US3399836A - Atomizing pump - Google Patents

Atomizing pump Download PDF

Info

Publication number
US3399836A
US3399836A US595761A US59576166A US3399836A US 3399836 A US3399836 A US 3399836A US 595761 A US595761 A US 595761A US 59576166 A US59576166 A US 59576166A US 3399836 A US3399836 A US 3399836A
Authority
US
United States
Prior art keywords
piston
cylinder
space
valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US595761A
Inventor
Pechstein Fred
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albert Rudolf
Silgan Dispensing Systems Corp
Original Assignee
Albert Rudolf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albert Rudolf filed Critical Albert Rudolf
Application granted granted Critical
Publication of US3399836A publication Critical patent/US3399836A/en
Priority to US38350473 priority Critical patent/USRE28366E/en
Assigned to CALMAR, INC., 333 SOUTHL TURNBULL CANYON ROAD, CITY OF INDUSTRY, CA A CORP OF DE reassignment CALMAR, INC., 333 SOUTHL TURNBULL CANYON ROAD, CITY OF INDUSTRY, CA A CORP OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: DIAMOND INTERNATIONAL CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1042Components or details
    • B05B11/1073Springs
    • B05B11/1074Springs located outside pump chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1001Piston pumps
    • B05B11/1016Piston pumps the outlet valve having a valve seat located downstream a movable valve element controlled by a pressure actuated controlling element
    • B05B11/1018Piston pumps the outlet valve having a valve seat located downstream a movable valve element controlled by a pressure actuated controlling element and the controlling element cooperating with means for opening or closing the inlet valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1001Piston pumps
    • B05B11/1016Piston pumps the outlet valve having a valve seat located downstream a movable valve element controlled by a pressure actuated controlling element
    • B05B11/1019Piston pumps the outlet valve having a valve seat located downstream a movable valve element controlled by a pressure actuated controlling element the inlet valve moving concurrently with the controlling element during whole pressure and aspiration strokes, e.g. a cage for an inlet valve ball being part of the controlling element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1038Pressure accumulation pumps, i.e. pumps comprising a pressure accumulation chamber
    • B05B11/104Pressure accumulation pumps, i.e. pumps comprising a pressure accumulation chamber the outlet valve being opened by pressure after a defined accumulation stroke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0672Spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2019/00Use of rubber not provided for in a single one of main groups B29K2007/00 - B29K2011/00, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/18Polymers of hydrocarbons having four or more carbon atoms, e.g. polymers of butylene, e.g. PB, i.e. polybutylene
    • B29K2023/22Copolymers of isobutene, e.g. butyl rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2095/00Use of bituminous materials as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/043Skinned foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles

