US3410828A - Acrolein-n-vinyl pyrrolidone copolymer and cationic derivative paper wet-strength agents - Google Patents

Acrolein-n-vinyl pyrrolidone copolymer and cationic derivative paper wet-strength agents Download PDF

Info

Publication number
US3410828A
US3410828A US596404A US59640466A US3410828A US 3410828 A US3410828 A US 3410828A US 596404 A US596404 A US 596404A US 59640466 A US59640466 A US 59640466A US 3410828 A US3410828 A US 3410828A
Authority
US
United States
Prior art keywords
paper
water
acrolein
alpha
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US596404A
Inventor
George T Kekish
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ChampionX LLC
Original Assignee
Nalco Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US489395A external-priority patent/US3317370A/en
Application filed by Nalco Chemical Co filed Critical Nalco Chemical Co
Priority to US596404A priority Critical patent/US3410828A/en
Application granted granted Critical
Publication of US3410828A publication Critical patent/US3410828A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/18Copolymerisation of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/06Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/18Copolymerisation of aldehydes or ketones
    • C08G2/26Copolymerisation of aldehydes or ketones with compounds containing carbon-to-carbon unsaturation
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • D21H21/20Wet strength agents

Description

United States Patent 3,410,828 ACROLEIN-N-VINYL PYRROLIDON E COPOLY- MER AND CATIONIC DERIVATIVE PAPER WET-STRENGTH AGENTS George T. Kekish, Chicago, lll., assignor to Nalco Chemical Company, Chicago, 111., a corporation of Delaware No Drawing. Continuation-impart of application Ser. No. 489,395, ]Sept. 22, 1965, which is a continuation-impart of application Ser. No. 281,040, May 16, 1963. This application Nov. 23, 1966, Ser. No. 596,404
i 21 Claims. (Cl. 260--67.5)
ABSTRACT OF THE DISCLOSURE This invention relates to novel wet strength agents comprising water-soluble copolymers of monomers such as acrolein and n-vinyl pyrrolidone prepared by carrying out the polymerization as a dilute aqueous reaction mixture containing below about of the monomers during at least one-third the period of polymerization. Also, the invention relates to cationic forms of these copolymers which have been so made cationic by reaction with an amine reactant, A specific method as set out above is also disclosed.
THE DISCLOSURE This application is a continuation-in-part of my copending application filed Sept. 22, 1965, having Ser. No. 489,395, now Patent No. 3,317,370, which in turn is a continuation-in-part of my copending application filed May 16, 1963, having Ser. No. 281,040, and now abandoned.
It is known that the majority of papers produced without benefit of specific additives when subjected to water or even a moist environment have an extremely low wet strength and easily disintegrate or tear upon handling of any severity.
It has been theorized that the low strength of wet papers is, a result of a softening of the fibers and consequent reduction of the bond between them. The wetted papers have approximately only 5-10% of thestrength possessed when dry. It is generally thought that in the contacting fibers in a dry sheet of paper there is some small portion of a cellulosic structure held commonly by the fibers. This cellulosic structure is considered hydro philic or capable of intimate association with water, though'n'ot actually soluble therein. The cohesive strength which normally exists when the paper is in the dry state is substantially reduced when contacted with water, whereby the bonding or adhesion effect between the cellulosic fibers is altered. Thus the cementation of fibers is destroyed and the paper as a whole loses its strength. Theadhesion or bonding between the individual fibers in contact with each other, which has been developed upon drying the interfelted web from a suspension of water, is reduced to a point whereby the continuous sheet is virtually useless in certain functions involving contact with water.
. Prior art attempt to obviate the above problem and measurably increase the wet strength of papers have generally met with success only throught means of addition of certain chemical agents to the paper pulp suspension prior to formation of the wet sheet. However, while wet strengths of paper have been increased by such chemical treatment, other subsidiary problems arise with such treatment. For example, in many instances the increase in wet tensile strength property is concurrently accompanied by 'a corresponding decrease in desired high absorptlve capacity. This loss of absorption is generally due to coating of the paper surface by the additive chemical. Yet, when paper is to be used for such purposes as toweling it is essential that both the desiderata of wet strength and absorptive capacity are present.
Many other problemsarise when chemically treating paper pulp to measurably increase wet strength of products therefrom. For example, such treatment also has the effect of decreasing the flexibility of the paper product whereby it cannot be molded or shaped into the desired form. Such paper products are often extremely stiff or hard. Likewise, the treated paper often becomes brittle or abrasive and useless for certain roles such as for hand or face ti.:sues. Other paper products, while having the desired tensile strength when wet, lack pliability or drapability. Thus, when such paper products are crushed or crumpled, permanent undesirable creases or wrinkles are formed.
In addition to the above problems created by certain chemical additives, there is a tendency for some additives to measurably decrease the porosity and permeability of the paper product to the point there it cannot breathe. Again such characteristic is undesirable in many areas of use.
Certain polymeric substances have been proposed and have found acceptance aswet strength additives. Again, these have certain drawbacks. For example, many further polymerize or react with the fibers of the paper pulp to an undesirable degree upon process heating of the pulp to form a sheet thereof, Thus, an excessive cure can cause many of the above discussed problems. Likewise, a serious problem exists with use of many polymers in that the requisite solubility or compatibility with the aqueous paper pulp is not present. For example, certain unsaturated aldehydes such as acrolein, when polymerized, form water-insoluble masses which can only be incorporated into the pulp after their chemical conversion by reaction with auxiliary chemicals such as sulfur dioxide or alkali metal bisulfites which impart: an anionic character to the polymers. These reagents react with the aldehyde groups to form acetals and render the polymeric molecules sufficiently soluble for use as wet strength agents. Also, in this regard use of anionic polymers as wet strength promoters generally requires further addition to the pulp of a retention aid such as alum. Without benefit of this auxiliary chemical only a portion of the polymer is retained on the paper sheet leading to inefficient promotion of wet strength.
Some effort has been made to overcome the necessity of making further derivatives of unsaturated aldehydes before they can be effectively used as paper additives. For example, US. Patent 2,657,192 effects the polymerization of acrolein in alcohol. Such a process has certain disadvantages in that it must be carried out in the more expensive organic solvents, and the resultant product is only soluble in such organic solvents. Also, since the reaction is carried out in the presence of alcohol there is a tendency to form acetals in situ, and thus lower the consequent molecular weight of the product. It is generally felt that for besteffectiveness as a wet strength agent, a relatively high molecular weight polymer is generally needed.
