US3395511A - Method and means for obtaining dry gas or air - Google Patents

Method and means for obtaining dry gas or air Download PDF

Info

Publication number
US3395511A
US3395511A US399254A US39925464A US3395511A US 3395511 A US3395511 A US 3395511A US 399254 A US399254 A US 399254A US 39925464 A US39925464 A US 39925464A US 3395511 A US3395511 A US 3395511A
Authority
US
United States
Prior art keywords
gas
moisture
air
dry
receptacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US399254A
Inventor
Akerman Iwan Ernst Roland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Copco AB
Original Assignee
Atlas Copco AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Copco AB filed Critical Atlas Copco AB
Application granted granted Critical
Publication of US3395511A publication Critical patent/US3395511A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation

Definitions

  • Means or apparatus applying the above method may be used for drying gas, especially air, which may be used for supplying electrical cables with dry air under pressure or for other purposes.
  • Such cables may, for instance, be telephone cables or other electrical cables into which compressed dry air is introduced in order to prevent moisture from entering the cables, which might cause malfunction in their operation.
  • the invention may also be used for producing dry air for compressed air networks in workshops, for paint spraying, for supplying dry air to pneumatic instruments, and for many chemical and other processes and for other purposes where it is desirable to have available dry air or gas having such a low moisture content that no condensation will occur even at the lowest temperatures at which the network or the apparatus involved or in the process may operate.
  • Compressed air systems for supplying dry air to cable networks must operate continuously so that the cable net work is continuously supplied with a fresh amount of dry air which corresponds to the amount of leakage from the network.
  • a portion of the compressed gas or air is used for regenerating the adsorber by conducting dry gas or air with reduced pressure through the adsorber at suitable intervals. Said reduced gas or air is conducted through the adsorber preferably in opposite direction to the gas or air intended for the place of consumption in order to remove from the adsorber moisture collected therein.
  • the quantity of dry air or gas which is necessary for regenerating the adsorber naturally involves an expense which affects the economy of such a system as well as the capital investment for compressors and other components of the system.
  • One method according to the invention which has several advantages comprises storing a part of the extremely dry compressed gas or air produced in the system in a receptacle and reducing a predetermined amount of such stored gas or air to such a low pressure that said gas or air is capable of removing several times the amount of moisture which could be removed by the compressed gas or air entering the moisture adsorber from the compressor, said pressure reduced gas or air being conducted through the moisture adsorber 3,395,511 Patented Aug. 6, 1968 to regenerate its moisture adsorbing ability.
  • the predetermined amount of low pressure gas is so calculated that it is just sutficient for regenerating the moisture adsorber thus avoiding excess dry gas or air from being conducted through the moisture adsorber for regenerating purposes and wasted.
  • the means for carrying out the method according to the invention may take several forms.
  • the predetermined amount of low pressure gas or air may, for instance, be stored in a separate receptacle or it may be released from a main receptacle for a predetermined length of time and through a flow restriction device so as to insure that the predetermined amount of gas or air is used only for regenerating purposes.
  • the invention may also be employed in connection with apparatus working on a continuous principle.
  • FIG. 1 is a diagrammatical view of a plant for producing dry air for supplying a cable network in which plant extremely dry air for regenerating purposes is collected in a separate receptacle which serves also as a regenerative heat exchanger in which the air for regenerating the adsorber is collected.
  • FIG. 2 is a diagrammatical view of a plant which is a modification of the plant in FIG. 1 in which the extremely dry air in the auxiliary receptacle is electrically heated.
  • FIG. 3 is a diagr-ammatic view of a plant in which two moisture adsorbers are arranged in parallel and in which each moisture adsorber is provided with an auxiliary receptacle for storing the gas or air of predetermined volume which is to be used for regenerating purposes.
  • the plant illustrated in FIG. 1 consists of a compressor 1 which is driven by a motor 2 which may be an electric motor.
  • the compressor draws air through an inlet conduit 31 and delivers compressed air to a network 20 which comprises a regenerative heat exchanger 3 and a cooler 4 for aftercooling the air compressed in the compressor 1 as well as a water separator 5 of the mechanical type which may be emptied by opening an electromagnetically operated valve 6 connected to the atmosphere through a drain pipe 18.
  • a first moisture separation of the main part of the water in the compressed air takes place.
  • the relatively dry air flowing from tthe water separator 5 through a conduit 16 passes through a second separator which is a moisture adsorber 7 which may comprise a vessel filled with silica gel or other suitable moisture adsorbing material or which may be carried out as a molecular filter capable of retaining water and other undesirable constituents in the compressed air.
  • a conduit 21 leads to a check valve 8 and a network 22 which is connected to a pressure reducing valve 9 and a main receptacle 11 and through valve 9 to a compressed air network 23 and a place of consumption 10 which may be a telephone cable network or other consumer.
  • the compressor 1 may preferably be so dimensioned that it delivers considerably more compressed air than the amount used by the consumer 10.
  • the valve 9 functions in such a way that it keeps the pressure constant in the compressed air network 23.
  • the main receptacle 11 is provided with a pressure responsive switch 12 which, when a certain pressure in the main receptacle 11 is attained interrupts the current supply to the motor 2 and simultaneously actuates the elec romagnetic valve 6 so that said valve opens the drain conduit 18 from the mechanical moisture separator 5.
  • Reference numeral 19 indicates the electrical connection between the switch 12 and valve 6 and motor 2.
  • Reference numeral 24 indicates a relief valve.
  • a conduit 17 is branched off through a flow restriction orifice 13 to an auxiliary receptacle 14.
  • the orifice 13 permits the receptacle 14 to be loaded with dry air during the loading period for the main receptacle 11.
