugs at +15 in the Flow and Plugging Test. This fuel also plugs somewhere between +15 and when treated with .06 weight percent of the ethylene/vinyl acetate copolymer. However, this same fuel, when treated with .02 weight percent of the ethylene/ vinyl acetate copolymer and with .01 weight percent of any of the polymers listed below does not plug at any temperature from to l0.
  • the terpolymers are comprised of ethylene, a C to C alpha olefin, and a third monomer, preferably a nonconjugated diolefin.
  • Representative examples of the useful C to C alpha olefins are: propylene; l-butene, 4-methyl-1-pentene; l-pentene, l-benzene, l-heptene, 5- methyl --1 nonene; 5,5 dimethyl 1 octene; 4-methyl- 1 hexene; 4,4 dimethyl 1 pentene; 5 methyl-l-hexene; 4 methyl 1 heptene, 4,4 dimethyl 1 hexene; and 5,6,6 trimethyl 1 heptene, with propylene being the preferred alpha olefin.
  • Straight-chain and cyclic nonconjugated hydrocarbon diolefins or monoolefins having from 6 to 15 carbon atoms such as dicyclopentadiene; tetrahydroindene; 5 methylene 2 norbornene; 5-vinyl- 2 norbornene; 5(3' butene) 2 norbornene; tetra- Ethylene/propylene copolymer oxidized to 80 mm. 0011/ 100 g. and then reduced as described.
  • deceue 1; 2 methyl norbornadiene; 1,4 hexadie e; 3 methallylcyclopentene and 3-(2 methyl 1 propene) cyclopentene are suitable as the third component of the terpolymer.
  • a petroleum distillate fuel composition comprising a major amount of a petroleum distillate fuel boiling between about 250 and 750 F. and about .005 to .25 weight percent of an oil-soluble pour depressant having a number average molecular Weight of about 1000 to 15,000 prepared by oxidizing an ethylene-propylene rubbery copolymer containing about 5 to mole percent ethylene, to about 2 to 500 milliequivalents of oxygen per grams of said rubbery copolymer, and then reducing said oxidized rubbery copolymer to eliminate active oxygen, wherein said rubbery copolymer is linear and is prepared by solution copolymerization using a catalyst system of a transition metal halide and an aluminum alkyl compound, wherein said rubbery copolymer has an inherent viscosity of about 1.5 to 3.5 decaliters per gram in Decaline.
  • composition as defined by claim 1 wherein the amount of ethylene present in said copolymer is about 20 to 80 mole percent, and the balance of said copolymer is propylene.
  • a petroleum distillate fuel oil having a boiling range between about 250 and 750 F. containing about .005 to 0.25 weight percent of a pour depressant having a number average molecular weight of 1000 to 15,000 prepared by oxidizing a rubbery terpolymer of about 20 to 80 mole percent ethylene, about .5 to 20 mole percent of nonconjugated hydrocarbon olefin selected from the group consisting of straight chain and cyclic nonconjugated hydrocarbon diolefins of 6 to 15 carbon atoms, and the balance of a C to C alpha olefin, which terpolymer has been oxidized to about 2 to 500 milliequivalents of active oxygen per 100 grams of said polymer and then reduced to eliminate free oxygen, wherein said terpolymer is prepared by solution copolymerization using a catalyst system of a transition metal halide and an aluminum alkyl compound, wherein said terpolymer has an inherent viscosity of about 1.5 to 3.5 decaliters per