Definitions

  • the present invention relates to the field of atomizers, and particularly to atomizing pumps especially for atomizing perfume or similar cosmetic preparations.
  • Pumps of the type with which the present invention is concerned include a piston yarranged to be driven into the pump housing against a spring pressure so as to deliver the liquid to a nozzle. It is known that, in order to obtain the highest possible degree of atomization, it is preferable to provide at the pump outlet a so-called turbulence nozzle.
  • a more specific object of the present invention is to produce a complete atomization of the liquid delivered to the nozzle, regardless of the speed with which the piston is depressed.
  • Another object of the present invention is to prevent liquid from remaining in the region of the nozzle at the end of an atomization operation.
  • a still further object of the present invention is to simplify the construction of atomizing pumps.
  • a pump assembly for conveying liquids to be atomized, which assembly includes first means defining a first variable volume space and a Huid ow passage in communication with the first space, and second means defining a second variable volume space in communication with the first space.
  • the pump according to the present invention further includes first valve means associated with the first means and disposed for isolating the ow passage from the first space, connecting means connecting the second means to the first valve means for controlling the opening and closing of the valve means and for permitting a limited degree of relative movement between the first valve means and the second means, and biasing means associated with the second means for urging it into a condition corresponding to the minimum volume of the second space.
  • the first means are constituted by a cylinder and a piston disposed for movement in a longitudinal direction in the cylinder for varying the volume of the first space
  • the second means are also composed of a cylinder, which has a smaller cross-sectional area than the first cylinder, and a piston disposed for movement in the cylinder in the longitudinal direction for varying the volume of the second space.
  • the liquid fiow passage is formed, at least partially, in the piston of the first means, and the connecting means are connected between the valve means and the piston of the second means.
  • the biasing means which are preferably constituted by a helical compression spring, are connected to the piston of the second means.
  • FIGURE l is a longitudinal, cross-sectional view o a first embodiment of the present invention.
  • FIGURE 2 is a view similar to that of FIGURE 1 of another embodiment of the present invention.
  • the device of FIGURE 1 includes a main cylinder 1 housing a main piston 2, and a further cylinder 3 housing a further piston 4, the cylinder 3 having a smaller crosssectional area than the main cylinder 1.
  • the further cylinder 3 and its associated piston 4 are arranged upstream, with respect to the direction of liquid flow, of the main cylinder 1 and its associated piston 2.
  • a suction tube 5 preferably made of the same material as, and forming a unit with, cylinders 1 and 3.
  • the suction tube 5 is arranged to extend substantially to the bottom of a container with which the pump is to be associated.
  • Piston 2 is formed with an axial passage 11 which passes through the piston and through a stem 16 integral with the piston and is associated with a valve 10 which tends to close passage 11 when the piston 2 is moved in the uid conveying direction, i.e., downwardly.
  • Piston 4 is provided with an axial passage whose lower end defines a 4seating for a ball valve 12 which tends to open the passage when piston 4 is driven in the fluid conveying direction, i.e., downwardly.
  • Piston 4 is also provided with an upwardly-extending axial stem 6 carrying diametrically extending fingers 7 which engage in longitudinally elongated slots 8 formed in a collar 9 connected to valve 10.
  • the upper end of stem 6 bears against the underside of valve 10 in order to normally urge the valve into its closing position.
  • Stem 16 carries a plunger knob 17 formed with a radially extending passage in permanent communication with passage 11.
  • the outer end of the radially extending passage in knob 17 is equipped with a nozzle 18, which is preferably in the form of a turbulence nozzle, whose opening is in permanent communication with passage 11.
  • a cover 15 which restricts the upward movement of piston 2.
  • Each end of piston 2 is provided with an annular sealing collar 14 which is preferably integral with the piston and which forms a seal with the wall of cylinder 1.
  • the entire piston assembly is supported by a helical compression spring 13, which is preferably constituted by a propeller thrust spring, disposed within cylinder 3 and bearing against the lower surface of piston 4.
  • the outer surface of cylinder 1 is preferably threaded to be screwed into the mouth of the container with which it is to be associated.
  • the knob 17 is first depressed, moving the assembly of pistons 2 and 4 and valve 10 downwardly and compressing spring 13.
  • the fiuid trapped in cylinder 1 transmits a pressure which maintains ball valve 12 in a closed condition. Since the cylinder 3 has a smaller cross-sectional area than cylinder 1, the fluid passing from cylinder 1 into cylinder 3 causes the piston 4 to move at a higher velocity than piston 2. During this interval, the fluid pressure in cylinder 1 maintains valve 10 closed. Therefore, as the downward movement of both pistons continues, diametrically extending fingers 7 move downwardly with respect to slots 8 until they come to bear against the lower extremities of these slots. When this occurs, the continued downward movement of piston 4 at a higher velocity than that of piston 2 causes fingers 7 to draw valve 10 away from the inlet opening of passage 11, thus permitting this latter passage to communicate with the interior of cylinder 1.