It would therefore be of benefit to the art if paper wet strength additives could be produced whereby the tensile strength of the paper products is increased when Wet without deleteriously affecting the other desirable properties of absorptive capacity, flexibility, pliability, porosity, etc. It would be of a further advantage to the art if water-soluble polymers of unsaturated aldehydes could be synthesized in a one-step process without resort to subsequent derivative modifications. If such aldehyde poly-mers could be produced which have the requisite water-solubility for direct incorporation into an aqueous paper pulp system, and yet have relatively high molecular weights, thereby giving effective wet strength character to the treated paper, such products would find acceptance in the art. Again, if such additives had the effect of imparting wet strength character to paper products even when added to the precursor pulp in relatively small amounts, polymeric substances of this type would be extremely useful. Lastly, if these effective wet strength agents for a wide variety of paper stocks, a substantial improvement in the art would be realized.
It therefore becomes an object of the invention to provide chemical compositions useful as paper wet strength additives.
Another object of the invention is to provide a method of greatly increasing the tensile strength of paper products when wetted and to furnish paper articles which concurrently possess other necessary characteristics of flexibility, water absorbency, porosity, drapability, etc.
Yet another object of the invention is to provide interpolymers from unsaturated acrolein monomers, which have no anionic substituents and which may be used directly as water-soluble reaction products.
A specific object of the invention is to provide copol mers and terpolymers of unsaturated aldehydes which are sufficiently water-soluble so as to be directly incorporated into paper pulp slurries without further modification of structure. Special manipulative techniques are disclosed with respect to achieving these water-soluble polymeric species.
And still another object of the invention is to provide cationic derivatives of the above copolymers and terpolymers which are especially useful in treating specific types of paper stock.
A further object of the invention is to provide copolymers and terpolymers of alpha-beta unsaturated aldehyde monomers having no aionic substituents and which have the requisite water solubility, high molecular weight and effectiveness as paper wet strength agents even at relatively low use concentrations and without the use of aluminum salts as a retention device.
Other objects will appear hereinafter.
In accordance with the invention, it has been discovered that a certain class of alpha-beta-unsaturated aldehyde interpolymers are extremely useful in imparting high wet strength to paper products so treated with these additives. In its broadest aspect the invention lies in the discovery of certain new copolymers, terpolymers and cationic derivatives thereof, their method of preparation and the process of employing same in the paper manufacturing art. The interpolymers of the invention have no anionic substituents and contain at least the polymerized monomers of alpha-beta-unsaturated aldehydes and nitrogen heterocycles containing an ethylenically unsaturated group capable of interpolymerization with the above aldehydes. For the sake of simplicity and convenience, the polymers of the invention will be listed and discussed according to the various classes which have been synthesized.
WATER-SOLUBLE COPOLYMERS The first class of useful polymeric wet strength additives of the invention are composed of water-soluble copolymers of an alpha-beta-unsaturated aldehyde and a nitrogen heterocycle containing an ethylenically unsaturated group capable of copolymerization with such aldehydes. These copolymers, as will be discussed in more detail below, may be synthesized by various manipulative techniques so that they are soluble up to about by weight in water or aqueous liquids containing a measurable portion of water. Further, these copolymers contain no anionic substituents. Such copolymers may then be used directly as aqueous reaction products or further diluted prior to actual incorporation with the paper pulp.
The aldehyde monomers useful in the invention may be represented by the general formula:
where R; and R may be either hydrogen, lower alkyl radicals or halogen. When the backbone of the aldehyde alpha-beta-unsaturated aldehydes may be chosen from among acrolein, alpha-methyl acrolein, alpha-ethyl acrolein, alpha-propyl acrolein, alpha-isobutyl acrolein, alpha-amyl acrolein, alpha-n-hexyl acrolein, alpha-bromo acrolein, etc. Other representative aldehyde monomers are croton-aldehyde, alpha-chlorocrotonaldehyde, betachlorocrotonaldehyde, alpha-bromo-crotonaldehyde, alpha-beta-dichlorocrotonaldehyde, alpha beta dimethyl acrolein, alpha-methyl-beta-ethyl acrolein, alpha-methylbeta-isopropyl acrolein, alpha-ethyl-beta-propyl acrolein, etc.
The other monomeric substance going to make up this class of copolymers comprises a nitrogen heterocycle having externally attached to the ring, en ethylenically unsaturated group capable of copolymerization with the above type aldehydes. Such may be chosen from a wide variety of monomeric substances such as vinyl oxazolidones, vinyl imidazoles, vinyl imidazolines, vinyl pyridine, vinyl pyrrolidones such as N-vinyl pyrrolidones, 2- vinyl pyrrolidone, etc. Other specific nitrogen heterocycles useful as monomeric starting reagents include N- vinyl-S-methyl-Z-oxazolidone, N-vinyl-2-oxazolidone, N- vinyl imidazole, N-vinyl-Z-methyl imidazole, 2-vinyl imidazole N-vinyl 3 morpholinone, N-vinyl caprolactam, etc. Preferred among these nitrogen heterocycles are the vinyl pyrrolidones. Excellent wet strength additives have been made in which the starting monomer mixture contains from 10 to mole percent acrolein monomer and 20 to mole percent nitrogen monomer. Preferred mixtures contain 20 to 67 mole percent acrolein monomer and 33 to 80 mole percent nitrogen monomer.
The comonomers may be polymerized by a wide variety of synthetic techniques including bulk, solution, emulsion, suspension, etc., polymerizations. One preferred method is polymerization by emulsion techniques. In its broadest aspect this procedure involves adding of the two monomers to an aqueous solution containing a catalyst and suitable amount of an emulsifying agent. Preferably, the reaction flask has been previously purged with an inert gas such as nitrogen. Almost any type of known emulsifier may be employed, but preferred are oxyalkylated alkyl phenols, such as the well-known Tri tonf materials, ethylene oxide condensates of fatty acid amides such as Ethomids-IS, 0-15 and PIT-15, as well 'as Arlacel 80 and Span, which are sorbitan monooleates. Other suitable emulsifying agents are sorbitan monostearate, sodium dodecyl benzene sulfonate, aluminum stearates, aluminum oleates, etc. Only minute amounts of these emulsifiers are necessary, say from about 10 to about 1000 ppm. The concentration of the active monomer ingredients in the reaction mixture may be as low as about 1.0% and as highly concentrated as an emulsion containing 50.0% monomer subject to the later discussed dilution requirement. The reaction itself may be run in the presence of air, but it is preferred that the reaction vessel be first purged with an inert gas such at nitrogen, carbon dioxide, etc., in order to rid the system of oxygen having somewhat of a tendency to inhibit polymerization and provide lower product molecular weight.
The catalysts that are employed in the process include conventional peroxidic oxidizing agents such as potassium persulfate, hydrogen peroxide, arid ammonium persulfate. It is preferred that water-soluble compounds be used for this purpose. The amount of catalyst used in the process can vary from 0.003% to about 0.2% by weight based on the weight of the monomers. The preferred range is from about 0.003% to about 0.05%. In a preferred embodiment, the polymerization action is carried out using a redox type catalytic system. In this method it is particularly preferred to remove oxygen from the system and introduce an inert gas therein in order to permit the catalyst to form free radicals. In a redox system, the catalyst is activated by means of reducing agent which, in the absence of oxygen, immediately produces free radicals without the use of heat. One of the reducing agents most commonly used is sodium metabisulfite. Other suitable agents include water-soluble thiosulfates, hydrosulfites, and reducing salts, such as the sulfates of metals which are capable to existing in more than one valent state. The metals include cobalt, iron, nickel and copper. Another excellent reducing agent is silver nitrate. The use of a redox initiator system has several advantages, the most important of which is that it is possible to carry out the polymerization at lower temperatures since it is not required to decompose the catalyst. The catalyst and the activator may, if desired, be dissolved in a small amount of water and then added to the reaction mixture containing the emulsified monomers. Also, the catalyst initiator may be added directly to the emulsion and dissolved therein with mild agitation.
