US3412273A - High voltage lightning arrester having a plurality of arrester elements - Google Patents

High voltage lightning arrester having a plurality of arrester elements Download PDF

Info

Publication number
US3412273A
US3412273A US407012A US40701264A US3412273A US 3412273 A US3412273 A US 3412273A US 407012 A US407012 A US 407012A US 40701264 A US40701264 A US 40701264A US 3412273 A US3412273 A US 3412273A
Authority
US
United States
Prior art keywords
arrester
plates
plate
insulative
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US407012A
Inventor
Richard E Kennon
John E Harder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to US407012A priority Critical patent/US3412273A/en
Application granted granted Critical
Publication of US3412273A publication Critical patent/US3412273A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/16Series resistor structurally associated with spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors

Definitions

  • ABSTRACT OF THE DISCLOSURE A high voltage lightning arrester having a plurality of columns of arrester elements divided into sections by insulating plates which also support the columns.
  • the present invention relates to lightning arresters, and more particularly to arresters adapted for servicing high voltage lines or equipment.
  • the arrester elements must be physically supported in the columnar arrangement while intercolumnar connections are provided to establish a series arrester circuit through the elements. Sufficient insulation level (through gas and other insulative material) must exist between all physically proximate circuit points subject to any potential difference.
  • One basic structural approach is that in which a plurality of horizontally disposed insulative plates are interposed and spaced along the height of the arrester element columns. Physical support of the individual arrester elements is provided by the plates which in turn can be mechanically interconnected by means of insulative tie rods and thereby fixed in relation to the arrester housing. Intercolumnar connections between the arrester elements are made adjacent the vertically spaced insulative plates to provide a series arrester circuit which spirals along the arrester height.
  • the assembly of plates and arrester elements be characterized with mechanical strength and relatively minimum height as well as with manufacturing facility and economy including minimal usage of insulative materials consistent with required insulation levels.
  • insulative material With respect to usage of insulative material, it is known that too much material in the wrong places can be detrimental to arrester operation since voltage gradients can be established across two materials of different dielectric constants that will cause ionization leading to insulation failure or radio interference.
  • a primary determinant of these manufacturing and end product features is the structure of the insulative plates and the manner in which cooperation is provided among the plates and the arrester elements.
  • an arrester device a multiple column assembly of arrester elements characterized with the foregoing as well as other structural and manufacturing features.
  • the assembly comprises a plurality of suitable valve blocks and arrester gap units arranged in at least three physical columns and interconnected in a series circuit with insulative plates horizontally disposed at spaced levels along the assembly height to provide mechanical support and required insulation between physically proximate but electrically diverse circuit points.
  • Each physical column is divided by the plates into a plurality of sections, with each section having top and bottom vertical support provided by the bottom and top sides of respective associated plates.
  • each plate is provided with insulative wall means projecting in the vertical direction so as to provide a creepage barrier and, if desired, to provide side support for the arrester elements in adjacent sections of all but one of the columns.
  • Each plate also has at least one opening preferably formed by a pair of arms in the plate solid plane to provide side support for arrester elements in a transfer section of the column.
  • Another object of the invention is to provide a novel high voltage arrester in which a multiple column assembly of arrester elements is arranged for manufacturing facility and economy.
  • An additional object of the invention is to provide a novel high voltage arrester in which a multiple column assembly of arrester elements is characterized with good mechanical strength.
  • FIGURE 1 shows an exploded perspective view of an arrester constructed in accordance with the principles of the invention and having parts thereof broken away;
  • FIG. 2 shows a schematic diagram of an arrester circuit formed within the device of FIG. 1;
  • FIG. 3 shows a top view of an insulative plate used in an arrester element assembly of the device of FIG. 1;
  • FIG. 4 shows a cross-section of the insulative plate taken along the reference line IVIV of FIG. 3.