Description

United States Patent 3,388,977 POUR POINT DEPRESSANT FOR MIDDLE DISTILLATES Herbert G. Burkard, Roselle, Edward N. Kresge, Elizabeth, and Irwin J. Gardner, Fanwood, N.J., assignors to Esso Research and Engineering Company, a corporation of Delaware No Drawing. Filed Jan. 6, 1965, Ser. No. 423,870 6 Claims. (CI. 44-62) ABSTRACT OF THE DISCLOSURE Petroleum distillate fuel oil containing as a pour point depressant polymer comprising ethylene and C to C alpha olefin, which has been oxidized and then reduced, .and having a molecular Weight of about 500 to 49,000. The polymer can contain other olefin monomers.
The present invention is broadly concerned with an improved pour depressing additive for middle distillates and with its method of manufacture. The additive of the present invention in essence is a terpolymer or copolymer of ethylene that has been oxidized to form hydroperoxy materials followed by reduction to form reduced oxygenated compounds useful as additives for petroleum products. A preferred polymer is a terpolymer of ethylene, propylene and 5-methylene-Z-norbornene, particularly the terpolymer which has been oxidized and reduced. The additives of the present invention are particularly effective when used in conjunction with an ethylene-vinyl acetate copolymer.
With the increase in the use of hydrocarbon fuels of all kinds, serious problems have arisen in areas frequently subjected to low temperatures in the cold test characteristics of fuels. Particularly, serious problems have been encountered with heating oils and diesel and jet fuels that have too high a pour point, resulting either in distributional or operating difficulties or both. For example, the distribution of heating oils by pumping or siphoning is rendered diificult or impossible at temperatures around or below the pour point of the oil. Furthermore, the flow of the oil at such temperatures through the filters is not maintained, leading to equipment failures.
Also the low temperature properties of petroleum distillate fuels boiling in the range between about 250 and about 750 F. have attracted increasing attention in recent years because of the growth of market for such fuels in subarctic areas and because of the development of turbo-jet aircraft capable of operating at altitudes where temperatures of 50 F. or lower are encountered.
It is a still further object of the present invention to provide heating oils, diesel fuel oils, kerosenes and jet fuels having low pour points. Aviation turbo-jet fuels in which the polymers may be used normally boil between about 250 and about 550 F. and are used in both military and civilian aircraft. Such fuels are more fully defined by US. Military Specifications MIL-'F-5624C, MIL- F-25554A, MIL-F-25558A, and amendments thereto. Kerosenes and heating oils will normally have boiling ranges between about 300 and about 750 F. and are more fully described in ASTM Specification D-396-48T and supplements thereto, where they are referred to as No. 1 and No. 2 fuel oils. Diesel fuels in which the polymers may be employed are described in detail in ASTM Specification D-975-53T and later versions of the same specification.
The polymeric pour depressants may, in accordance with the invention, be employed in conjunction with a variety of other additives commonly used in fuels such as those set forth above. Typical of such additives are 3,388,977 Patented June 18, 1968 "ice rust inhibitors, anti-emulsifying agents, corrosion inhibitors, anti-oxidants, dispersants, dyes, dye stabilizers, haze inhibitors, anti-static agents, and the like. It will frequently be found convenient to prepare additive concentrates for use in the various types of fuels and thus add all of the additives simultaneously.
As pointed out, the present invention is concerned with an oxidized ethylene/ propylene copolymer. The ethylenepropylene copolymer is of the linear type having a number average molecular weight in the range from about 500 to 49,000, preferably in the range of about 1,000 to 15,000. Th amount of ethylene present .as compared to the amount of propylene present is in the range from about 5 to mole percent, the preferred range being from 20 to 80 mole percent ethylene.
In essence, the copolymer is manufactured by Zieglercatalyzed solution copolymerization of ethylene and propylene gas to the rubbery copolymer. The Ziegler catalyst used generally consists of a transition metal halide such as Titanium tetrachloride, Vanadium tetrachloride or Vanadium oxytri chloride, and an aluminum alkyl compound such as aluminum triethyl or aluminum diethyl chloride.
The copolymer may have an inherent viscosity of about 1.5 to 3.5 decaliters per gram in decaline at 135 C. and are known in the art as ethylene-propylene rubbers. The additives of the present invention cannot be successfully manufactured by copolymerization of oxygen-containing compounds with 2-olefins. Such oxygen-containing compounds cannot be polymerized since they poison the catalyst.