The polymerization itself is carried out at rather low temperatures, and preferably below about 80 C. More preferably, the reaction is carried out at a temperature range of 20-60 C., for a period of time of at least one hour. Excellent polymers have been formed in from about 1 to about 3 hours reaction time.
The water-soluble copolymers of the above discussed type were prepared by the simple expedient of elfecting polymerization of the mixture of monomers while keeping the monomer solids content below about by weight during at least /3 of the reaction time and more preferably between /3 and of the time of reaction. Water-soluble copolymers having excellent wet strength activity are prepared by dilution below 10% concentration during the last /3 of the reaction period. It is believed that these are the first acrolein type interpolymers produced directly in a water-soluble state as reaction products without resort to subsequent modification such as by reaction with bisulphite salts, sulphur dioxide or interpolymerization with monomers containing anionic groups such as anionic sulfur-containing comonomers.
As stated above, the concentration of monomers at the start of the reaction may be as high as 50%. But during the reaction itself, dilution with water must be effected so that the above requirement of dilution during reaction is met. This addition of water may be carried in a stepwise manner as by slug feeding or by continuous slow dripping into the reaction media. In any case, all that is essential is that during at least one-third of the reaction time, the concentration of reactants, existing in form of polymer and/ or its parent unpolymerized monomer species, be kept below about 10% by weight solids content. Products synthesized by this method generally have soluubility in Water up to about 10% by weight.
If one desires that the water-soluble products be kept in an aqueous homogeneous condition for long periods of time, known stabilizers such as hydroquinones and other anti-oxidants may be added in small amounts to the final aqueous product. As little as 0.01% of stabilizer is effective. However, products having excellent long-term stability as homogeneous solutions in water, may be prepared without benefit of stabilizer.
The water-soluble copolymer derivatives prepared as outlined above show excellent activity as wet strength agents without benefit of any aditional agent. Due to the fact that these polymers contain no anionic substituents, it is unnecessary to employ aluminum salts to aid in retention. It is believed that these are the first watersoluble acrolein type interpolymers which may be added to the paper pulp slurry without a retention aid such as alum or other aluminum salts and still achieve superior wet strength. It has been discovered that polymers con taining even minor amounts of anionic groups or constituents require benefit of retention aids to be effective wet strength agents. The process of the invention is therefore a distinct advance in the art in that extremely efficient results may be obtained with sole use of the defined polymers which should be free of any anionic character.
CATIONIC WATER-SOLUBLE COPOLYMERS These cationic derivatives are easily prepared by re acting any desired amount of water-soluble amine or amine quaternary with the above produced water-soluble copolymers. The cationic reaction is preferably run in about A hour to 2 hours at a temperature below C. and more preferably between 10 and 60 C. These cationic copolymers show particular use in treating pulps which are anionic or neutral in character, such as highly bleached paper pulps. Again, excellent results are shown without the use of aluminum salt.
The amount of amine or amine quaternary reactant added to the water-soluble copolymer may vary considerably. More prefarably, the mole ratio of water-soluble copolymer to the amine reactant ranges from 50:1 to 1:1. Most preferably, the mole ratioof copolymer to amine ranges from 25:1 to 5:1.
The amine modifier may be any molecule containing 2 or more amine groups either in the form of the free amine base and/or as quaternary groups. The amines themselves may be primary, secondary or tertiary. Thus, suitable modifiers may be ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine or partial or fully quaternized derivatives of any of the foregoing, hydrazines, hydrazides and quaternaries thereof such as betainehydrazide chloride, N-N-dimethylglycine hydrazide, unsymmetrical dimethyl hydrazides, polymers such as thoseformed by reaction of urea and polyalkylene polyamines, guanidines, biguanides, guanylureas, monoand polyhydroxy polyamines and quaternaries thereof, etc.
WATER-SILUBLE TERPOLYMERS Other useful interpolymers of the acrolein type are terpolymers. These are made by polymerizing a mixture containing an alpha-beta-ethylenically unsaturated aldehyde monomer, a nitrogen heterocycle containing an ethyleically unsaturated group and an ethylenically unsaturated monomer containing a non-anionic hydrophilic radical as a side-chain. The first two monomer materials have been discussed in detail above, and need no further elaboration. The third monomer going to make up the useful terpolymers of the invention may be chosen from a Wide variety of available materials, with the only requirement being that the monomer contain no anionic substituent. In each case the monomer contains an ethylenically unsaturated group in the backbone of the molecule and a non-anionic hydrophilic radical existing as a side-chain ofl. the backbone.
Useful ethylenically unsaturated monomers containing a non-anionic, that is, a nonionic or catioic hydrophilic or water solubility promoting group, include those in which the hydrophilic group is selected from the class consisting of carboxylic acid amide, hydroxyl, hydroxyl alkyl ether, and the like. Specific monomers include hydroxyethyl acrylate or methacrylate, vinyl acetate, vinyl methyl ether, etc.
The water-soluble terpolymers are prepared in a manner like that used to make the copolymers whose mode of polymerization was described in detail above. Again, such reaction is carried out by maintaining the active solids concentration of the reactants below about 10% by weight during at least /3 of the reaction time. The polymerization is preferably carried out in aqueous media. It has been determined that for best results the proportions of the respective three monomers employed, range in rnol percents of from about 10 to about 70% of each monomer.
Likewise, cationic derivatives of the above type terpolymers may be easily prepared in the same manner as discussed above. The cationic derivatives of the water-soluble terpolymers are excellent wet strength agents used without aluminum salts. As in the case of the cationic copolymers, the cationically modified terpolymers find particular use in promoting the wet-strength of paper derived from alpha-sulfite pulps.
METHOD OF APPLICATION The water-soluble copolymers, terpolymers and cationic derivatives thereof may be added to any type of paper in order to increase the wet-strength of the subsequently formed paper product. It is greatly preferred, however, that when anionic and non-ionic paper pulps are to be treated, the cationic copolymers or terpolymers are employed as treating agents. Such pulps as groundwood, unbleached kraft, unbleached sulfite, unbleached Mitscherlich, semi-bleached kraft, bleached sulfite, alphasulfite, rag, unbleached softwood pulp, bleached hardwood sulfite pulp, or any pulp derived from a mechanical, chemical, or semi-chemical process may be treated with the wet-strength agents of the invention.