  • the liquid flow passage 11 is always automatically and tightly sealed when the apparatus is not in use.
  • FIGURE 2 shows a modified form of construction according to the present invention in which elements identical to those of the embodiment of FIGURE 1 are identified by the same reference numerals.
  • FIGURE 2 differs from that of FIGURE 1 primarily in the construction of the small piston 4.
  • the ball valve is eliminated from this piston and its function is taken over by a resilient collar 19 which extends toward piston 2 and which bears resiliently against the inner wall of cylinder 3 to form a seal therewith.
  • collar 19 is drawn away from the walls of cylinder 3 ⁇ in order to permit fluid to fiow upwardly into cylinder 1.
  • the cover member can be replaced by a cover member 15', which is shown at the right-hand side of FIGURE 2, having a fastening lip 20 which bears firmly against the flange at the upper end of cylinder 1 and a threaded cap 21, the cap 21, lip 20 and cover 15' being made of a single piece.
  • the cover 15 can be provided with a plurality of individual, circumferentially spaced fastening tabs for attachment to the cylinder 1.
  • a threaded cap 21 makes it relatively easy to mount the pump assembly on a separately provided container, such as a perfume flacon, for example.
  • y Pump assemblies according to the present invention can also be constructed for atomizing water, cleansing agents, coloring agents, oils, etc.
  • construction of the pump assembly is simplified by making the piston 4 and the collar 19 of a single piece.
  • Construction is further simplified by also making the piston 4 of FIGURE 2, or the piston 4 of FIGURE l, integral with its associated stem 6. Construction is still further Simplified by mak-ing the step 16 integral with the piston 2.
  • the construction of embodiments of the present invention is even further simplified by making the cylinders 1 and 3 and the tube 5, or at least a socket for connection of the tube 5, from a single piece of material and by arranging the cylinders 1 and 3 coaXially in line with one another.
  • piston 2 and collars 14 are preferably made of a single piece.
  • Yet another feature of the present invention resides in the fact that the entire cross-sectional area of the smaller cylinder 3 preferably opens completely into the large cylinder 1.
  • first means defining a first variable volume space and a fluid flow passage in communication with said first space
  • biasing means associated with said second means for urging it into a condition corresponding to the minimum volume of said second space.
  • said first means .are constituted by a first cylinder and a first piston, said first piston defining said liquid fiow passage and being disposed for movement in a longitudinal direction in said first cylinder for varying the volume of said first space;
  • said second means are constituted by a second cylinder having an internal cross-sectional area, in a plane perpendicular to the direction of movement of said first piston, which is smaller than that of said first cylinder, and a second piston disposed for movement in said second cylinder in said longitudinal direction for varying the volume of said second space;
  • said first valve means are associated with said first piston for isolating said passage from said first space at least during a portion of the travel of the said first piston in a direction which decreases the volume of said first space; and said connecting means connect said first valve means to said second piston.
  • said connecting means are constituted by a stem carrying a plurality of laterally extending fingers, and said first valve means are formed with a plurality of elongated, longitudinally extending slots each of which receives a respective one of said fingers, the length of said slots determining the degree of relative movement permitted between said first valve means and said second piston.
  • said second piston includes an annular collar which extends toward said first piston and which bears elastically against the inner wall of said second cylinder to form a normally closed valve which is maintained in a closed condition by pressure in the space between said first and second piston.
  • An arrangement as defined in claim 2 further comprising a socket for attaching a suction tube, wherein said socket, said first cylinder and said second cylinder are constituted by a single body of material.
  • An arrangement as defined in claim 2 further comprising a suction tube connected to said second cylinder, said tube, said irst cylinder and said second cylinder constituting a single body.
  • An arrangement as defined in claim 2 further comprising a supporting stem connected to said first piston and traversed by said passage, a plunger knob carried by said supporting stem, and a turbulence nozzle carried by said knob in permanent communication with said passage for receiving liquid conveyed by said pump assembly, said nozzle having an atomizing opening extending at right angles to said longitudinal direction in which said pistons move with respect to their associated cylinders.
  • An arrangement as defined in claim 2 further comprising two sealing collars, each disposed at a respective end of said rst piston and forming a seal with the inner wall of said first cylinder, said collars being integral with said first piston.
  • biasing means are constituted by a helical compression spring which bears against said Second piston.