  • FIG. 1 a high voltage lightning arrester 10 constructed in accordance with the principles of the invention for connection, alone or in series with additional identical arresters or arrester units, between a high voltage conductor and ground.
  • the arrester 10 includes an insulative or porcelain housing 12 filled with an insulative atmosphere such as dry nitrogen and having end terminal plates 14 and 16 disposed at the top and bottom thereof and in sealed securance therewith.
  • an assembly 18 of arrester elements is supported between the terminal plates 14 and 16.
  • coil springs 20 hold the assembly 18 in compression to provide stable mechanical support for the assembly 18 during shipment and during use and to maintain reliable electrical connections throughout the arrester circuit provided by the assembly 18.
  • the arrester circuit comprises a suitable plurality of arrester elements or suitable gap units 22 and suitable valve blocks 24 connected in a single series electrical circuit physically disposed in three columns.
  • the number and the voltage rating of the elements 22 and 24 are determinative of the overall arrester voltage rating. It is apparent that the pluralistic columnar arrangement of elements 22 and 24 leads to height conservation for the arrester device 10.
  • Each gap unit 22 can for example comprise the magnetic blowout gap structure disclosed in a copending application Ser. No. 405,945, filed by J. Osterhout on Oct. 23, 1964 and assigned to the present assignee.
  • each block 24 is characterized with resistance which decreases with increasing voltage.
  • each block 24 can be formed from granular silicon carbide with a suitable binder.
  • end surfaces of the blocks 24 can be suitably metallized (not shown) to provide for circuit connections.
  • the assembly 18 includes top and bottom connector plates 26 and 28 between which the arrester elements 22 and 24 are supported in the columns by means of insulative (for example porcelain) plates 30 which are tied together to the connector plates 26 and 28 by means of insulative tie rods 32.
  • the insulative plates 30 generally have an outer contour which encompasses that of the arrester element columns and further divide each column into vertical sections so that the arrester circuit can be formed spirally through the sections from column to column along the assembly height.
  • each section of each column forms a series circuit segment and is supported at its top by means of a bottom side 34 of an adjacent plate 30 and at its bottom by means of a top side 36 of an adjacent plate.
  • Twoexceptions are the topmost and bottommost sections which receive top and bottom support respectively by the end connector plates 26 and 28.
  • each plate 30 is provided with an opening 38 (FIG. 3) preferably formed by a pair of arms 40 and 42 in the plane of the plate 30.
  • the ends of the arms 40 and '42 are provided with accurate indents 44 and 46 between which there is horizontally supported in the opening 38 an element or block 24 of a transfer section of one of the columns.
  • an open space 48 is provided radially inwardly from the opening 38 for the purpose of providing the necessary single dielectric constant gaseous insulation and adequately long creepage path between columns.
  • each transfer section is provided with midpoint support by the arms 40 and 42 of an intermediately located plate 30 as well as top and bottom support by top and bottom plates 30 located at the ends of the transfer section.
  • every alternate columnar section in the series circuit path is a transfer section.
  • each plate 30 is provided with vertically projecting wall means 50 on its top side 36 and preferably identical vertical projecting wall means 50 on its bottom side 34.
  • the wall means 50 is in the form of a single vertically projecting wall 52 which circnmscribes the end arrester elements 22 or 24 of a pair of sections vertically supported therewithin. If desired, side support can thus be provided for the ends of each section, but primarily a barrier is provided against creepage between end elements aligned with each other in the same column and disposed in spaced relation on opposite sides of the plate 30. Further, as can be observed in FIG. 1, the plates 30 are successively rotated from one another by 120 so that the spiraling intercolumnar circuit path can be formed as described.
  • each plate 30 is also provided with openings 54 and 56 in the plate arms 40 and 42 and an opening 58 extended through the solid plane of the plate radially outwardly of the creepage wall 52.
  • openings 54 and 56 are extended through the aligned plate openings 54, '56 and 58 of the various plates 30, side support is provided for the plates 30 against horizontal dislocation from the assembly 18.
  • Vertical support is provided as previously described, namely by means of compressive force applied among the arrester elements 22 and 24 and the plates 30 by means of the coil springs 20.
  • the various arrester element columnar sections are cross connected in the overall arrester series circuit by suitable means, preferably by conductive metallic plates 60 respectively disposed within the plate walls 52 against the bottom side 34 or the top side 36 of each insulative plate 30.