The polymers may be added to the pulp either directly as a reaction mass solution or as further diluted solutions, and either via batch or continuous addition. The required amount of treating agent may be added by gravity flow or by means of pumps, preferably, with some type of metering guide. Flow rates for the diluted treating solutions may be controlled with rotometers or other suitable flow measuring devices such as orifices and weirs. Likewise, the polymer may be supplied to the pulp in controlled amounts by means of reciprocating, proportioning or gear metering pumps.
The wet strength polymers should for best results be added to the paper stock prior to sheet formation, that is, added to the slush stock at any point from the beater to the headbox or cylinder vat. In this method of application, uniform distribution of the polymer throughout the pulp is achieved, resulting in uniform wet strength of the paper product. The most satisfactory points of addition of the wet strength polymers of the invention are at the beaters, consistency regulator, Jordan discharge lines, screen, fan pump, cylinder vat or headbox. It has been determined that the copolymers and terpolymers of the invention are strongly attached to the fibers and held by them when the sheet is formed, and are not separated from the fibers by the vigorous conditions of washing which are imposed by sheet formation.
One excellent property of the polymers of the invention used as wet strength additives is that cure of same upon the paper sheet may be effected even at room temperature. Many prior art materials cannot be cured or permanently aflixed to the paper sheet without application of heat. Likewise, the polymers of the invention may also be cured at higher temperatures such as the temperature of formation of a paper sheet from a Fourdrinier papermaking machine. Also, even at the relatively high temperature cures, the polymers of the invention do not coat the paper to an extent whereby the water absorbency of the formed paper product is deleteriously affected.
The polymers of the invention may be added to the paper slurry in amounts as low as 0.001% by weight of active polymer based on the bone-dry weight of the paper. More preferably, the polymers are added at an additional level of at least 0.1% by weight based on the fiber weight. As high as 10.0% by weight of polymer may be added. Generally the effectiveness of the wet strength agents of the invention are proportional to the molecular weight as measured by solution viscosity. Therefore, the highly viscous or higher molecular weight materials need to be added in amounts less than those mate-rials which have a relatively lower molecular weight. Generally, the products of the invention have molecular weights of at least 5,000 and more often have molecular weights ranging above 10,000.
By incorporation with the wet strength agents of the invention the wet and consequently dry strengths of a wide variety of paper products are materially increased. The type of paper product which may be beneficiated by increase in wet strength includes tissue paper, photographic paper, wrappings for moist foods, construction papers, map and blueprint papers, paper fabrics, bags, shower shoes, decorative articles, disposable table covers, hand towels, diapers, handkerchiefs, bandages, bed sheets and other paper articles which may take the place of textile fibers, high strength filter paper, cigarette paper, blotting paper, such as desk blotters, tea bag paper, outdoor posters, lens paper, windshield wiping tissue, etc.
It has been noted that when high absorptive capacity is required such as when paper towels and napkins are the paper products treated, these articles have the requisite wet strength, and yet natural absorptive capacity is not materially altered. Also, in addition to achievement of high tensile strength, it is possible by judicious adjustment of quantities of polymer used, to maintain the paper product in the proper flexible and pliable state. Thus, for example, tissues so treated have the requisite wet and dry strength, and nevertheless are soft and pliable with no hint of abrasive action though tear resistance is materially increased. The wet strength agents of the invention also do not affect the porosity of the paper, and do not impart malodors. In addition, the desired body, and properties of moldability, stiffness, resiliency, and folding number, etc., are not impaired by addition of the wet strength agents. Paper products having incorporated therein the cured wet strength agent, may undergo vigorous manipulation under service and exhibit good stretching ability along with the other above desired properties.
The following examples show typical polymer preparations and their effectiveness as wet strength agents. These examples are meant to be illustrative and the invention, of course, is not limited thereto.
Wet strength performance was measured according to the TAPPI Standards and Suggested Methods: T404M50 and T456M-49.
Dry and wet tensile strengths were determined on a Thwing-Albert Tensile Tester, Model No. 30-LT. The wet strength performances are expressed in terms of percentages and are equal to the wet tensile strengthx divided by the dry tensile strength.
EXAMPLE I This example illustrates a typical polymerization carried out so that the copolymer product thereof is soluble in water and particularly soluble in the aqueous reaction media from which it is formed. 45 milliliters of water and 2 millimols of potassium persulfate were placed in a 1 liter, 3 necked flask, arranged with stirrer and thermometer. After purging this flask with nitrogen, 11.1 grams of N-vinyl-Z-pyrrolidone and 5.6 grams of distilled acrolein were added, followed by addition of 2 millimols of silver nitrate dissolved in 5 ml. of water. After several minutes of stirring the 2 monomeric reactants together, the temperature rose 5 C. and the liquid reaction mixture became increasingly viscous. 50 ml. of water was then added to the reaction mass. Over a course of 2 hours of reaction time, 350 ml. of additional water were added in incremental additions so that during slightly more than /3 of the reaction time the solids concentration of reacting monomers was less than 10%. The temperature during this time was maintained at between 25 C. and 30 C. At the termination of the polymerization 0.1 gram of hydroquinone was added as a stabilizer. The product was a clear, viscous, aqueous liquid containing 3.58% by Weight of dissolved copolymer. This particular product when tested for 'ability to impart wet strength to products soluble copolymer was added at a dosage level of 1.0% l
by weight of active copolymer based on the bone dry weight of the paper fibers.
EXAMPLE II This example is concerned with a preparation of a typical cationic copolymer of the invention. 140 grams of the acrolein-N-pyrrolidone copolymer (3.8% concentration) as prepared in Example I were placed in a 250 m1. beaker. 0.15 gram of betaine hydrazide chloride was added to the aqueous copolymer with stirring and with the liquid reaction mixture kept at a temperature of 35- 40 C. for a period of 30 minutes. This product was tested on an alpha-sulfite pulp without the use of any aluminum salt. The resultant paper product so treated gave a wet strength of 30.4%. In this case the amine group reacts with the aldehyde group of the copolymer and introduces the quaternary cationic group into the Monomers 10 EXAMPLE IV This example illustrates preparation of a cationic terpolymer. To 297.0 grams of the terpolymer of Example III (3.13% by weight in aqueous solution) was added 0.09 gram of betaine hydrazide chloride. The cationic material and terpolymer were stirred for minutes at 40 C. An alphasulfite pulp treated with 1.0% by weight of the above cationic terpolymer when formed into a sheeted paper product had a 31.4% wet strength.
Other water-soluble polymers were also prepared having varying ratios of acrolein, and N-vinyl-pyrrolidone. Likewise, cationic derivatives of the water-soluble copolymers were prepared. Terpolymers of acrolein-N-vinyl pyrrolidone-vinyl-acetate were also prepared in varying mol ratios. Some of these were also modified by reaction with a betaine hydrazide chloride amine-quaternary. All of these coplymers and terpolymers, unmodified or cationically modified, were tested in either alpha-sulfite pulp or unbleached soft kraft pulp without further addition of alum. Wet strength results are presented below in Table I. The above wet strength additives were added at a dosage level of 1.0% by weight based on bone dry weight of paper fibers.