Description

Sept. 3, 1968 F, PECHSTElN 3,399,836
ATOMIZING PUMP Filed Nov. 2l, 1966 2 Sheets-Sheet l Figi 16kg 15 Af \1 \8 J \9 nef lnvenfor.' Fwd Ped? s+ ein Fbkovnags SePt- 3, 1968 F. PECHSTEIN 3,399,836
ATOMIZING PUMP Filed Nov. 2l, 1966 2 Sheets-Sheet 2 Fig. 2
/n venor: Fwd Pg shim Flttov n 05s United States Patent O 13 claims. (ci. 239-333) The present invention relates to the field of atomizers, and particularly to atomizing pumps especially for atomizing perfume or similar cosmetic preparations.
Pumps of the type with which the present invention is concerned include a piston yarranged to be driven into the pump housing against a spring pressure so as to deliver the liquid to a nozzle. It is known that, in order to obtain the highest possible degree of atomization, it is preferable to provide at the pump outlet a so-called turbulence nozzle.
However, it has been found that even the use of a nozzle of this type in prior art atomizing pumps does not completely preclude the occurrence of an insufiicient atomization and the formation of droplets in the vicinity of the nozzle particularly when the pump piston is subjected to a relatively slow depression movement. Furthermore, the liquid remaining in the nozzle after an atomization operation tends to dry up and to obstruct the nozzle.
It is a primary object of the present invention to eliminate these drawbacks.
A more specific object of the present invention is to produce a complete atomization of the liquid delivered to the nozzle, regardless of the speed with which the piston is depressed.
Another object of the present invention is to prevent liquid from remaining in the region of the nozzle at the end of an atomization operation.
A still further object of the present invention is to simplify the construction of atomizing pumps.
These and other objects according to the present invention are achieved by the provision of a pump assembly for conveying liquids to be atomized, which assembly includes first means defining a first variable volume space and a Huid ow passage in communication with the first space, and second means defining a second variable volume space in communication with the first space. The pump according to the present invention further includes first valve means associated with the first means and disposed for isolating the ow passage from the first space, connecting means connecting the second means to the first valve means for controlling the opening and closing of the valve means and for permitting a limited degree of relative movement between the first valve means and the second means, and biasing means associated with the second means for urging it into a condition corresponding to the minimum volume of the second space.
According to preferred embodiments of the present invention the first means are constituted by a cylinder and a piston disposed for movement in a longitudinal direction in the cylinder for varying the volume of the first space, and the second means are also composed of a cylinder, which has a smaller cross-sectional area than the first cylinder, and a piston disposed for movement in the cylinder in the longitudinal direction for varying the volume of the second space. In these preferred embodiments, the liquid fiow passage is formed, at least partially, in the piston of the first means, and the connecting means are connected between the valve means and the piston of the second means. Furthermore, the biasing means, which are preferably constituted by a helical compression spring, are connected to the piston of the second means.
Additional objects and advantages of the present invention will become apparent upon consideration of the fol- 3,399,836 Patented Sept. 3, 1968 lowing description when taken in conjunction with the accompanying drawings in which:
FIGURE l is a longitudinal, cross-sectional view o a first embodiment of the present invention.
FIGURE 2 is a view similar to that of FIGURE 1 of another embodiment of the present invention.
The device of FIGURE 1 includes a main cylinder 1 housing a main piston 2, and a further cylinder 3 housing a further piston 4, the cylinder 3 having a smaller crosssectional area than the main cylinder 1. The further cylinder 3 and its associated piston 4 are arranged upstream, with respect to the direction of liquid flow, of the main cylinder 1 and its associated piston 2. At the lower, or upstream, end of cylinder 3 is connected a suction tube 5 preferably made of the same material as, and forming a unit with, cylinders 1 and 3. The suction tube 5 is arranged to extend substantially to the bottom of a container with which the pump is to be associated.
Piston 2 is formed with an axial passage 11 which passes through the piston and through a stem 16 integral with the piston and is associated with a valve 10 which tends to close passage 11 when the piston 2 is moved in the uid conveying direction, i.e., downwardly. Piston 4 is provided with an axial passage whose lower end defines a 4seating for a ball valve 12 which tends to open the passage when piston 4 is driven in the fluid conveying direction, i.e., downwardly.
Piston 4 is also provided with an upwardly-extending axial stem 6 carrying diametrically extending fingers 7 which engage in longitudinally elongated slots 8 formed in a collar 9 connected to valve 10. The upper end of stem 6 bears against the underside of valve 10 in order to normally urge the valve into its closing position.
Stem 16 carries a plunger knob 17 formed with a radially extending passage in permanent communication with passage 11. The outer end of the radially extending passage in knob 17 is equipped with a nozzle 18, which is preferably in the form of a turbulence nozzle, whose opening is in permanent communication with passage 11.
The upper end of the space defined by clinder 1 is closed by a cover 15 which restricts the upward movement of piston 2. Each end of piston 2 is provided with an annular sealing collar 14 which is preferably integral with the piston and which forms a seal with the wall of cylinder 1. The entire piston assembly is supported by a helical compression spring 13, which is preferably constituted by a propeller thrust spring, disposed within cylinder 3 and bearing against the lower surface of piston 4.
The outer surface of cylinder 1 is preferably threaded to be screwed into the mouth of the container with which it is to be associated.
In operation, the knob 17 is first depressed, moving the assembly of pistons 2 and 4 and valve 10 downwardly and compressing spring 13. The fiuid trapped in cylinder 1 transmits a pressure which maintains ball valve 12 in a closed condition. Since the cylinder 3 has a smaller cross-sectional area than cylinder 1, the fluid passing from cylinder 1 into cylinder 3 causes the piston 4 to move at a higher velocity than piston 2. During this interval, the fluid pressure in cylinder 1 maintains valve 10 closed. Therefore, as the downward movement of both pistons continues, diametrically extending fingers 7 move downwardly with respect to slots 8 until they come to bear against the lower extremities of these slots. When this occurs, the continued downward movement of piston 4 at a higher velocity than that of piston 2 causes fingers 7 to draw valve 10 away from the inlet opening of passage 11, thus permitting this latter passage to communicate with the interior of cylinder 1.
With the passage thus open, the pressure imposed on the fluid in the cylinders, principally, by the energy stored in compressed spring 13 and secondarily by the continued downward movement of piston 2, causes fluid to be driven through passage 11 and to be atomized by nozzle 18. The fiow of fiuid through passage 11 continues until piston 4 has been driven upwardly by spring 4 to a sufiicient height to cause the upper end of stem 6 to return valve 10 to its closing position.
Since the pressure necessary for delivering the fiuid to nozzle 18 and for causing its atomization is supplied mainly by compressed spring 13, the atomization will always be complete and will occur at a constant rate, regardless of the speed at which knob 17, and hence piston 2, is being depressed. According to one of the novel features of the present invention, it is only necessary to properly select the length of arcuate slots 8, and hence the degree of relative movement between stem 6 and valve 10, in order to cause the latter valve to be opened at a predetermined point in the downward travel path of valve 4 and thus to cause the atomization to be carried out at a predetermined pressure, which depends on the degree of compression of spring 13 at the start of the atomization operation.