The ethylene/ propylene copolymer may be oxidized to form the hydroperoxy materials by any one of several methods. The copolymer may be oxidized in solution, or as a solid with an oxygen-containing gas with or without a free radical initiator such as peroxides, azo compounds or metal salts. An effective method of oxidizing the copolymer is to dissolve from about 1 to 20 weight percent in a hydrocarbon diluent such as heptane or benzene and to pass air or oxygen through the solution at the desired temperature until oxidation of the required level is reached. The type of solvent is not critical to the invention; however, some solvents may be used to advantage. The copolymer may also be oxidized as an emulsion or as a suspension in any fiuid such as water. The solvent or suspending fluid need not be inert to oxidation under the conditions employed to oxidize the copolymer. The temperature and pressure conditions will vary with the type of solvent used for oxidation. Temperatures in the range of about 45 C. to 250 C. and pressures in the range of about 0.5 to atmospheres are satisfactory. The oxygen-containing gas is preferably passed through the polymer solution or suspension in excess. Free radical initiators such as peroxides, hydroperoxides, azo compounds, diazo compounds, peresters, peracids, ozone, hydrogen peroxide, disulfides, persulfides, hydrozines may be used in concentrations of about 0.001 weight percent and higher. Metal salts well known in the art may also be used to promote the oxidation. Such compounds contain transition metal ions that are easily oxidized and reduced. Examples are iron, cobalt, vanadium, cerium or manganese salts. Soluble salts such as acetylacetonates or tallates of the metals are preferred for the hydrocarbon solutions, while water-soluble salts such as chlorides are preferred for the emulsions.
The oxidized material is then reduced as follows: the oxidized material, while still in solution, or suspension or as a solid, is contacted with a reducing agent. Such a reducing agent should be capable of reaction with oxidized groups on the polymer. Applicable methods include the reaction with sodium sulphite, lithium aluminum hydride, sodium borohydride, tertiary phosphines, triethyl phosphite, hydrazine hydrate, aluminum amalgam, alkaline sodium sulphide, hydriodic acid and zine dustacetic acid. Reaction with acids or alkali as well as thermal treatment may also remove active oxygen-containing groups from the oxidized polymer. Removal of these groups is desirable, since the polymer is less reactive after reduction and may be conveniently stored without further reaction taking place.
The product produced by the oxidation procedure is a soluble polymer of lower molecular Weight than the starting copolymer. The molecular weight depends on the extent and conditions employed during the oxidation. The number average molecular Weight is in the range from about 500 to 49,000, wherein the amount of active oxygen before reduction is in the range from about 2 to 500 milliequivalents per 100 g. of polymer as determined iodometrically. Examination of the polymers by infrared spectroscopy shows that oxygenated groups are introduced on the polymer during oxidation and are retained during reduction. No active oxygen in the form of peroxides, hydroperoxides, or peracids is detected after reduction by any of the preferred methods.
The polymer is recovered from solution by steam distillation of the solvent or by precipitation with an acetonemethanol mixture (3: 1) and dried in a vacuum.
As pointed out heretofore, the preferred polymer is a terpolymer of ethylene/propylene containing a third unsaturated monomer, such as cyclopentadiene, methylene norbornene, hexadiene. The amount of third monomer present is in the range from about 0.5 to 20 mole percent, preferably about 1 to 7 mole percent based on the total amount of ethylene and propylene present. Other satisfactory third unsaturated monomers are bicyclic, alicyclic and aliphatic nonconjugated diolefins having from about 6 to 15 carbon atoms such as dicyclopentadiene, tetrahydroindene, -vinyl-2-norbornene, Z-methylnorbornadiene, 2,4-dimethyl-2,7-octadiene, 3 methallyl cyclopentane, tctradecene, and 3 (2-methyl-1-propene) cyclopentene.
The methods of preparation of the above-named terpolymers are well known to the art and are described in U.S. 3,000,866, US. 3,093,621, and US. 2,933,480.
The terpolymer may be oxidized by substantially the same methods used for the copolymer and previously described herein. The same solvents may be employed and the same temperatures and pressures are preferred. The choice of free radical initiator is more critical with the terpolymer than with the copolymer. Ozone cannot be conveniently used at low temperatures. The product obtained from this treatment is insoluble in all solvents and is not useful as an additive of the present invention. Azo compounds, such as azobisisobutryonitrile, are very effective at initiating the oxidation and any oxygen-containing gas may be used.
The terpolymer is reduced by any of the methods described for the copolymer or methods well known in the art for reduction of active oxygen compounds.