  • Said auxiliary receptacle serves as a regenerative heat exchanger and comprises suitable tube lobes 3 which together with a lobe 4 form the aftercooler of the compressor. Heat, which is delivered through the lobes 3 is stored by the compressed air and heat storing bodies 15 in the auxiliary receptacle 14 and in the walls of the receptacle itself, which is provided with heat insulation 45.
  • the receptacle 14, therefore, operates as a heat accumulator for gas or air of substantially the same pressure as that prevailing in the main receptacle 11.
  • a pressure reducing means 13a which, in this instance, is a vacuum producing means.
  • the pressure switch 12 18 When the pressure in said main receptacle has dropped to a predetermined value, the pressure switch 12 18 again closed which results in the closing of the circuit to the electric motor 2 and the starting of the compressor. Simultaneously the electromagnetic valve 6 is moved to closed position so that venting of the moisture separator 5 is interrupted. Then a new supply of dry compressed air is conducted to the consumer 10 and the main receptacle 11 through the moisture adsorber and the check valve 8 until the pressure switch again interrupts the circuit to the motor 2.
  • the plant according to FIG. 2 differs from the plant illustrated in FIG. 1 in that the heat accumulatmg auxiliary receptacle 14 is replaced by an auxiliary receptacle 14 in which the air is heated electrically.
  • the plant is in other respects arranged in the same manner as the plant in FIG. 1 with the exception that the heat supply to the auxiliary air receptacle 14 is obtained from a source of current which delivers current to a heatin element 26 within the auxiliary air receptacle 14 for heating the air in said receptacle.
  • said source of current 25 may be arranged to be connected as soon as the auxiliary receptacle 14 starts to deliver dry air for regenerating the moisture adsorber 7.
  • the pressure switch 12 stops the motor 2 and opens the valve 6, then dry hot air flows from the auxiliary receptacle 14 through the restric tion 13 and through the moisture adsorber 7 and carries moisture from said adsorber to the atmosphere.
  • the plant according to FIG. 3 is intended for use where continuous delivery from a continuously running compressor is desired. This may be the cause in connection with industrial plants, workshops, paint spraying plants or other places where a continuous demand of extremely dry air is present.
  • the plant in FIG. 3 is provided with two moisture adsorbers 35, 36 arranged in parallel and each moisture adsorber is connected to a conduit 43, 44, which through a flow restriction device 39, 40 is branched to an auxiliary receptacle 41, 42 and which otherwise through check valves 37, 38 communicates with a conduit network 22 leading to the consumer 10 and the main receptacle 11.
  • the auxiliary receptacles 41, 42 may be unheated or they may be provided with means for direct or regenerative heating as indicated in connection with the devices 14 in FIGS. 1-2 described hereinabove.
  • a shift valve 33 is provided in the conduit 16 leading from the first moisture separator 5 to the adsorbers 35, 36 and said shift valve serves to alternately connect the compressor to one of the moisture adsorbers 35 or 36, respectively, at a time while the other moisture adsorber is connected to a vent conduit 34.
  • the shift valve is moved periodically between the illustrated position and a position in which adsorber 35 is vented and 36 is connected to the compressor delivery by a relay 46.
  • Two check valves 37, 38 prevent air escape from the main receptacle 11 through the moisture adsorber which is under regeneration, 32 is a relief valve for protection of the compressor against excess pressure. Otherwise the plant or apparatus according to FIG. 3 is similar to the apparatus in FIG. 1. It is obvious that during the time when one adsorber 35, 36 is operative to collect moisture the other adsorber is regenerated by dry air from the pertaining auxiliary receptacle 41, 42, respectively, the arrangement being such that the necessary time for regeneration is always shorter than the time of moisture adsorption.
  • Drain pipe 18 may be connected to a condenser or vacuum source.
  • a method for obtaining extremely dry gas comprising; compressing moist gas in a compressor wherein heat is produced, cooling the compressed air, separating moisture mechanically from said compressed gas to produce relatively dry gas, conducting said relatively dry gas under pressure through a moisture adsorber in which moisture is separated from said relatively dry compressed gas to produce extremely dry gas for use by a consumer, conducting said extremely dry gas through a main line to a main receptacle, storing a part of said extremely dry compressed gas in said main receptacle, storing a predetermined amount of said compressed dry gas in an auxiliary receptacle branched off from the main line in continuous flow communication with said moisture adsorber through a flow restricting device, reducing the pressure of said predetermined amount of such stored extremely dry compressed gas to such a low pressure that said gas is capable of carrying several times the amount of moisture which would be carried by the compressed gas entering the moisture adsorber from the compressor, supplying said heat produced during compression of the gas in the compressor to said predetermined amount of dry gas by indirect heat exchange in said auxiliary re
  • Apparatus for obtaining extremely dry gas comprising a compressor provided with an inlet conduit and a delivery conduit, cooling means in said delivery conduit, a mechanical moisture separator in said delivery conduit,
  • a moisture adsorption means in said delivery conduit after said cooling means and mechanical moisture separator a check valve, means for conveying extremely dry gas from said adsorption means through said check valve to a main receptacle and a consumer device communicating with said receptacle, an auxiliary receptacle for storing a predetermined amount of said compressed dry gas, means providing heat insulation to said auxiliary receptacle, a conduit means for delivering a portion of said extremely dry gas to said auxiliary receptacle branched off from said conveying means before said check valve, means carrying said delivery conduit through said receptacle to deliver compression heat to said receptacle and the gas therein, means for interrupting delivery from said compressor to the adsorption means, means for lowering the pressure in 15 the adsorption means, and means for conveying said predetermined amount of extremely dry gas from said auxiliary receptacle through a pressure reduction device to and through the adsorption means in order to regenerate the adsorption means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)