According to another important advantage realized by the present invention, the liquid flow passage 11 is always automatically and tightly sealed when the apparatus is not in use.
As the piston 4 moves upwardly under the influence of spring 13 and drives fluid through passage 11 and nozzle 18, it also produces a pressure drop in the space occupied by spring 13 which causes liquid to be drawn through tube and into this latter space. Then, after the subsequent closure of passage 11 by valve 10, both valves begin ascent at the same velocity since stem 6 is pressing upwardly on valve and valve 10 is, in turn, pressing upwardly on piston 2. As a result, the volume of the space enclosed between pistons 2 and 4 progressively increases during this ascending movement. This causes the pressure in this space to drop so as to cause the liquid contained in cylinder 3 to be drawn upwardly past ball valve 12 and into cylinder 1. Thus, a new supply of liquid is introduced into the space enclosed by cylinder 1 at the end of each atomization cycle.
FIGURE 2 shows a modified form of construction according to the present invention in which elements identical to those of the embodiment of FIGURE 1 are identified by the same reference numerals.
The embodiment of FIGURE 2 differs from that of FIGURE 1 primarily in the construction of the small piston 4. In this embodiment, the ball valve is eliminated from this piston and its function is taken over by a resilient collar 19 which extends toward piston 2 and which bears resiliently against the inner wall of cylinder 3 to form a seal therewith. When a pressure drop is created in the space between pistons 2 and 4', in the manner described above, collar 19 is drawn away from the walls of cylinder 3 `in order to permit fluid to fiow upwardly into cylinder 1.
According to another modification of the present invention, the cover member can be replaced by a cover member 15', which is shown at the right-hand side of FIGURE 2, having a fastening lip 20 which bears firmly against the flange at the upper end of cylinder 1 and a threaded cap 21, the cap 21, lip 20 and cover 15' being made of a single piece. In place of the single annular lip 20, the cover 15 can be provided with a plurality of individual, circumferentially spaced fastening tabs for attachment to the cylinder 1. The provision of a threaded cap 21 makes it relatively easy to mount the pump assembly on a separately provided container, such as a perfume flacon, for example.
y Pump assemblies according to the present invention can also be constructed for atomizing water, cleansing agents, coloring agents, oils, etc.
According to a further novel feature of the present invention, construction of the pump assembly is simplified by making the piston 4 and the collar 19 of a single piece.
4 Construction is further simplified by also making the piston 4 of FIGURE 2, or the piston 4 of FIGURE l, integral with its associated stem 6. Construction is still further Simplified by mak-ing the step 16 integral with the piston 2.
According to yet another advantageous feature of the present invention, the construction of embodiments of the present invention is even further simplified by making the cylinders 1 and 3 and the tube 5, or at least a socket for connection of the tube 5, from a single piece of material and by arranging the cylinders 1 and 3 coaXially in line with one another.
For the same purpose, the piston 2 and collars 14 are preferably made of a single piece.
Yet another feature of the present invention resides in the fact that the entire cross-sectional area of the smaller cylinder 3 preferably opens completely into the large cylinder 1.
It will be understood that the above description of the present invention is susceptible to various modifications, changes, and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents ofthe appended claims.
What is claimed is:
1. A pump assembly for conveying liquids to be atomized and comprising, in combination:
(a) first means defining a first variable volume space and a fluid flow passage in communication with said first space;
(b) second means defining a second variable volume space in commnnication with said first space;
(c) first valve means associated with said first means and disposed for isolating said passage from said first space;
(d) connecting means connecting said second means lo said first valve means for controlling the opening and closing of said valve means and for providing a limited degree of relative movement between said first valve means and said second means; and
(e) biasing means associated with said second means for urging it into a condition corresponding to the minimum volume of said second space.
2. An arrangement as defined in claim 1 wherein: said first means .are constituted by a first cylinder and a first piston, said first piston defining said liquid fiow passage and being disposed for movement in a longitudinal direction in said first cylinder for varying the volume of said first space; said second means are constituted by a second cylinder having an internal cross-sectional area, in a plane perpendicular to the direction of movement of said first piston, which is smaller than that of said first cylinder, and a second piston disposed for movement in said second cylinder in said longitudinal direction for varying the volume of said second space; said first valve means are associated with said first piston for isolating said passage from said first space at least during a portion of the travel of the said first piston in a direction which decreases the volume of said first space; and said connecting means connect said first valve means to said second piston.
3. An arrangement as defined in claim 2 wherein said first and second pistons are disposed coaxially for movement in the same direction.
4. An arrangement as defined in claim 2 wherein said first and second cylindersare disposed in line with one another, with the entire internal cross-sectional area of said second cylinder being in communication with that of said first cylinder.
5. An arrangement as defined in claim 2 wherein said connecting means are constituted by a stem carrying a plurality of laterally extending fingers, and said first valve means are formed with a plurality of elongated, longitudinally extending slots each of which receives a respective one of said fingers, the length of said slots determining the degree of relative movement permitted between said first valve means and said second piston.
6. An arrangement `as dened in claim 2 wherein said connecting means are integral with said second piston.
7. An arrangement as defined in claim 2 wherein said second piston includes an annular collar which extends toward said first piston and which bears elastically against the inner wall of said second cylinder to form a normally closed valve which is maintained in a closed condition by pressure in the space between said first and second piston.
8. An arrangement as defined in claim 7 wherein said collar is integral with said second piston.
9. An arrangement as defined in claim 2 further comprising a socket for attaching a suction tube, wherein said socket, said first cylinder and said second cylinder are constituted by a single body of material.
10. An arrangement as defined in claim 2 further comprising a suction tube connected to said second cylinder, said tube, said irst cylinder and said second cylinder constituting a single body.
11. An arrangement as defined in claim 2 further comprising a supporting stem connected to said first piston and traversed by said passage, a plunger knob carried by said supporting stem, and a turbulence nozzle carried by said knob in permanent communication with said passage for receiving liquid conveyed by said pump assembly, said nozzle having an atomizing opening extending at right angles to said longitudinal direction in which said pistons move with respect to their associated cylinders.
12. An arrangement as defined in claim 2 further comprising two sealing collars, each disposed at a respective end of said rst piston and forming a seal with the inner wall of said first cylinder, said collars being integral with said first piston.
i3. An arrangement as defined in claim 12 wherein said biasing means are constituted by a helical compression spring which bears against said Second piston.
References Cited UNITED STATES PATENTS 3,185,354 5/1965 Lipman 222-321 3,211,346 10/1965 Meshberg 222-321 X 3,223,292 12/1965 Keeney et al 22-321 3,229,864 1/1966 Roder 222-321 M. HENSON WOOD, JR., Primary Examiner.
V. M. WIGMAN, Assistant Examiner.