Prior to reduction, the terpolymer will contain from about 2 to 500 milliequivalents of active oxygen per 100 gram of terpolymer. The terpolymer will also be in the molecular weight range of about 500 to 49,000 number average molecular weight. After reduction the terpolymer will contain oxygen-containing groups as determined by infrared spectroscopy of the polymer sample and have substantially the same molecular weight as before reduction. The preferred range of oxidation is from about 5 to 350 milliequivalents, i.e. millirnoles, of OOH/100 g. polymer as determined by the method described by A. G. ]()a9v6ies) in Organic Peroxides, Butterworths, London The amount of additive used based upon the base oil is in the range from .005 to 0.25% by weight, preferably in the range from .01 to .15 by weight.
As pointed out heretofore, the additives of the present invention are particularly effective when used in conjunction with an ethylene/vinyl acetate copolymer. These ethylene/vinyl acetate copolymers are described in U.S. Patent No. 3,048,479 filed Aug. 7, 1962, entitled, Ethylene-Vinyl Ester Pour Depressant for Middle Distillates; inventors: Stephan Ilnyckyj and Charles B. Rupar.
In essence, these polymers contain from about 1 to 40% by weight of the vinyl acetate based upon the ethylene, preferably from about 15 to 30% of vinyl acetate based upon the ethylene. The molecular weights of the ethylene/vinyl acetate copolymer are critical and should be in the range from about 1,000 to 3,000, preferably, in the range from about 1,500 to 2,200. The molecular weights are determined by K. Rasts method (Ber. 55, 1051, 3727 (1922)). The amount of ethylene/vinyl acetate copolymer used in conjunction with the ethylene/ propylene oxidized and reduced polymer is in the range from about .01 to .1, preferably in the range from about .04 to .06.
The present invention may be more readily understood by the following examples illustrating embodiments of the same.
Example 1 An ethylene/ propylene copolymer having an inherent viscosity of about 2.5 decaliters per gram in decalin at 135 C. and containing about 50 weight percent ethylene was prepared in hexane by polymerizing ethylene and propylene using a Ziegler catalyst system. 50 grams of the copolymer was dissolved in 2 liters of n-heptane and oxidi'zed by passing 200 ml. of oxygen gas containing 10 mg. of ozone per liter of oxygen through the solution. The pressure was maintained at about 1 atmosphere and the temperature at about 70 C. After 5 /2 hours of oxidation the polymer solution was contacted with an aqueous solution of sodium sulphite for -1 hour. The polymer solution was recovered and washed with distilled water 3 times. The polymer was recovered by steam distillation of the n-heptane followed by vacuum drying at 40 C. for 20 hours. Prior to reduction with the sodium sulphite, the polymer was found to contain about 42 milliequivalents i.e. millimoles, of active oxygen per grams and an inherent viscosity of 0.58 decaliters per gram. 50 grams of the polymer were recovered after reaction.
The copolymer and the reduced oxidized copolymer were added to a base oil of approximately 50/50 volume percent straight-run and catalytically-cracked stocks from a mixture of Venezuela and Gulf Coast Crudes.
Base Oil Inspections In another test, a terpolymer as described was prepared and then oxidized with the following results:
Degrees of depression of base oil by Additive: 0.1 weight percent 5-methylene-2-norborene 40 As above but oxidized to 26 millimoles OOH/ I)0;ggfilrylene-propylen'e-methylenenorbornene terpolymer com- Ethylene: 54 wet ht er'cent; LINE: 3." t" H Mooney Vise. 260 F. p d we permit Large rotor=60 Inherent Visc. 2.9 (Decalin (3.).
1,500 m1. of a solution of terpolymer (5 grams per 100 cc. solvent) in n-heptane cement was hydroperoxidized using 2.10 g. of azobisisobutryonitrile and excess oxygen at 80 C. for 2.5 hours. A sample of the cement was worked up and analyzed for hydroperoxide content: found 26.64 millimoles/100 g. polymer. To the remaining polymer cement in the reactor (1,000 ml.) 40 ml. of 1 molar triethyl phosphite were added and the solution was stirred for 3 hours at 75 C. The cement was clear when cool. The polymer was precipitated from solution with acetone and then vacuum dried. The kinematic viscosity of the polymer in decalin at 135 was 0.825. Solvent visc. 0.699; polymer conc. 0.905 g./ml. Decalin.
Example 3 In another test, the polymers of the present invention were used in conjunction with the ethylene/vinyl acetate copolymer as described with the following results.
A number of copolymers 1 and terpolymers 1 show appreciable activity as middle distillate pour depressants. Several of these polymers also function as fiow improvers in middle distillate of a 660 FBP. This fuel, when treat ed with .03 weight percent of an ethylene/vinyl acetate copolymer, has a cloud point of +18 and a pour point of 20, but plugs at +15 in the Flow and Plugging Test. This fuel also plugs somewhere between +15 and when treated with .06 weight percent of the ethylene/vinyl acetate copolymer. However, this same fuel, when treated with .02 weight percent of the ethylene/ vinyl acetate copolymer and with .01 weight percent of any of the polymers listed below does not plug at any temperature from to l0.
In other tests the ethylene/propylene copolymer of the present invention was reacted with a third monomer (preferably of diene) with the results as follows:
Example 4 Degrees of depression of base oil* Third Monomer by 0.1% additive 3% methylene norbornene 40 11% cyclopentadiene 45 3.6% 1,4-hexadiene 35 4% methylene norbornene 45 4.5% methylene norbornene 60 2.0% tetradecene-l 50 *Approximately 50/50 volume percent straight-run and catalytieallymracked stocks from a mixture of Venezuela and Gulf Coast 'Crudes.
Thus the terpolymers are comprised of ethylene, a C to C alpha olefin, and a third monomer, preferably a nonconjugated diolefin. Representative examples of the useful C to C alpha olefins are: propylene; l-butene, 4-methyl-1-pentene; l-pentene, l-benzene, l-heptene, 5- methyl --1 nonene; 5,5 dimethyl 1 octene; 4-methyl- 1 hexene; 4,4 dimethyl 1 pentene; 5 methyl-l-hexene; 4 methyl 1 heptene, 4,4 dimethyl 1 hexene; and 5,6,6 trimethyl 1 heptene, with propylene being the preferred alpha olefin. Straight-chain and cyclic nonconjugated hydrocarbon diolefins or monoolefins having from 6 to 15 carbon atoms such as dicyclopentadiene; tetrahydroindene; 5 methylene 2 norbornene; 5-vinyl- 2 norbornene; 5(3' butene) 2 norbornene; tetra- Ethylene/propylene copolymer oxidized to 80 mm. 0011/ 100 g. and then reduced as described.
'Ethy1ene/propy1cue/3% methylene norbornene oxidized to 25 mm. OOH/100 g. and reduced as described.
Ethylene/propy1ene/4% methylene norbornene oxidized to 300 mm. OOH/100 g. as described.
deceue 1; 2 methyl norbornadiene; 1,4 hexadie e; 3 methallylcyclopentene and 3-(2 methyl 1 propene) cyclopentene are suitable as the third component of the terpolymer.
What is claimed is:
1. A petroleum distillate fuel composition comprising a major amount of a petroleum distillate fuel boiling between about 250 and 750 F. and about .005 to .25 weight percent of an oil-soluble pour depressant having a number average molecular Weight of about 1000 to 15,000 prepared by oxidizing an ethylene-propylene rubbery copolymer containing about 5 to mole percent ethylene, to about 2 to 500 milliequivalents of oxygen per grams of said rubbery copolymer, and then reducing said oxidized rubbery copolymer to eliminate active oxygen, wherein said rubbery copolymer is linear and is prepared by solution copolymerization using a catalyst system of a transition metal halide and an aluminum alkyl compound, wherein said rubbery copolymer has an inherent viscosity of about 1.5 to 3.5 decaliters per gram in Decaline.
2. A composition as defined by claim 1, wherein the amount of ethylene present in said copolymer is about 20 to 80 mole percent, and the balance of said copolymer is propylene.
3. A composition as defined by claim 1, wherein said copolymer also contains about 0.5 to 20 mole percent, based on the total amount of ethylene and propylene present, of a third monomer which is a nonconjugated diolefin having about 10 to 15 carbon atoms, and the balance of said copolymer is propylene.
4. A composition as defined by claim 3, wherein said third monomer is 5 methylene 2 norbornene present in a concentration of about 1 to 7 mole percent based upon the total amount of ethylene and propylene present.
5. A composition as defined by claim 3, wherein a pourdepressing copolymer of ethylene and vinyl acetate is present in a concentration in the range from about .01 to .l% by weight, said copolymer comprising a major amount of ethylene and 1 to 40 weight percent of vinyl acetate and being characterized by having a molecular weight in the range from about 1000 to 3000.
6. A petroleum distillate fuel oil having a boiling range between about 250 and 750 F. containing about .005 to 0.25 weight percent of a pour depressant having a number average molecular weight of 1000 to 15,000 prepared by oxidizing a rubbery terpolymer of about 20 to 80 mole percent ethylene, about .5 to 20 mole percent of nonconjugated hydrocarbon olefin selected from the group consisting of straight chain and cyclic nonconjugated hydrocarbon diolefins of 6 to 15 carbon atoms, and the balance of a C to C alpha olefin, which terpolymer has been oxidized to about 2 to 500 milliequivalents of active oxygen per 100 grams of said polymer and then reduced to eliminate free oxygen, wherein said terpolymer is prepared by solution copolymerization using a catalyst system of a transition metal halide and an aluminum alkyl compound, wherein said terpolymer has an inherent viscosity of about 1.5 to 3.5 decaliters per gram in Decaline.
References Cited UNITED STATES PATENTS 2,379,728 7/1945 Lieber et al 44-62 XR 2,387,501 1(1/1945 Dietrich 44-62 X 2,824,131 2/1958 DiNardo et al 25255 X 3,048,479 8/1962 Ilnyckyj et al. 4462 3,082,192 3/1963 Kirshenbaum et al. 25255 X FOREIGN PATENTS 807,737 1/ 1959 Great Britain.
DANIEL E. WYMAN, Primary Examiner.
W. J. SHINE, Assistant Examiner.
US423870A 1965-01-06 1965-01-06 Pour point depressant for middle distillates Expired - Lifetime US3388977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US423870A US3388977A (en) 1965-01-06 1965-01-06 Pour point depressant for middle distillates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US423870A US3388977A (en) 1965-01-06 1965-01-06 Pour point depressant for middle distillates