Description

1968 I. E. R. AKERMAN 3,395,511
METHOD AND MEANS FOR OBTAINING DRY GAS OR AIR 3 Sheets-Sheet 1 LJLILJUU Filed Sept. 25, 1964 Aug. 6,1968 E. R. AKERMAN I 5" Q METHOD AND MEANS FOR OBTAINING DRY OR AIR Filed Sept. 25, 1964" r a Sheets-Sheet 2 Fig.2
mvsmox. IWAN ERNST ROLAND AKERMAN ERIC Y. W NSON Aug. 1968 E. R. AKERMAN 3,395,511
METHOD AND MEANS FOR OBTAINING DRY GAS OR AIR Filed Sept. 25, 1964 3 Sheets-Sheet 3 LILILJLJLJ 24 Fig.3
INVENTOR. 1w? ERNST ROLAND AKERMAN BY ERIC Y. W
United States Patent 3,395,511 METHOD AND MEANS FOR OBTAINING DRY GAS 0R AIR Iwan Ernst Roland Alterman, Stockholm, Sweden, assignor to Atlas Copco Aktiebolag, Nacka, Sweden, a corporation of Sweden Filed Sept. 25, 1964, Ser. No. 399,254 Claims priority, application Sweden, Oct. 3, 1963, 10,791/63 2 Claims. (CI. 55-23) This invention relates to a method and means for obtaining dry gas, such as dry air or the like. It is well known in connection with the production of dry gas such as dry air to compress moist gas or air, to cool the compressed gas or air and to submit the gas or air to a first mechanical moisture separation, and afterwards to conduct the relatively dry gas or air through a moisture adsorber in which a second moisture separation is perfomed under pressure while the gas is fiowing in direction towards a place of consumption or a receptacle, and alternately with the above procedure to regenerate the moisture adsorber by means of previously dried gas or air which is conducted through the moisture adsorber at a pressure so much lower that it is capable of carrying away a substantially larger quantity of moisture per kilogramme gas or air than the quantity carried by the compressed gas or air entering the moisture adsorber from the compressor. Means or apparatus applying the above method may be used for drying gas, especially air, which may be used for supplying electrical cables with dry air under pressure or for other purposes. Such cables may, for instance, be telephone cables or other electrical cables into which compressed dry air is introduced in order to prevent moisture from entering the cables, which might cause malfunction in their operation. The invention may also be used for producing dry air for compressed air networks in workshops, for paint spraying, for supplying dry air to pneumatic instruments, and for many chemical and other processes and for other purposes where it is desirable to have available dry air or gas having such a low moisture content that no condensation will occur even at the lowest temperatures at which the network or the apparatus involved or in the process may operate.
Compressed air systems for supplying dry air to cable networks must operate continuously so that the cable net work is continuously supplied with a fresh amount of dry air which corresponds to the amount of leakage from the network. In systems of the type above described a portion of the compressed gas or air is used for regenerating the adsorber by conducting dry gas or air with reduced pressure through the adsorber at suitable intervals. Said reduced gas or air is conducted through the adsorber preferably in opposite direction to the gas or air intended for the place of consumption in order to remove from the adsorber moisture collected therein. The quantity of dry air or gas which is necessary for regenerating the adsorber naturally involves an expense which affects the economy of such a system as well as the capital investment for compressors and other components of the system. It is consequently an object of the present invention to reduce the quantity of regenerating gas as much as possible. This may be achieved in different ways. One method according to the invention which has several advantages comprises storing a part of the extremely dry compressed gas or air produced in the system in a receptacle and reducing a predetermined amount of such stored gas or air to such a low pressure that said gas or air is capable of removing several times the amount of moisture which could be removed by the compressed gas or air entering the moisture adsorber from the compressor, said pressure reduced gas or air being conducted through the moisture adsorber 3,395,511 Patented Aug. 6, 1968 to regenerate its moisture adsorbing ability. The predetermined amount of low pressure gas is so calculated that it is just sutficient for regenerating the moisture adsorber thus avoiding excess dry gas or air from being conducted through the moisture adsorber for regenerating purposes and wasted. According to the invention it is also important and advantageous to heat the quantity of gas or air which is used for regeneration before it is introduced into the moisture adsorber for regenerating pur poses. Such heating may be carried out by utilizing the compression heat from the compressor forming .a part of the system. Separate electrical heating means or other means of heating the regenerating gas or air may also be used. For many practical purposes the pressure of the regenerating gas or air is reduced to about atmospheric pressure. However, in cases where pressure below atmospheric or vacuum is available the pressure of the regenerating gas or air may be reduced to subatmospheric pressure or vacuum which greatly increases the moisture carrying ability of the regenerating gas or air and thereby reduces the amount necessary for regeneration. The means for carrying out the method according to the invention may take several forms. The predetermined amount of low pressure gas or air may, for instance, be stored in a separate receptacle or it may be released from a main receptacle for a predetermined length of time and through a flow restriction device so as to insure that the predetermined amount of gas or air is used only for regenerating purposes. The invention may also be employed in connection with apparatus working on a continuous principle.
In the accompanying drawings a number of embodiments of means according to the invention are illustrated by way of example. FIG. 1 is a diagrammatical view of a plant for producing dry air for supplying a cable network in which plant extremely dry air for regenerating purposes is collected in a separate receptacle which serves also as a regenerative heat exchanger in which the air for regenerating the adsorber is collected. FIG. 2 is a diagrammatical view of a plant which is a modification of the plant in FIG. 1 in which the extremely dry air in the auxiliary receptacle is electrically heated. FIG. 3 is a diagr-ammatic view of a plant in which two moisture adsorbers are arranged in parallel and in which each moisture adsorber is provided with an auxiliary receptacle for storing the gas or air of predetermined volume which is to be used for regenerating purposes.
The plant illustrated in FIG. 1 consists of a compressor 1 which is driven by a motor 2 which may be an electric motor. The compressor draws air through an inlet conduit 31 and delivers compressed air to a network 20 which comprises a regenerative heat exchanger 3 and a cooler 4 for aftercooling the air compressed in the compressor 1 as well as a water separator 5 of the mechanical type which may be emptied by opening an electromagnetically operated valve 6 connected to the atmosphere through a drain pipe 18. In the separator 5 a first moisture separation of the main part of the water in the compressed air takes place. The relatively dry air flowing from tthe water separator 5 through a conduit 16 passes through a second separator which is a moisture adsorber 7 which may comprise a vessel filled with silica gel or other suitable moisture adsorbing material or which may be carried out as a molecular filter capable of retaining water and other undesirable constituents in the compressed air. From the adsorber 7 a conduit 21 leads to a check valve 8 and a network 22 which is connected to a pressure reducing valve 9 and a main receptacle 11 and through valve 9 to a compressed air network 23 and a place of consumption 10 which may be a telephone cable network or other consumer. The compressor 1 may preferably be so dimensioned that it delivers considerably more compressed air than the amount used by the consumer 10. The valve 9 functions in such a way that it keeps the pressure constant in the compressed air network 23. The main receptacle 11 is provided with a pressure responsive switch 12 which, when a certain pressure in the main receptacle 11 is attained interrupts the current supply to the motor 2 and simultaneously actuates the elec romagnetic valve 6 so that said valve opens the drain conduit 18 from the mechanical moisture separator 5. Reference numeral 19 indicates the electrical connection between the switch 12 and valve 6 and motor 2. Reference numeral 24 indicates a relief valve.