Claims (1)

1. A PUMP ASSEMBLY FOR CONVEYING LIQUIDS TO BE ATOMIZED AND COMPRISING, IN COMBINATION: (A) FIRST MEANS DEFINING A FIRST VARIABLE VOLUME SPACE AND A FLUID FLOW PASSAGE IN COMMUNICATION WITH SAID FIRST SPACE; (B) SECOND MEANS DEFINING A SECOND VARIABLE VOLUME SPACE IN COMMUNICATION WITH SAID FIRST SPACE; (C) FIRST VALVE MEANS ASSOCIATED WITH SAID FIRST MEANS AND DISPOSED FOR ISOLATING SAID PASSAGE FROM SAID FIRST SPACE; (D) CONNECTING MEANS CONNECTING SAID SECOND MEANS TO SAID FIRST VALVE MEANS FOR CONTROLLING THE OPENING AND
US595761A 1966-03-12 1966-11-21 Atomizing pump Expired - Lifetime US3399836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US38350473 USRE28366E (en) 1966-11-21 1973-07-30 Atomizing pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEA51830A DE1290043B (en) 1966-03-12 1966-03-12 Nebulizer pump, especially for perfumes or other cosmetic liquids

Publications (1)

Publication Number Publication Date
US3399836A true US3399836A (en) 1968-09-03

Family

ID=6938149

Family Applications (1)

Application Number Title Priority Date Filing Date
US595761A Expired - Lifetime US3399836A (en) 1966-03-12 1966-11-21 Atomizing pump

Country Status (5)