Publications (1)

Publication Number Publication Date
US3388977A true US3388977A (en) 1968-06-18

Family

ID=23680506

Family Applications (1)

Application Number Title Priority Date Filing Date
US423870A Expired - Lifetime US3388977A (en) 1965-01-06 1965-01-06 Pour point depressant for middle distillates

Country Status (1)

Country Link
US (1) US3388977A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499741A (en) * 1966-08-12 1970-03-10 Texaco Inc Pour depressant composition
US3507636A (en) * 1966-12-08 1970-04-21 Texaco Inc Ethylene-propylene-terpolymer pour depressant and fuel containing same
US3639226A (en) * 1970-06-15 1972-02-01 Exxon Research Engineering Co Synergistic dewaxing and composition
US3899434A (en) * 1973-10-01 1975-08-12 Exxon Research Engineering Co Hydroxylated polymers useful as additives for fuels and lubricants
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
EP0251002A1 (en) * 1986-06-26 1988-01-07 Hoechst Aktiengesellschaft Process to improve the flowability of mineral oils and mineral oil distillates
EP0258572A1 (en) * 1986-07-17 1988-03-09 Hoechst Aktiengesellschaft Process to improve the flowability of mineral oils and mineral oil distillates
US5097084A (en) * 1988-07-08 1992-03-17 Societa' Italiana Additivi Per Carburanti S.R.L. Compositions of hydrocarbons from refining, endowed with improved fluidity at low temperatures
EP0807643A1 (en) * 1996-05-18 1997-11-19 Hoechst Aktiengesellschaft Ethylene terpolymers, their preparation and their use as additives for mineral oil distillates
US20070095723A1 (en) * 2005-10-27 2007-05-03 Chevron Phillips Chemical Company Lp Oxidized olefin wax pour point depressants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2379728A (en) * 1941-10-24 1945-07-03 Standard Oil Dev Co Methods of preparing polymerization products
US2387501A (en) * 1944-04-04 1945-10-23 Du Pont Hydrocarbon oil
US2824131A (en) * 1955-12-29 1958-02-18 Escambia Chem Corp Production of high molecular weight alcohols from ethylene and oxygen
GB807737A (en) * 1956-07-27 1959-01-21 Exxon Research Engineering Co Mineral oil compositions
US3048479A (en) * 1959-08-03 1962-08-07 Exxon Research Engineering Co Ethylene-vinyl ester pour depressant for middle distillates
US3082192A (en) * 1959-12-18 1963-03-19 Exxon Research Engineering Co Hydroxylation of polymers of mono-olefins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2379728A (en) * 1941-10-24 1945-07-03 Standard Oil Dev Co Methods of preparing polymerization products
US2387501A (en) * 1944-04-04 1945-10-23 Du Pont Hydrocarbon oil
US2824131A (en) * 1955-12-29 1958-02-18 Escambia Chem Corp Production of high molecular weight alcohols from ethylene and oxygen
GB807737A (en) * 1956-07-27 1959-01-21 Exxon Research Engineering Co Mineral oil compositions
US3048479A (en) * 1959-08-03 1962-08-07 Exxon Research Engineering Co Ethylene-vinyl ester pour depressant for middle distillates
US3082192A (en) * 1959-12-18 1963-03-19 Exxon Research Engineering Co Hydroxylation of polymers of mono-olefins