  • suitable means preferably by conductive metallic plates 60 respectively disposed within the plate walls 52 against the bottom side 34 or the top side 36 of each insulative plate 30.
  • the portion of the horizontal plate surface ⁇ within the wall 52 on each plate side 34 or 36- is metallized or sprayed with conductive paint to establish fixed capacitance between the two plate sides 34 and 36.
  • Such capacitance electrically parallels portions of the arrester circuit as more fully described in US. Patent No. 2,542,805, entitled, Lightning Arrester, issued to A. J. Fink on Feb. 20, 1951, and assigned to the present assignee.
  • the purpose of the built-in capacitance is to produce substantially uniform voltage gradient across the arrester circuit. If the dielectric constant of the plate material is relatively high, it is not necessary to use auxiliary capacitors to supplement the indicated capacitance effect. For the lower frequency components of arrester voltage it is normally necessary to use suitably connected nonlinear resistors (not shown) for voltage grading purposes.
  • FIG. 2 there is schematically illustrated a sample arrangement for the gaps 22 and the blocks 24 in the various sections of the columns.
  • the reference characters 22 .and 24 are used for the gaps and the blocks and the reference character 52 represents the insulation provided by the plate walls 52 against creepage. It is assumed in this example that an overall arrester rating of 48 kv. is specified and that the gaps are rated at 6 kv. and the blocks are rated at 4 kv. Further, to facilitate illustration, the columns of aligned elements in FIG. 2 do not correspond with the physical columns in FIG. 1.
  • a first columnar section 62 comprises a block 24 and a gap 22 supported at its top against top connector plate 26 and at its bottom within the top wall 52 of an insulative plate 30 indicated in this schematic by the reference character 64.
  • the block 24 in the section 62 is operable at a potential of 48 kv.
  • Another section 66 is serially connected with the section 62 by means of a connector 60 and it also is supported within the top wall 52 of the insulative plate 64.
  • the section '66 comprises a pair of blocks 24 which are operable at a potential of 42 kv. because of a 6 kv. voltage drop in the gap 22 of the section 62.
  • a topmost insulative plate 68 is disposed on the section 66 with the topmost block 24 of the section 66 disposed within the bottom wall 52 of the plate 68.
  • a connector 60 extends from the section 66 to the next columnar section which is a transfer section 70.
  • the section 70 cooperates with the section 66 in supporting the plate 68 and it includes a pair of gaps 22 separated by a block 24 (operable at 36 kv.) with the block 24 side supported by the arms 40 and 42 of the plate 64.
  • the transfer section 70 is provided with bottom support by another insulative plate 72 within the top wall 52 thereof.
  • Another connector 60 within the top wall 52 of the plate 72 establishes connection between the transfer section 70 to another section 74 comprising a pair of blocks (operable at 30 kv.).
  • the section 74 and another transfer section 76 support the plate 64, and the transfer section 76 in turn is supported by another plate 78.
  • the arrester circuit is thus continued to the bottom connector plate 28 (operable at 0 kv.) at the bottom of the assembly 18.
  • the gaps 22 and blocks 24 and plates 30 mutually support one another as indicated while a series intercolumnar arrester circuit is established with adequate but not excessive placement of insulation.
  • the assembly 18 is formed with facility by layering insulative plates 30, blocks 24 and gaps 22 yet it is clear that the support relationships within the assembly 18 provide excellent mechanical strength. Further, the structural organization of the plates 30 is such that required insulation is provided while economy in use of insulative material is achieved and while overall arrester height is relatively conserved.
  • a lightning arrester comprising an insulative housing, a plurality of arrester elements disposed in a plurality of vertical columns within said housing, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections including transfer sections with each section supported between a pair of said plates, an opening in each of said plates through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, creepage barrier Wall means disposed on each side of said plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, and means for connecting said sections into a series arrester circuit.
  • a lightning arrester comprising an insulative housing, a plurality of arrester elements disposed in a plurality of vertical columns within said housing, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections with each section supported between a pair of said plates, said sections including transfer sections each of which includes some of said arrester elements of which at least one is a gap unit, an opening in each of said plates through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, creepage barrier wall means disposed on each side of said plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, and means for connecting said sections into a series arrester circuit.