Country Link
US (1) US3399836A (en)
AT (1) AT266687B (en)
DE (1) DE1290043B (en)
FR (1) FR1486392A (en)
GB (1) GB1136848A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761022A (en) * 1972-04-04 1973-09-25 H Kondo A spring pressure accumulative spray device
JPS5074807A (en) * 1973-11-07 1975-06-19
JPS5076614A (en) * 1973-11-10 1975-06-23
JPS5078909A (en) * 1974-03-26 1975-06-27
US3921861A (en) * 1974-05-17 1975-11-25 Hirosi Kondo Pressure accumulative spray device
US3923250A (en) * 1974-02-08 1975-12-02 Step Soc Tech Pulverisation Liquid perfume atomizers
US4050613A (en) * 1976-08-31 1977-09-27 Corsette Douglas Frank Manual actuated dispensing pump
US4140249A (en) * 1976-09-18 1979-02-20 Mitani Valve Co., Ltd. Manual spray pump
US4147476A (en) * 1974-03-28 1979-04-03 Bespak Industries Limited Pump assembly for an atomizing piston pump
US4174056A (en) * 1977-05-10 1979-11-13 Ciba-Geigy Corporation Pump type dispenser with continuous flow feature
US4274560A (en) * 1976-04-30 1981-06-23 Emson Research Incorporated Atomizing pump dispenser
EP0128585A2 (en) * 1983-06-13 1984-12-19 AFA Products, Inc. Hand manipulatable sprayer
US4669664A (en) * 1984-04-09 1987-06-02 Waynesboro Textiles, Inc. Hand manipulatable sprayer
US4768714A (en) * 1984-05-31 1988-09-06 Luchsinger Pedro W Portable sprayer with leak control and agitator
US4798333A (en) * 1984-05-31 1989-01-17 Luchsinger Pedro W Portable sprayer with improved combination of piston and diaphragm pump
US4895279A (en) * 1988-07-25 1990-01-23 Emson Research Inc. Flat-top valve member for an atomizing pump dispenser
US4986453A (en) * 1989-05-15 1991-01-22 The Pittway Corporation Atomizing pump
US5279568A (en) * 1993-04-30 1994-01-18 Spruhventile Gmbh Pharmaceutical pump dispenser for fluid suspensions and fluid mixtures
US5655688A (en) * 1994-10-19 1997-08-12 Aptargroup, Inc. Atomizing pump with high stroke speed enhancement and valve system therefor
US5850948A (en) * 1996-09-13 1998-12-22 Valois S.A. Finger-operable pump with piston biasing post
US6126038A (en) * 1998-10-30 2000-10-03 Olegnowicz; Israel Atomizing pump spray
US6634872B1 (en) * 1999-03-22 2003-10-21 Rexam Sofab Suction pump
CN1309482C (en) * 2001-04-04 2007-04-11 瓦卢瓦有限合伙公司 Fluid product distribution pump
FR3128648A1 (en) 2021-11-04 2023-05-05 Gilles TAÏEB Vaporizer pump system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2133259A5 (en) * 1971-04-08 1972-11-24 Step
US3908870A (en) 1973-11-15 1975-09-30 Yoshino Kogyosho Co Ltd Manual-type miniature atomizer
DE2462828C3 (en) * 1973-11-15 1981-08-06 Yoshino Kogyosho Co., Ltd., Tokyo Hand-operated small atomizer
US4051983B1 (en) * 1975-11-19 1993-12-14 Calmar Inc. Pump sprayer having pump priming means
US4029261A (en) * 1976-04-30 1977-06-14 Jaime Olegnowicz Piston displacement liquid spray pumps
FR2429338A1 (en) * 1978-06-19 1980-01-18 Aerosol Inventions Developmant QUICK PRIMING PUMP FOR VAPORIZER
FR2433982A1 (en) * 1978-08-23 1980-03-21 Mitani Valve Co Ltd Dual piston pump spray - has close coupled large and small pistons to suck liquid into pressure chamber at top of operating stroke
DE2838613A1 (en) * 1978-09-05 1980-03-13 Seltmann Hans Juergen Atomising pump for aerosol dispenser - has suction tube connected directly to inlet valve to eliminate vapour locking
DE2906234C2 (en) * 1979-02-17 1986-01-02 Calmar-Albert GmbH, 5870 Hemer Atomizing piston pump
ES481770A1 (en) * 1979-06-21 1980-02-16 Marzabal Martinez Carlos A Liquid Metering Device
US5002228A (en) * 1989-07-14 1991-03-26 Su Jeno Y Atomizer
DE3940101A1 (en) * 1989-12-04 1991-06-06 Hofmann Joerg MANUAL, DOUBLE-ACTING DOSING AND / OR SPRAYING PUMP
ES2118273T3 (en) * 1993-03-08 1998-09-16 Spruhventile Gmbh PUMP TYPE FLUID DISTRIBUTOR FOR PHARMACEUTICAL APPLICATIONS.
US5566865A (en) * 1993-12-22 1996-10-22 Valois S.A. Manual atomizing pump with adjustable dosage
EP0688608A1 (en) * 1994-03-25 1995-12-27 GUALA S.p.A. An atomizer device for manually operated pumps
FR2815675B1 (en) * 2000-10-23 2003-05-02 Valois Sa FLUID PRODUCT DELIVERY PUMP
FR2832079B1 (en) * 2001-11-14 2004-07-30 Valois Sa DISPENSING HEAD AND FLUID PRODUCT DISPENSER COMPRISING SUCH A DISPENSING HEAD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185354A (en) * 1963-06-04 1965-05-25 Valve Corp Of America Pump dispensing device for liquid containers
US3211346A (en) * 1964-07-15 1965-10-12 Meshberg Philip Pump-type dispenser
US3223292A (en) * 1964-09-30 1965-12-14 Valve Corp Of America Pump construction for hand-operated dispenser
US3229864A (en) * 1963-11-30 1966-01-18 Roder Eberhard Check valve with resilient movable element and dispensing pump embodying the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1201684B (en) * 1964-01-28 1965-09-23 Erich Pfeiffer K G Metallwaren Single-acting, hand-operated piston pump installed in a vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185354A (en) * 1963-06-04 1965-05-25 Valve Corp Of America Pump dispensing device for liquid containers
US3229864A (en) * 1963-11-30 1966-01-18 Roder Eberhard Check valve with resilient movable element and dispensing pump embodying the same
US3211346A (en) * 1964-07-15 1965-10-12 Meshberg Philip Pump-type dispenser
US3223292A (en) * 1964-09-30 1965-12-14 Valve Corp Of America Pump construction for hand-operated dispenser