Between the moisture adsorber 7 and the check valve 8, a conduit 17 is branched off through a flow restriction orifice 13 to an auxiliary receptacle 14. The orifice 13 permits the receptacle 14 to be loaded with dry air during the loading period for the main receptacle 11. Said auxiliary receptacle serves as a regenerative heat exchanger and comprises suitable tube lobes 3 which together with a lobe 4 form the aftercooler of the compressor. Heat, which is delivered through the lobes 3 is stored by the compressed air and heat storing bodies 15 in the auxiliary receptacle 14 and in the walls of the receptacle itself, which is provided with heat insulation 45. The receptacle 14, therefore, operates as a heat accumulator for gas or air of substantially the same pressure as that prevailing in the main receptacle 11. When the compressor has stopped and the first moisture separator 5 is vented to the atmosphere through the valve 6, then the pressure in the adsorber 7 is reduced by Way of a pressure reducing means 13a which, in this instance, is a vacuum producing means. Subsequently, dry, warm, compressed air which has been stored in the auxiliary receptacle 14 flows through the pipe 17, the restriction 13 in Which the pressure is reduced to a low value, for instance in the vicinity of atmospheric pressure, and through the adsorber 7 where the dry and still rather hot air due to its low pressure and elevated temperature is capable of taking up the moisture which has been collected in the adsorber and to carry away said moisture through the valve 6 and through the vent passage 18 to the atmosphere. During this regeneration of the adsorber 7, the check valve 8 is closed and the cable network is fed from the man dry air receptacle 11. When the pressure in said main receptacle has dropped to a predetermined value, the pressure switch 12 18 again closed which results in the closing of the circuit to the electric motor 2 and the starting of the compressor. Simultaneously the electromagnetic valve 6 is moved to closed position so that venting of the moisture separator 5 is interrupted. Then a new supply of dry compressed air is conducted to the consumer 10 and the main receptacle 11 through the moisture adsorber and the check valve 8 until the pressure switch again interrupts the circuit to the motor 2.
In the modification illustrated in FIG. 2 the same reference numerals as in FIG. 1 have been used to indicate equivalent parts. Said parts are therefore not described again. The plant according to FIG. 2 differs from the plant illustrated in FIG. 1 in that the heat accumulatmg auxiliary receptacle 14 is replaced by an auxiliary receptacle 14 in which the air is heated electrically. The plant is in other respects arranged in the same manner as the plant in FIG. 1 with the exception that the heat supply to the auxiliary air receptacle 14 is obtained from a source of current which delivers current to a heatin element 26 within the auxiliary air receptacle 14 for heating the air in said receptacle. Preferably said source of current 25 may be arranged to be connected as soon as the auxiliary receptacle 14 starts to deliver dry air for regenerating the moisture adsorber 7. When the pressure switch 12 stops the motor 2 and opens the valve 6, then dry hot air flows from the auxiliary receptacle 14 through the restric tion 13 and through the moisture adsorber 7 and carries moisture from said adsorber to the atmosphere.
The plant according to FIG. 3 is intended for use where continuous delivery from a continuously running compressor is desired. This may be the cause in connection with industrial plants, workshops, paint spraying plants or other places where a continuous demand of extremely dry air is present. The plant in FIG. 3 is provided with two moisture adsorbers 35, 36 arranged in parallel and each moisture adsorber is connected to a conduit 43, 44, which through a flow restriction device 39, 40 is branched to an auxiliary receptacle 41, 42 and which otherwise through check valves 37, 38 communicates with a conduit network 22 leading to the consumer 10 and the main receptacle 11. The auxiliary receptacles 41, 42 may be unheated or they may be provided with means for direct or regenerative heating as indicated in connection with the devices 14 in FIGS. 1-2 described hereinabove. A shift valve 33 is provided in the conduit 16 leading from the first moisture separator 5 to the adsorbers 35, 36 and said shift valve serves to alternately connect the compressor to one of the moisture adsorbers 35 or 36, respectively, at a time while the other moisture adsorber is connected to a vent conduit 34. The shift valve is moved periodically between the illustrated position and a position in which adsorber 35 is vented and 36 is connected to the compressor delivery by a relay 46. Two check valves 37, 38 prevent air escape from the main receptacle 11 through the moisture adsorber which is under regeneration, 32 is a relief valve for protection of the compressor against excess pressure. Otherwise the plant or apparatus according to FIG. 3 is similar to the apparatus in FIG. 1. It is obvious that during the time when one adsorber 35, 36 is operative to collect moisture the other adsorber is regenerated by dry air from the pertaining auxiliary receptacle 41, 42, respectively, the arrangement being such that the necessary time for regeneration is always shorter than the time of moisture adsorption.
The embodiments of the invention above described and illustrated on the drawings should only be considered as examples and the invention may be modified in several different ways within the scope of the following claims. It is for instance possible to provide more than two moisture adsorbers 35, 36 in parallel. Drain pipe 18 may be connected to a condenser or vacuum source.
What I claim is:
1. A method for obtaining extremely dry gas comprising; compressing moist gas in a compressor wherein heat is produced, cooling the compressed air, separating moisture mechanically from said compressed gas to produce relatively dry gas, conducting said relatively dry gas under pressure through a moisture adsorber in which moisture is separated from said relatively dry compressed gas to produce extremely dry gas for use by a consumer, conducting said extremely dry gas through a main line to a main receptacle, storing a part of said extremely dry compressed gas in said main receptacle, storing a predetermined amount of said compressed dry gas in an auxiliary receptacle branched off from the main line in continuous flow communication with said moisture adsorber through a flow restricting device, reducing the pressure of said predetermined amount of such stored extremely dry compressed gas to such a low pressure that said gas is capable of carrying several times the amount of moisture which would be carried by the compressed gas entering the moisture adsorber from the compressor, supplying said heat produced during compression of the gas in the compressor to said predetermined amount of dry gas by indirect heat exchange in said auxiliary receptacle, and conducting said predetermined amount of extremely dry low pressure and heated gas through said moisture adsorber to regenerate its moisture adsorbing ability.
2. Apparatus for obtaining extremely dry gas comprising a compressor provided with an inlet conduit and a delivery conduit, cooling means in said delivery conduit, a mechanical moisture separator in said delivery conduit,
a moisture adsorption means in said delivery conduit after said cooling means and mechanical moisture separator, a check valve, means for conveying extremely dry gas from said adsorption means through said check valve to a main receptacle and a consumer device communicating with said receptacle, an auxiliary receptacle for storing a predetermined amount of said compressed dry gas, means providing heat insulation to said auxiliary receptacle, a conduit means for delivering a portion of said extremely dry gas to said auxiliary receptacle branched off from said conveying means before said check valve, means carrying said delivery conduit through said receptacle to deliver compression heat to said receptacle and the gas therein, means for interrupting delivery from said compressor to the adsorption means, means for lowering the pressure in 15 the adsorption means, and means for conveying said predetermined amount of extremely dry gas from said auxiliary receptacle through a pressure reduction device to and through the adsorption means in order to regenerate the adsorption means.
References (Iited UNITED STATES PATENTS 2,955,673 10/1960 Kennedy et al. 55---33 X 3,141,748 7/1964 Hoke et a1. 5562 X 3,147,095 9/1964 Kanuch 55-33 X 3,192,686 7/1965 Berkey et al. 5562 X 3,193,985 7/1965 Siggelin 55180 X 3,205,638 9/1965 Hagle 5525 X SAMIH N. ZAHARNA, Primary Examiner.
J. ADEE, Assistant Examiner.