Mol Ratio Modified By Unbleached Sulfite P Pulp ulp No A1 product. In a comparative test a water-soluble bisulfite adduct of polyacrolein, specifically, the sodium bisulfite addition product of acrolein, when tested for efiectiveness as a wet strength additive on alpha-sulfite pulp gave a paper product having a wet strength of only 10-12%. This wet strength percent was obtained only when alum was also applied-to the paper pulp. When no alum Was used in conjunction with the bisulfite adduct of polyacrolein a wet strength of only 3% was obtained. The amount of aluminim sulfate added when employed was 3.0% by weight based on the dry weight of the paper fibers.
EXAMPLE III The particular interpolymer produced in this example was a terpolymer of acrolein, N-vinyl-pyrrolidone and vinyl acetate. Into a 2 liter, 3 necked flask arranged with stirring device and thermometer, were added 95 milliliters of water and 0.54 gram of potassium persulfate. The flask was purged with nitrogen and then 18.7 grams of distilled acrolein, 28.7 grams of distilled vinyl acetate and 25.9 grams of N.-vinyl-pyrrolidone were added, followed by addition of 0.34 gram of silver nitrate dissolved in 5 ml. of water. After a period of 25 minutes the temperature slowly rose to a peak of 33 C. and the dilution was then begun slowly. The reaction mixture was diluted over a period of three hours with 1,292 m1. of water n such a manner that the solids concentration of reactants was below 10% during the last 1 /2 hours of reaction time. At the end of the reaction time, the solids content was 3.13% in water. This terpolymer was added at a 1.0% dosage level to unbleached soft kraft pulp and the treated paper product was then measured for wet strength. This product had a wet strength of 30.4%.
In addition to the specifically shown copolymers and terpolymers, it is possible to prepare compounds of the same class containing other alphabeta-ethyleni-cally unsaturated monomers containing a non-anionic hydrophilic side chain radical. Such other compounds may be prepared by the techniques illustrated above. Likewise, these copolymers and terpolymers may 'be cationically modifie'd with a number of varying amines or amine quarternaries of the type listed above without departing from the scope of the invention.
It has been shown that the novel copolymers and terpolymers described herein are highly effective as wetstrength agents in the absence of alum. It should be further noted, however, that the novel treating agents are equally effective in systems wherein aluminum salts :are normally present, such as where alum is used to retain rosin size or other materials.
In addition to their primary utility as wet strength agents the copolymers, modified and unmodified, and cationically modified or unreacted terpolymers may be used as additives in a number of processes or employed per se to produce a variety of manufactured articles. For example, the aqueous solutions of polymers may be cast or spun into shaped articles, sheets, films, wrappintg tissues, tubing, filaments, yarns, threads, etc. For example, aqueous or alcoholic solutions of the polymers of the invention, by evaporative techniques may be shaped into any desired industrial article. Likewise, the polymers may be used in coating, finishing, casting or molding for adhesion or lamination. Specifically, they may be used as adhesives for cellophane, paper, cloth, etc., as finishes for fabrics, as permanent sizes for yarns, as protective water resistant coverings, for use as sausage casings, as dye intermediates, as filament film formers, etc. The polymers may also find excellent use as anchoring agents for natural and synthetic filaments, films and artificial leather. The may also be used to finish and impregnate or coat by surface modification or other manipulative techniques, a number of industrial and commercial articles. The versatility of the polymers of the invention in that they may be suitable cured both at room tempera ture and above, help them find use in many of the above stated processes.
The invention is hereby claimed as follows:
1. As a wet strength agent for paper a composition consisting essentially of a water-soluble product of polymerization of a mixture of monomers having no anionic substituents and consisting of an alpha-beta-ethylenically unsaturated aldehyde having the formula:
where R and R are selected from the group consisting of halogen, lower alkyl radicals and hydrogen, and a nitrogen heterocycle containing an ethylenically unsaturated group capable of copolymerization with said alphabeta-ethylenically unsaturated aldehyde.
2. The composition of claim 1 wherein said product is prepared whereby it is soluble in aqueous liquids up to about by weight of solids by carrying out said polymerization as a dilute aqueous reaction mixture containing below about 10% by weight of reactants consisting essentially of said alpha-lbeta-ethylenically unsaturated aldehyde and said nitrogen heterocycle during at least one-third the period of said polymerization reaction.
3. The composition of claim 1 wherein said alpha-betaethylenically unsaturated aldehyde is acrolein and said monomer mixture consisting essentially of 10 to 80 mole percent acrolein and to 90 mole percent of nitrogen heterocycle.
4. As a wet strength agent for paper a cationic composition consisting essentially of a water-soluble reaction product of the copolymer formed by polymerization of a mixture of monomers having no anionic substituent and consisting of an alpha beta-ethylenically unsaturated aldehyde having the formula:
wherein R and R are selected from the group consisting of halogen, lower alkyl radicals and hydrogen, and a nitrogen heterocycle containing an ethylenically unsaturated group capable of copolymerization with said alphabeta-ethylenically unsaturated aldehyde; and a water soluble amine or amine quaternary reactant containing two or more amino groups and of further modification reaction with said copoloymer.
5. The composition of claim 4 wherein said cationic composition is prepared whereby it is soluble in aqueous liquids up to about 10% by weight of solids by carrying out said copol-ymerization as a dilute aqueous reaction mixture containing below about 10% by weight of reactants consisting essentially of said alpha-beta-ethylenically unsaturated aldehyde and said nitrogen heterocycle 'during at least one-third the period of said polymerization reaction.
6. The composition of claim 4 wherein said alpha-betaethylenically unsaturated aldehyde is acrolein, said monomer mixture comprises 20 to 67 mole percent acrolein and 33 to 80 mole percent nitrogen heterocycle, and the ratio of said copolymer to said amine reactant ranges from 50:1 to 1:1.
7. As a wet strength agent for paper a terpolymer composition consisting essentially of a water-soluble product of polymerization of a mixture of monomers having no anionic substituents and consisting of an alphabeta-ethylenically unsaturated aldehyde having the formula:
wherein R and R are selected from the group consisting of halogen, lower alkyl radicals and hydrogen, a nitrogen heterocycle containing an ethylenically unsaturated group capable of polymerization with said alphabeta-ethylenically unsaturated aldehyde and an ethylenically unsaturated monomer containing a hydrophilic radical as a side chain, said ethylenically unsatunated monomer capable of a terpolymerization reaction together with said alpha beta-ethylenically unsaturated aldehyde and said nitrogen heterocycle.
8. The composition of claim 7 wherein said terpolymer is prepared whereby it is soluble in aqueous liquids up to about 10% by weight of solids carrying out said terpolymerization as a dilute aqueous reaction mixture containing below about 10% by weight of reactants consisting essentially of said alpha-beta-ethylenically unsaturated aldehyde, said nitrogen heterocycle and said ethylenically unsaturated monomer during at least one-third the period of said polymerization reaction.