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499741A (en) * 1966-08-12 1970-03-10 Texaco Inc Pour depressant composition
US3507636A (en) * 1966-12-08 1970-04-21 Texaco Inc Ethylene-propylene-terpolymer pour depressant and fuel containing same
US3639226A (en) * 1970-06-15 1972-02-01 Exxon Research Engineering Co Synergistic dewaxing and composition
US3899434A (en) * 1973-10-01 1975-08-12 Exxon Research Engineering Co Hydroxylated polymers useful as additives for fuels and lubricants
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
EP0251002A1 (en) * 1986-06-26 1988-01-07 Hoechst Aktiengesellschaft Process to improve the flowability of mineral oils and mineral oil distillates
EP0258572A1 (en) * 1986-07-17 1988-03-09 Hoechst Aktiengesellschaft Process to improve the flowability of mineral oils and mineral oil distillates
US4862908A (en) * 1986-07-17 1989-09-05 Ruhrchemie Aktiengesellschaft Mineral oils and mineral oil distillates having improved flowability and method for producing same
US5097084A (en) * 1988-07-08 1992-03-17 Societa' Italiana Additivi Per Carburanti S.R.L. Compositions of hydrocarbons from refining, endowed with improved fluidity at low temperatures
EP0807643A1 (en) * 1996-05-18 1997-11-19 Hoechst Aktiengesellschaft Ethylene terpolymers, their preparation and their use as additives for mineral oil distillates
US5789510A (en) * 1996-05-18 1998-08-04 Hoechst Aktiengesellschaft Terpolymers of ethylene, their preparation and their use as additives for mineral oil distillates
US20070095723A1 (en) * 2005-10-27 2007-05-03 Chevron Phillips Chemical Company Lp Oxidized olefin wax pour point depressants
US7709425B2 (en) 2005-10-27 2010-05-04 Chevron Phillips Chemical Company Lp Oxidized olefin wax pour point depressants

Similar Documents

Publication Publication Date Title
US3388977A (en) Pour point depressant for middle distillates
US3627838A (en) Process for manufacturing potent pour depressants
US3726653A (en) Polymeric pour point depressant for residual fuels
US3729296A (en) Polymeric wax crystal modifiers for high wax content petroleum oils
NO310826B1 (en) Terpolymerisates of ethylene, their process for preparation, mixtures as well as mineral oil or mineral oil distillates of the same
CA1222348A (en) Ethylene-alkyne copolymers, their preparation and their use as additives to petroleum distillates
US3087893A (en) Copolymers of maleic anhydride and unsaturated esters as additives in oils
GB2207924A (en) Polymeric flow improvers
US4862908A (en) Mineral oils and mineral oil distillates having improved flowability and method for producing same
US3236612A (en) Middle distillate composition of improved pour characteristics
US3449251A (en) Wax crystal modifiers for hydrocarbon oils
US3126364A (en) Process for the manufacture of pour depressant
US3531440A (en) Ester modified polymers as fuel dispersants
EP0256547A2 (en) Dispersant-antioxidant multifunction viscosity index improver
US4388202A (en) Lubricating oil composition and process for preparation thereof
US3915668A (en) Crude oils and residual fuel oils containing a terpolymer of ethylene, vinyl ester, and dialkylvinyl carbinol
WO2000078897A1 (en) Use of hydroxyl group-containing copolymers for producing fuel oils with improved lubricity
US4512775A (en) Cold flow improver
US5160349A (en) Olefin/maleic anhydride copolymer heterocyclic-azoles as antiwear additives, and fuel compositions
US3309181A (en) Transesterification product
RU2041921C1 (en) Fuel composition
US3471273A (en) Graft copolymer pour point depressors
US4070295A (en) Sulfone copolymeric additive for hydrocarbon oils
US3160484A (en) Stabilizing additives for distillate furels
US4726811A (en) Hydrocarbon oils with improved pour points