Claims (1)

1. A METHOD FOR OBTAINING EXTREMELY DRY GAS COMPRISING; COMPRESSING MOIST GAS IN A COMPRESSOR WHEREIN HEAT IS PRODUCED, COOLING THE COMPRESSED AIR, SEPARATING MOISTURE MECHANICALLY FROM SAID COMPRESSED GAS TO PRODUCE RELATIVELY DRY GAS, CONDUCTING SAID RELATIVELY DRY GAS UNDER PRESSURE THROUGH A MOISTURE ADSORBER IN WHICH MOISTURE IS SEPARATED FROM SAID RELATIVELY DRY COMPRESSED GAS TO PRODUCE EXTREMELY DRY GAS FOR USE BY A CONSUMER, CONDUCTING SAID EXTREMELY DRY GAS THROUGH A MAIN LINE TO A MAIN RECEPTACLE, STORING A PART OF SAID EXTREMELY DRY COMPRESSED GAS IN SAID MAIN RECEPTACLE, STORING A PREDETERMINED AMOUNT OF SAID COMPRESSED DRY GAS IN AN AUXLIARY RECEPTACLE BRANCHED OFF FROM THE MAIN LINE IN CONTINUOUS FLOW COMMUNICATION WITH SAID MOISTURE ADSORBER THROUGH A FLOW RESTRICTING DEVICE, REDUCING THE PRESSURE OF SAID PREDETERMINED AMOUNT OF SUCH STORED EXTREMELY DRY COMPRESSED GAS TO SUCH A LOW PRESSURE THAT SAID GAS IS CAPABLE OF CARRYING SEVERAL TIMES THE AMOUNT OF MOISTURE WHICH WOULD BE CARRIED BY THE COMPRESSED GAS ENTERING THE MOISTURE ADSORBER FROM THE COMPRESSOR, SUPPLYING SAID HEAT PRODUCED DURING COMPRESSION OF THE GAS IN THE COMPRESSOR TO SAID PREDETERMINED AMOUNT OF DRY GAS BY INDIRECT HEAT EXCHANGE IN SAID AUXILIARY RECEPTACLE, AND CONDUCTING SAID PREDETERMINED AMOUNT OF EXTREMELY DRY LOW PRESSURE AND HEATED GAS THROUGH SAID MOISTURE ADSORBER TO REGENERATE ITS MOISTURE ADSORBING ABILITY.
US399254A 1963-10-03 1964-09-25 Method and means for obtaining dry gas or air Expired - Lifetime US3395511A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1079163 1963-10-03

Publications (1)

Publication Number Publication Date
US3395511A true US3395511A (en) 1968-08-06

Family

ID=20292849

Family Applications (1)