9. The composition of claim 7 wherein said terpolymer is prepared by reacting from about 10% to about 70% mol percent of each of said alpha-beta-ethylenically unsaturated aldehyde, said nitrogen heterocycle and said ethylenically unsaturated monomer.
10. The composition of claim 7 wherein said terpolymer consisting essentially of acrolein, and vinyl pyrrolidone.
11. As a wet strength agent for paper a cationic composition consisting essentially of a water-soluble reaction product-of the terpolymer formed by polymerization of a mixture of monomers having no anionic substituents and consisting of an alpha-beta-ethylenically unsaturated aldehyde having the formula:
wherein R and R are selected from the group consisting of halogen, lower alkyl radicals and hydrogen, a nitrogen reterocycle containing an ethylenically unsaturated group capable of polymerization with said alpha-beta-ethylenically unsaturated aldehyde, and an ethylenically unsaturated monomer containing a hydrophilic radical as a side chain capable of terpolymerization with said alph-betaethylenically unsaturated aldehyde and said nitrogen heterocycle; and a water soluble amine or amine quaternary reactant containing two or more amino groups and capable of further modification reaction with said terpolymer.
12. The method of preparing water-soluble copolymers of an alpha-beta-ethylenically unsaturated aldehyde having the formula:
where R and R are selected from the group consisting of halogen, hydrogen, and lower alkyl radicals and a nitrogen heterocycle containing an ethylenically unsaturated group capable of copolymerization with said alpha-beta-ethylenically unsaturated aldehyde, said copolymers being useful as wet strength agents for paper, consisting essentially of the steps of preparing an aqueous polymerization reaction mixture. of monomers having no anionic substituents and consisting essentially of said alpha-beta-ethylenically unsaturated aldehyde and said nitrogen heterocycle and effecting polymerization of said mixture while keeping the solids concentration below about 10% by weight during at least one-third of the reaction time.
13. The method of claim 12 wherein said reaction is carried out at a temperature range of from 0 to about 60 C. for a period of time ranging from one to three hours duration, said alpha-beta-ethylenically unsaturated aldehyde is acrolein and said nitrogen heterocycle is vinylpyrrolidone, with the monomer mixture comprising 20-67 mole percent acrolein and 33-80 mole percent vinyl pyrrolidone.
14. The method of claim 12 wherein said reaction mixture is periodically diluted with water during said polymerization such that during the latter one-half period of said reaction the solids concentration is below about 10% by Weight.
15. The method of preparing cationic water-soluble copolymers of an alpha-beta-ethylenically unsaturated aldehyde having the formula:
where R and R are selected from the group consisting of halogen, lower alkyl radicals and hydrogen, and a nitrogen heterocycle containing an ethylenically unsaturated group capable of copolyrherization with said alpha-beta-ethylenically unsaturated aldehyde, said water-soluble cationic copolymer being useful as wet strengthening agents for paper, consisting essentially of the steps of preparing an aqueous polymerization reaction mixture of monomers having no anionic substituents and consisting essentially of said alpha-beta-ethylenically unsaturated aldehyde and said nitrogen heterocycle, elfecting polymerization of said reaction While keeping the solids concentration below about 10% by weight during at least one-third of the reaction time, adding to said produced copolymer an amine capable of further reaction with said copolymer, and reacting said copolymer and said amine whereby said copolymer is rendered substantially cationic.
16. The method of claim 15 wherein said polymerization reaction is carried out at a temperature range from about to 60 C. for a period of time ranging from about one hour to about three hours, said alpha-beta-ethylenically unsaturated aldehyde is acrolein, and said nitrogen heterocycle is vinyl-pyrrolidone, with said mixture comprising -80 mole percent acrolein and 20-90 mole percent vinyl-pyrrolidone.
17. The method of claim wherein said polymerization reaction is carried out while said reaction mixture is diluted with periodic additions of water whereby during the latter one-half of the reaction period the solids concentration is below about 10%.
18. The method of preparing water-soluble terpolymers comprising an alpha-beta-ethylenically unsaturated aldehyde having the following formula:
R2CH=( JCHO where R and R are selected from a group consisting of halogens, lower alkyl radicals and hydrogen, a nitrogen heterocycle containing an ethyelnically unsaturated group capable of copolymerization with said alpha-beta-ethylenically unsaturated aldehyde, and an ethylenically unsaturated monomercontaining a hydrophilic radical as a side chain capable of terpolymerization with said alpha-betaethylenically unsaturated aldehydye and said nitrogen heterocycle, said terpolymers being usefulas wet strengthening agents for paper, consisting essentially of the steps of preparing an aqueous polymerization reaction mixture of monomers having in anionic substituents and consisting essentially of said alpha-beta-ethylenically unsaturated aldehyde, said nitrogen heterocycle and said ethylenically unsaturated monomer, and elfecting polymerization of said mixture while keeping the solids content below about 10% by weight'during at least one-third of the reaction time. t
19. The method of claim 18 wherein said terpolymerization reaction is carried out at a temperature range of from about 0 to about C. for a period of time ranging from one to about three hours, said alpha-beta-ethylenically unsaturated aldehyde is acrolein, said nitrogen heterocycle is vinyl-pyrrolidone, and said ethylenically unsaturated monomer is vinyl acetate, with the mol percents of said reactantrnonomers being varied from 10 to 20. The method of claim 18 wherein said terpolymerization reactiQn is carried out by periodically diluting said reaction mixture with water whereby during the latter half of the reaction time the solids concentration is below about 10%.
21. The method of claim 18 wherein the terpolymer so produced is rendered substantially cationic by adding to said produced terpolymer a water soluble amine or amine quaternary reactant containing two or more amino groups and capable of further reaction with said terpolymer, and reacting said terpolymer and said amine for sufficient time to producea substantial number of cationic sites in said terpolymer.
References Cited UNITED STATES PATENTS 3,129,195 4/1964 June etal 260-806 3,323,980 6/1967 Poschmannetal. 162-168 WILLIAM H. SJHORT, Primary Examiner. E. M. WOODBERRY, Assistant Examiner UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,410,828 November 12 1968 George T. Kekish It is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:
Column 3 line 5 "find acceptance should read find ready acceptance line 10, "these effective" should read these aldehyde polymers could be so produced whereby they would be effective line 38, "aionic should read Column 4, line 17, "croton-aldehyde" should read crotonaldehyde should read an Column 6, line 48, "ethyleically" should read ethylenically line 61, "catioic" should read cationic Column 9, line 13, "3.8% should read 3. 58% Column 12 line 44, "reterocycle" should read heterocycle Column 14, line 8, "ethyelnically should read ethylenically Signed and sealed this 21st day of April 1970.
anionic line 25, "en
(SEAL) Attest:
WILLIAM E. SCHUYLER, JR.
Edward M. Fletcher, Jr.
Commissioner of Patents Attesting Officer
US596404A 1965-09-22 1966-11-23 Acrolein-n-vinyl pyrrolidone copolymer and cationic derivative paper wet-strength agents Expired - Lifetime US3410828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US596404A US3410828A (en) 1965-09-22 1966-11-23 Acrolein-n-vinyl pyrrolidone copolymer and cationic derivative paper wet-strength agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US489395A US3317370A (en) 1965-09-22 1965-09-22 Process of preparing wet strength paper containing acrolein polymers
US596404A US3410828A (en) 1965-09-22 1966-11-23 Acrolein-n-vinyl pyrrolidone copolymer and cationic derivative paper wet-strength agents