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761022A (en) * 1972-04-04 1973-09-25 H Kondo A spring pressure accumulative spray device
JPS5074807A (en) * 1973-11-07 1975-06-19
JPS5738307B2 (en) * 1973-11-07 1982-08-14
JPS5076614A (en) * 1973-11-10 1975-06-23
US3923250A (en) * 1974-02-08 1975-12-02 Step Soc Tech Pulverisation Liquid perfume atomizers
JPS5078909A (en) * 1974-03-26 1975-06-27
JPS5720026B2 (en) * 1974-03-26 1982-04-26
US4147476A (en) * 1974-03-28 1979-04-03 Bespak Industries Limited Pump assembly for an atomizing piston pump
US3921861A (en) * 1974-05-17 1975-11-25 Hirosi Kondo Pressure accumulative spray device
US4274560A (en) * 1976-04-30 1981-06-23 Emson Research Incorporated Atomizing pump dispenser
US4050613A (en) * 1976-08-31 1977-09-27 Corsette Douglas Frank Manual actuated dispensing pump
US4140249A (en) * 1976-09-18 1979-02-20 Mitani Valve Co., Ltd. Manual spray pump
US4174056A (en) * 1977-05-10 1979-11-13 Ciba-Geigy Corporation Pump type dispenser with continuous flow feature
EP0128585A2 (en) * 1983-06-13 1984-12-19 AFA Products, Inc. Hand manipulatable sprayer
EP0128585A3 (en) * 1983-06-13 1986-02-26 The Afa Corporation Hand manipulatable sprayer
US4669664A (en) * 1984-04-09 1987-06-02 Waynesboro Textiles, Inc. Hand manipulatable sprayer
US4768714A (en) * 1984-05-31 1988-09-06 Luchsinger Pedro W Portable sprayer with leak control and agitator
US4798333A (en) * 1984-05-31 1989-01-17 Luchsinger Pedro W Portable sprayer with improved combination of piston and diaphragm pump
US4895279A (en) * 1988-07-25 1990-01-23 Emson Research Inc. Flat-top valve member for an atomizing pump dispenser
US4986453A (en) * 1989-05-15 1991-01-22 The Pittway Corporation Atomizing pump
US5279568A (en) * 1993-04-30 1994-01-18 Spruhventile Gmbh Pharmaceutical pump dispenser for fluid suspensions and fluid mixtures
US5655688A (en) * 1994-10-19 1997-08-12 Aptargroup, Inc. Atomizing pump with high stroke speed enhancement and valve system therefor
US5850948A (en) * 1996-09-13 1998-12-22 Valois S.A. Finger-operable pump with piston biasing post
US6126038A (en) * 1998-10-30 2000-10-03 Olegnowicz; Israel Atomizing pump spray
US6634872B1 (en) * 1999-03-22 2003-10-21 Rexam Sofab Suction pump
CN1309482C (en) * 2001-04-04 2007-04-11 瓦卢瓦有限合伙公司 Fluid product distribution pump
FR3128648A1 (en) 2021-11-04 2023-05-05 Gilles TAÏEB Vaporizer pump system

Also Published As

Publication number Publication date
AT266687B (en) 1968-11-25
DE1290043B (en) 1969-02-27
FR1486392A (en) 1967-06-23
GB1136848A (en) 1968-12-18

Similar Documents

Publication Publication Date Title
US3399836A (en) Atomizing pump
US3331559A (en) Liquid atomizers
US2690278A (en) Dispensing pump for small containers
US3502035A (en) Piston pump for dispensing liquids or fluid pastes
US4823991A (en) Manually operated dual invertible pump
US4830284A (en) Atomizing or dosing pump
US3908870A (en) Manual-type miniature atomizer
US7004356B1 (en) Foam producing pump with anti-drip feature
EP1189818B1 (en) Aerosol for dispensing a liquid
US4775079A (en) Upright/inverted pump sprayer
US3282472A (en) Piston-actuated dispensing pump
GB1163444A (en) Improvements in Sprays
GB1386461A (en) Hand pump
US4693675A (en) Non-throttling discharge pump
GB1181203A (en) Improvements in or relating to Reciprocating Liquid Dispensing Pumps
GB1323986A (en) Atomizers
US4692103A (en) Precise output pump sprayer
GB1024529A (en) Atomizer pump
USRE28366E (en) Atomizing pump
JPS60102969A (en) Pressure accumulation type dispenser
US5358149A (en) Pressure build-up pump sprayer having anti-clogging means
US3185355A (en) Pump for liquid containers
US4215804A (en) Manual control dispensing pump for liquid containers
GB1521146A (en) Direct finger actuated pump
US4165025A (en) Propellantless aerosol with fluid pressure generating pump

Legal Events

Date Code Title Description
AS Assignment

Owner name: CALMAR, INC., 333 SOUTHL TURNBULL CANYON ROAD, CIT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DIAMOND INTERNATIONAL CORPORATION;REEL/FRAME:004199/0053

Effective date: 19831118

Owner name: CALMAR, INC., 333 SOUTHL TURNBULL CANYON ROAD, CIT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DIAMOND INTERNATIONAL CORPORATION;REEL/FRAME:004199/0053

Effective date: 19831118