Application Number Title Priority Date Filing Date
US399254A Expired - Lifetime US3395511A (en) 1963-10-03 1964-09-25 Method and means for obtaining dry gas or air

Country Status (6)

Country Link
US (1) US3395511A (en)
BE (1) BE653914A (en)
DE (1) DE1403956B2 (en)
FI (1) FI42201C (en)
FR (1) FR1418906A (en)
GB (1) GB1016710A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3494110A (en) * 1968-02-19 1970-02-10 Univ Oklahoma State Compressed air cleaning system for turbine powered dental equipment
FR2045794A1 (en) * 1969-06-02 1971-03-05 Rca Corp
US3696588A (en) * 1970-12-07 1972-10-10 Ingersoll Rand Co Gas drying apparatus and method
US3834136A (en) * 1973-04-10 1974-09-10 Ingersoll Rand Co Gas drying apparatus and method
US3864102A (en) * 1973-06-25 1975-02-04 Pipeline Dehydrators Inc Dehydration of a pipeline with a portable dry air generating plant
US4043774A (en) * 1976-04-26 1977-08-23 Mcgrath Doyle Wayne Apparatus for air purification
US4205967A (en) * 1977-07-18 1980-06-03 Pall Corporation Adsorbent fractionator with system gas powered cycle control and process
US4324565A (en) * 1979-08-30 1982-04-13 Linde Aktiengesellschaft Removal of lubricant mists and lubricant vapors from a gaseous stream
WO1983003983A1 (en) * 1982-05-07 1983-11-24 Marathon Medical Equipment Corporation Oxygen concentrator
US4608065A (en) * 1985-04-03 1986-08-26 Champion International Corporation Moisture removal for stack gas monitor
EP0199430A2 (en) * 1985-03-21 1986-10-29 Dowty Fuel Systems Limited A reactivateable adsorption filter assembly
US4721515A (en) * 1985-11-25 1988-01-26 Nippon Air Brake Co., Ltd. Control system of a dual-cylinder type dehumidifier
US4783432A (en) * 1987-04-28 1988-11-08 Pall Corporation Dryer regeneration through heat of compression and pressure swing desorption
US4892569A (en) * 1987-02-23 1990-01-09 Nippon Air Brake Co., Ltd. Compressed air pressure supply system
WO1990006164A1 (en) * 1988-12-09 1990-06-14 Nitzie Company Method and apparatus for dehumidifying gas
US6221130B1 (en) * 1999-08-09 2001-04-24 Cooper Turbocompressor, Inc. Method of compressing and drying a gas and apparatus for use therein
US20060222515A1 (en) * 2005-03-29 2006-10-05 Dresser-Rand Company Drainage system for compressor separators
US20090321343A1 (en) * 2008-06-25 2009-12-31 Dresser-Rand Company Dual body drum for rotary separators
US20090324391A1 (en) * 2008-06-25 2009-12-31 Dresser-Rand Company Rotary separator and shaft coupler for compressors
US20100007133A1 (en) * 2006-09-25 2010-01-14 Dresser-Rand Company Axially moveable spool connector
US20100021292A1 (en) * 2006-09-25 2010-01-28 Dresser-Rand Company Fluid deflector for fluid separator devices
US20100038309A1 (en) * 2006-09-21 2010-02-18 Dresser-Rand Company Separator drum and compressor impeller assembly
US20100044966A1 (en) * 2006-09-25 2010-02-25 Dresser-Rand Company Coupling guard system
US20100074768A1 (en) * 2006-09-25 2010-03-25 Dresser-Rand Company Access cover for pressurized connector spool
US20100072121A1 (en) * 2006-09-26 2010-03-25 Dresser-Rand Company Improved static fluid separator device
US20100090087A1 (en) * 2006-09-25 2010-04-15 Dresser-Rand Company Compressor mounting system
US20100239437A1 (en) * 2009-03-20 2010-09-23 Dresser-Rand Co. Fluid channeling device for back-to-back compressors
US20100239419A1 (en) * 2009-03-20 2010-09-23 Dresser-Rand Co. Slidable cover for casing access port
US20100247299A1 (en) * 2009-03-24 2010-09-30 Dresser-Rand Co. High pressure casing access cover
US20110017307A1 (en) * 2008-03-05 2011-01-27 Dresser-Rand Company Compressor assembly including separator and ejector pump
US20110061536A1 (en) * 2009-09-15 2011-03-17 Dresser-Rand Company Density-based compact separator
US20110158802A1 (en) * 2008-06-25 2011-06-30 Dresser-Rand Company Shear ring casing coupler device
US8434998B2 (en) 2006-09-19 2013-05-07 Dresser-Rand Company Rotary separator drum seal
US8596292B2 (en) 2010-09-09 2013-12-03 Dresser-Rand Company Flush-enabled controlled flow drain
US8657935B2 (en) 2010-07-20 2014-02-25 Dresser-Rand Company Combination of expansion and cooling to enhance separation
US8663483B2 (en) 2010-07-15 2014-03-04 Dresser-Rand Company Radial vane pack for rotary separators
US8673159B2 (en) 2010-07-15 2014-03-18 Dresser-Rand Company Enhanced in-line rotary separator
US8821362B2 (en) 2010-07-21 2014-09-02 Dresser-Rand Company Multiple modular in-line rotary separator bundle
US9095856B2 (en) 2010-02-10 2015-08-04 Dresser-Rand Company Separator fluid collector and method
CN106731533A (en) * 2016-12-06 2017-05-31 无锡优耐特净化装备有限公司 Calcium chloride jar