Publications (1)

Publication Number Publication Date
US3410828A true US3410828A (en) 1968-11-12

Family

ID=27049701

Family Applications (1)

Application Number Title Priority Date Filing Date
US596404A Expired - Lifetime US3410828A (en) 1965-09-22 1966-11-23 Acrolein-n-vinyl pyrrolidone copolymer and cationic derivative paper wet-strength agents

Country Status (1)

Country Link
US (1) US3410828A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330337A (en) * 1980-03-19 1982-05-18 Ppg Industries, Inc. Glass fibers with improved dispersibility in aqueous solutions and sizing composition and process for making same
US4361465A (en) * 1980-03-19 1982-11-30 Ppg Industries, Inc. Glass fibers with improved dispersibility in aqueous solutions and sizing composition and process for making same
US4370169A (en) * 1980-12-31 1983-01-25 Ppg Industries, Inc. Aqueous dispersion of glass fibers and method and composition for producing same
US4381199A (en) * 1980-12-31 1983-04-26 Ppg Industries, Inc. Aqueous dispersion of glass fibers and method and composition for producing same
EP0350276A2 (en) * 1988-07-05 1990-01-10 The Procter & Gamble Company Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same
US5008344A (en) * 1988-07-05 1991-04-16 The Procter & Gamble Company Temporary wet strength resins and paper products containing same
US5085736A (en) * 1988-07-05 1992-02-04 The Procter & Gamble Company Temporary wet strength resins and paper products containing same
US5138002A (en) * 1988-07-05 1992-08-11 The Procter & Gamble Company Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same
US5690790A (en) * 1996-03-28 1997-11-25 The Procter & Gamble Company Temporary wet strength paper
US6197919B1 (en) 1997-05-30 2001-03-06 Hercules Incorporated Resins of amphoteric aldehyde polymers and use of said resins as temporary wet-strength or dry-strength resins for paper
US6319361B1 (en) 1996-03-28 2001-11-20 The Procter & Gamble Company Paper products having wet strength from aldehyde-functionalized cellulosic fibers and polymers
WO2012031063A1 (en) 2010-09-03 2012-03-08 The Procter & Gamble Company Polymer-containing articles of manufacture and methods for making same
WO2013033352A1 (en) 2011-09-01 2013-03-07 The Procter & Gamble Company Cleaning compositions and soil capture agent for cleaning objects
WO2013033275A1 (en) 2011-09-01 2013-03-07 The Procter & Gamble Company Soil adsorption polymers
WO2013033339A1 (en) 2011-09-01 2013-03-07 The Procter & Gamble Company Article and soil capture agent for cleaning surfaces
WO2014205015A1 (en) 2013-06-18 2014-12-24 The Procter & Gamble Company Laminate cleaning implement
WO2014205016A1 (en) 2013-06-18 2014-12-24 The Procter & Gamble Company Bonded laminate cleaning implement
WO2016160503A1 (en) 2015-03-27 2016-10-06 The Procter & Gamble Company Durably associated soil adsorbing composites, compositions, and methods for using same
WO2016160504A1 (en) 2015-03-27 2016-10-06 The Procter & Gamble Company Soil adsorbing composites, compositions, and methods for using same
US11345807B2 (en) 2018-11-02 2022-05-31 Buckman Laboratories International, Inc. Synthesis of re-pulpable temporary wet strength polymer for tissue application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129195A (en) * 1962-02-08 1964-04-14 Shell Oil Co Copolymers of unsaturated aldehydes and-so3-containing monomers and their preparation
US3323980A (en) * 1962-03-14 1967-06-06 Basf Ag Process of sizing paper with water-soluble vinylimidazoline polymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129195A (en) * 1962-02-08 1964-04-14 Shell Oil Co Copolymers of unsaturated aldehydes and-so3-containing monomers and their preparation
US3323980A (en) * 1962-03-14 1967-06-06 Basf Ag Process of sizing paper with water-soluble vinylimidazoline polymers

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330337A (en) * 1980-03-19 1982-05-18 Ppg Industries, Inc. Glass fibers with improved dispersibility in aqueous solutions and sizing composition and process for making same
US4361465A (en) * 1980-03-19 1982-11-30 Ppg Industries, Inc. Glass fibers with improved dispersibility in aqueous solutions and sizing composition and process for making same
US4370169A (en) * 1980-12-31 1983-01-25 Ppg Industries, Inc. Aqueous dispersion of glass fibers and method and composition for producing same
US4381199A (en) * 1980-12-31 1983-04-26 Ppg Industries, Inc. Aqueous dispersion of glass fibers and method and composition for producing same
EP0350276A2 (en) * 1988-07-05 1990-01-10 The Procter & Gamble Company Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same
US4981557A (en) * 1988-07-05 1991-01-01 The Procter & Gamble Company Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same
US5008344A (en) * 1988-07-05 1991-04-16 The Procter & Gamble Company Temporary wet strength resins and paper products containing same
EP0350276A3 (en) * 1988-07-05 1991-07-10 The Procter & Gamble Company Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same
US5085736A (en) * 1988-07-05 1992-02-04 The Procter & Gamble Company Temporary wet strength resins and paper products containing same
US5138002A (en) * 1988-07-05 1992-08-11 The Procter & Gamble Company Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same
US6319361B1 (en) 1996-03-28 2001-11-20 The Procter & Gamble Company Paper products having wet strength from aldehyde-functionalized cellulosic fibers and polymers
US5690790A (en) * 1996-03-28 1997-11-25 The Procter & Gamble Company Temporary wet strength paper
US6197919B1 (en) 1997-05-30 2001-03-06 Hercules Incorporated Resins of amphoteric aldehyde polymers and use of said resins as temporary wet-strength or dry-strength resins for paper
WO2012031063A1 (en) 2010-09-03 2012-03-08 The Procter & Gamble Company Polymer-containing articles of manufacture and methods for making same
EP3020740A2 (en) 2011-09-01 2016-05-18 The Procter and Gamble Company Soil adsorption polymers
WO2013033352A1 (en) 2011-09-01 2013-03-07 The Procter & Gamble Company Cleaning compositions and soil capture agent for cleaning objects
WO2013033275A1 (en) 2011-09-01 2013-03-07 The Procter & Gamble Company Soil adsorption polymers
WO2013033339A1 (en) 2011-09-01 2013-03-07 The Procter & Gamble Company Article and soil capture agent for cleaning surfaces
EP3147302A2 (en) 2011-09-01 2017-03-29 The Procter and Gamble Company Soil adsorption polymers
WO2014205015A1 (en) 2013-06-18 2014-12-24 The Procter & Gamble Company Laminate cleaning implement
WO2014205016A1 (en) 2013-06-18 2014-12-24 The Procter & Gamble Company Bonded laminate cleaning implement
WO2016160503A1 (en) 2015-03-27 2016-10-06 The Procter & Gamble Company Durably associated soil adsorbing composites, compositions, and methods for using same
WO2016160504A1 (en) 2015-03-27 2016-10-06 The Procter & Gamble Company Soil adsorbing composites, compositions, and methods for using same
US11345807B2 (en) 2018-11-02 2022-05-31 Buckman Laboratories International, Inc. Synthesis of re-pulpable temporary wet strength polymer for tissue application

Similar Documents

Publication Publication Date Title
US3410828A (en) Acrolein-n-vinyl pyrrolidone copolymer and cationic derivative paper wet-strength agents
US3317370A (en) Process of preparing wet strength paper containing acrolein polymers
CA2005668C (en) Emulsified functionalized polymers
CA1208083A (en) Nonwoven products having low residual free formaldehyde content
US5138002A (en) Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same
US4981557A (en) Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same
RU2361977C2 (en) Method of applying polymers functioning as aldehyde to improve drying in papermaking machines
US7125469B2 (en) Temporary wet strength resins
KR101270913B1 (en) Reactive cationic resins for use as dry and wet strength agents in sulfite ion-containing papermaking systems
US2745744A (en) Treating agents incorporation
AU2011323632B2 (en) Surface application of polymers to improve paper strength
US5037863A (en) Emulsified functionalized polymers
US2999038A (en) Method of producing wet-strength papers
US6488812B2 (en) Soft tissue with improved lint and slough properties
US4353993A (en) Foam compositions for surface application to fibrous substrates
US3597374A (en) Coating process for fibrous substrates
US3428617A (en) Cationic hydroxy-containing polymers,preparation and use
US3347832A (en) Cationic hydroxy-containing terpolymers, preparation and use
EP4217587A1 (en) Stable cationic polyacrylamide dispersions and use thereof in papermaking
US20040122151A1 (en) Cationic polyvinyl alcohol-containing compositions
EP3571348B1 (en) High molecular weight temporary wet strength resin for paper
US2771362A (en) Cellulose fibrous products containing polymers of vinyloxyethylurea and method of producing them
JP2983713B2 (en) Paper Strengthening Agent
CA1276376C (en) Polymers and process of making same
US3022214A (en) Paper sized with cationic vinyl copolymer and process for the manufacture thereof