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE409660B (en) * 1975-03-18 1979-09-03 Wischer K DEVICE FOR REGENERATION OF DRYING AGENTS IN COMPRESSED AIR DRYERS
DE3216815A1 (en) * 1982-05-05 1983-11-10 Knorr-Bremse GmbH, 8000 München CONTROL DEVICE FOR REGENERATING AN AIR DRYER FOR A PNEUMATIC SYSTEM, ESPECIALLY A VEHICLE BRAKE SYSTEM
DE3231519A1 (en) * 1982-08-25 1984-03-01 Robert Bosch Gmbh, 7000 Stuttgart Compressed air production system
DE10308135B4 (en) * 2003-02-26 2017-05-04 Michael Thoms Method and device for producing dried compressed air
DE102017004666B4 (en) * 2017-05-16 2022-12-22 Mann+Hummel Gmbh Compressed air system and method of operating the same
CN112892169B (en) * 2021-02-24 2023-03-14 蚌埠方正气体设备有限公司 Collection dress formula ball valve type adsorbs dry clarifier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2955673A (en) * 1958-08-18 1960-10-11 Kahn And Company Inc Process and apparatus for dehydrating gas
US3141748A (en) * 1961-11-20 1964-07-21 Exxon Research Engineering Co Hydrogen purification process
US3147095A (en) * 1960-08-19 1964-09-01 Great Lakes Mfg Corp Dehydration apparatus
US3192686A (en) * 1961-04-10 1965-07-06 Lear Siegler Inc Dehydrator method
US3193985A (en) * 1960-07-11 1965-07-13 Atlantic Res Corp Method and apparatus for dehumidification of gases
US3205638A (en) * 1963-06-12 1965-09-14 Phillips Petroleum Co Method and apparatus for dehydration of gases

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2955673A (en) * 1958-08-18 1960-10-11 Kahn And Company Inc Process and apparatus for dehydrating gas
US3193985A (en) * 1960-07-11 1965-07-13 Atlantic Res Corp Method and apparatus for dehumidification of gases
US3147095A (en) * 1960-08-19 1964-09-01 Great Lakes Mfg Corp Dehydration apparatus
US3192686A (en) * 1961-04-10 1965-07-06 Lear Siegler Inc Dehydrator method
US3141748A (en) * 1961-11-20 1964-07-21 Exxon Research Engineering Co Hydrogen purification process
US3205638A (en) * 1963-06-12 1965-09-14 Phillips Petroleum Co Method and apparatus for dehydration of gases

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3494110A (en) * 1968-02-19 1970-02-10 Univ Oklahoma State Compressed air cleaning system for turbine powered dental equipment
FR2045794A1 (en) * 1969-06-02 1971-03-05 Rca Corp
US3696588A (en) * 1970-12-07 1972-10-10 Ingersoll Rand Co Gas drying apparatus and method
US3834136A (en) * 1973-04-10 1974-09-10 Ingersoll Rand Co Gas drying apparatus and method
US3864102A (en) * 1973-06-25 1975-02-04 Pipeline Dehydrators Inc Dehydration of a pipeline with a portable dry air generating plant
US4043774A (en) * 1976-04-26 1977-08-23 Mcgrath Doyle Wayne Apparatus for air purification
US4205967A (en) * 1977-07-18 1980-06-03 Pall Corporation Adsorbent fractionator with system gas powered cycle control and process
US4324565A (en) * 1979-08-30 1982-04-13 Linde Aktiengesellschaft Removal of lubricant mists and lubricant vapors from a gaseous stream
WO1983003983A1 (en) * 1982-05-07 1983-11-24 Marathon Medical Equipment Corporation Oxygen concentrator
EP0199430A2 (en) * 1985-03-21 1986-10-29 Dowty Fuel Systems Limited A reactivateable adsorption filter assembly
EP0199430A3 (en) * 1985-03-21 1987-09-30 Dowty Fuel Systems Limited A reactivateable adsorption filter assembly
US4608065A (en) * 1985-04-03 1986-08-26 Champion International Corporation Moisture removal for stack gas monitor
US4721515A (en) * 1985-11-25 1988-01-26 Nippon Air Brake Co., Ltd. Control system of a dual-cylinder type dehumidifier
US4892569A (en) * 1987-02-23 1990-01-09 Nippon Air Brake Co., Ltd. Compressed air pressure supply system
US4783432A (en) * 1987-04-28 1988-11-08 Pall Corporation Dryer regeneration through heat of compression and pressure swing desorption
WO1990006164A1 (en) * 1988-12-09 1990-06-14 Nitzie Company Method and apparatus for dehumidifying gas
US6221130B1 (en) * 1999-08-09 2001-04-24 Cooper Turbocompressor, Inc. Method of compressing and drying a gas and apparatus for use therein
US20060222515A1 (en) * 2005-03-29 2006-10-05 Dresser-Rand Company Drainage system for compressor separators
US8075668B2 (en) * 2005-03-29 2011-12-13 Dresser-Rand Company Drainage system for compressor separators
US8434998B2 (en) 2006-09-19 2013-05-07 Dresser-Rand Company Rotary separator drum seal
US20100038309A1 (en) * 2006-09-21 2010-02-18 Dresser-Rand Company Separator drum and compressor impeller assembly
US8302779B2 (en) 2006-09-21 2012-11-06 Dresser-Rand Company Separator drum and compressor impeller assembly
US8231336B2 (en) 2006-09-25 2012-07-31 Dresser-Rand Company Fluid deflector for fluid separator devices
US8733726B2 (en) 2006-09-25 2014-05-27 Dresser-Rand Company Compressor mounting system
US20100074768A1 (en) * 2006-09-25 2010-03-25 Dresser-Rand Company Access cover for pressurized connector spool
US20100021292A1 (en) * 2006-09-25 2010-01-28 Dresser-Rand Company Fluid deflector for fluid separator devices
US20100090087A1 (en) * 2006-09-25 2010-04-15 Dresser-Rand Company Compressor mounting system
US9702354B2 (en) 2006-09-25 2017-07-11 Dresser-Rand Company Compressor mounting system
US8061737B2 (en) 2006-09-25 2011-11-22 Dresser-Rand Company Coupling guard system
US8079622B2 (en) 2006-09-25 2011-12-20 Dresser-Rand Company Axially moveable spool connector
US20100044966A1 (en) * 2006-09-25 2010-02-25 Dresser-Rand Company Coupling guard system
US8267437B2 (en) 2006-09-25 2012-09-18 Dresser-Rand Company Access cover for pressurized connector spool
US20100007133A1 (en) * 2006-09-25 2010-01-14 Dresser-Rand Company Axially moveable spool connector
US8746464B2 (en) 2006-09-26 2014-06-10 Dresser-Rand Company Static fluid separator device
US20100072121A1 (en) * 2006-09-26 2010-03-25 Dresser-Rand Company Improved static fluid separator device
US8408879B2 (en) 2008-03-05 2013-04-02 Dresser-Rand Company Compressor assembly including separator and ejector pump
US20110017307A1 (en) * 2008-03-05 2011-01-27 Dresser-Rand Company Compressor assembly including separator and ejector pump
US8062400B2 (en) 2008-06-25 2011-11-22 Dresser-Rand Company Dual body drum for rotary separators
US8079805B2 (en) 2008-06-25 2011-12-20 Dresser-Rand Company Rotary separator and shaft coupler for compressors
US8430433B2 (en) 2008-06-25 2013-04-30 Dresser-Rand Company Shear ring casing coupler device
US20090324391A1 (en) * 2008-06-25 2009-12-31 Dresser-Rand Company Rotary separator and shaft coupler for compressors
US20110158802A1 (en) * 2008-06-25 2011-06-30 Dresser-Rand Company Shear ring casing coupler device
US20090321343A1 (en) * 2008-06-25 2009-12-31 Dresser-Rand Company Dual body drum for rotary separators
US8087901B2 (en) 2009-03-20 2012-01-03 Dresser-Rand Company Fluid channeling device for back-to-back compressors
US20100239437A1 (en) * 2009-03-20 2010-09-23 Dresser-Rand Co. Fluid channeling device for back-to-back compressors
US8210804B2 (en) 2009-03-20 2012-07-03 Dresser-Rand Company Slidable cover for casing access port
US20100239419A1 (en) * 2009-03-20 2010-09-23 Dresser-Rand Co. Slidable cover for casing access port
US20100247299A1 (en) * 2009-03-24 2010-09-30 Dresser-Rand Co. High pressure casing access cover
US8061972B2 (en) 2009-03-24 2011-11-22 Dresser-Rand Company High pressure casing access cover
US20110061536A1 (en) * 2009-09-15 2011-03-17 Dresser-Rand Company Density-based compact separator
US8414692B2 (en) 2009-09-15 2013-04-09 Dresser-Rand Company Density-based compact separator
US9095856B2 (en) 2010-02-10 2015-08-04 Dresser-Rand Company Separator fluid collector and method
US8663483B2 (en) 2010-07-15 2014-03-04 Dresser-Rand Company Radial vane pack for rotary separators
US8673159B2 (en) 2010-07-15 2014-03-18 Dresser-Rand Company Enhanced in-line rotary separator
US8657935B2 (en) 2010-07-20 2014-02-25 Dresser-Rand Company Combination of expansion and cooling to enhance separation
US8821362B2 (en) 2010-07-21 2014-09-02 Dresser-Rand Company Multiple modular in-line rotary separator bundle
US8596292B2 (en) 2010-09-09 2013-12-03 Dresser-Rand Company Flush-enabled controlled flow drain
CN106731533A (en) * 2016-12-06 2017-05-31 无锡优耐特净化装备有限公司 Calcium chloride jar

Also Published As

Publication number Publication date
FI42201B (en) 1970-03-02
FR1418906A (en) 1965-11-26
FI42201C (en) 1970-06-10
GB1016710A (en) 1966-01-12
DE1403956A1 (en) 1969-07-31
BE653914A (en) 1965-02-01
DE1403956B2 (en) 1976-09-09

Similar Documents

Publication Publication Date Title
US3395511A (en) Method and means for obtaining dry gas or air
US3164452A (en) Method and apparatus for drying a gaseous medium
KR101687360B1 (en) Air generating system for absorption type dryer
US1998774A (en) Process for purification of fluids
CN110124443B (en) Organic waste gas recycling device and method
US3313092A (en) Apparatus for fractionating gaseous mixtures
GB2113567A (en) Process for purifying a gas and apparatus therefor
RU2534145C1 (en) Gas drying method and gas drying unit for its implementation
CN113663467A (en) Device and method for adsorbing gas from gas mixture to be treated
CN202356003U (en) Compressed air drying treatment system and wheel type engineering machinery applying the treatment system
US4211542A (en) Method and apparatus for producing dry, compressed air for electrical switch gear
CN105944517B (en) A kind of zero gas consumption residual heat regenerating compressed air drying system
RU2182513C1 (en) Method of compressed gas dehydration
CN105964113B (en) A kind of zero gas consumption compressed air drier by afterheat regeneration
CN104806480A (en) Oil removal cooling compressor
JPS56152726A (en) Dryer device for compressor
CN100563818C (en) Adsorption agent vacuum suction and regeneration method
GB2090160A (en) Process and Apparatus for Separating a Mixed Gas Such as Air
KR102351028B1 (en) a system to dry some compressed air
CN2243331Y (en) Regenerating apparatus for air adsorbing drying agent by indirectly heating using waste heat
CN110608367A (en) Argon recycling system and method
CN215939519U (en) Single-tower dryer
SU994878A1 (en) Gas drying unit
CN2204637Y (en) Compressed air drying apparatus by refrigeration
KR900004321Y1 (en) Air drying apparatus