  • a lightning arrester comprising an insulative housing, a plurality of arrester elements disposed in three vertical columns within said housing, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections with each section supported between a pair of said plates, said sections including transfer sections each of which contains some of said arrester elements of which at least one is a gap unit, an opening in each of said plates through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, creepage barrier wall means disposed on each side of said plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, means connecting said sections into a series arrester circuit, every alternate section in said series circuit being a transfer section.
  • a lightning arrester comprising an insulative housing, a plurality of arrester elements disposed in a plurality of vertical columns within said housing, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections including transfer sections with each section supported between a pair of said plates, an opening in each of said plates through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, a vertically projecting creepage barrier wall disposed on each side of said plates and circumscribing the end elements of superjacent and subjacent sections which are supported against said plate sides, and means for connecting said sections into a series arrester circuit.
  • a lightning arrester comprising an insulative housing, a plurality of arrester elements disposed in a plurality of vertical columns within said housing, a plurality of insulative plates interposed in vetrically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections including transfer sections with each section supported between a pair of said plates, each plate having a pair of arms extending in the solid plane thereof, an opening provided between the ends of said arms through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, creepage barrier wall means disposed on each side of said plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, and means for connecting said sections into a series .arrester circuit.
  • a lightning arrester comprising an insulative housing, a plurality of arrester elements disposed in a plurality of vertical columns within said housing, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections including transfer sections with each section supported between a pair of said plates, each plate having a pair of arms extending in the solid plane thereof, an indent in the outer end of each of said arms with an opening therebetween through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, and another opening between said arms inwardly of the end opening to provide single dielectric constant gaseous insulation and an adequately long creepage path between said columns, creepage barrier wall means disposed on each side of said plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, and means for connecting said sections into a series arrester circuit.
  • a lightning arrester comprising an insulative housing, an assembly of arrester elements disposed within said housing, said arrester elements arranged in a plurality of vertical columns, a top end connector plate and a bottom end connector plate for said assembly with said elements disposed in said columns therebetween, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections including transfer sections with each section supported adjacent its top and bottom ends against a pair of said plates, an opening in each of said insulative plates through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, creepage barrier wall means disposed on each side of said insulative plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, means for connecting said sections into a series arrester circuit, and a plurality of insulative tie rods extending between said end connector plates and through respective tie rod openings in each of said insulative plates to tie said assembly together.
  • a lightning arrester comprising an insulative housing, an assembly of arrester elements disposed within said housing, said arrester elements arranged in a plurality of vertical columns, a top end connector plate and a bottom end connector plate for said assembly with said elements disposed in said columns therebetween, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections including transfer sections with each section supported adjacent its top and bottom ends against a pair of said plates, each plate having a pair of arms extending in the solid plane thereof, an opening provided between the ends of said arms through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, creepage barrier wall means disposed on each side of said insulative plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, means for connecting said sections into a series arrester circuit, and a plurality of insulative tie rods extending between said end connector plates and through respective tie rod openings in each of

Description

Nov. 19, 1968 R. E. KENNON ETAL 3,412,273 HIGH VOLTAGE LlGH'l'NING ARRESTER HAVING A PLURALITY OF ARRESTER ELEMENTS Filed on. 28, 1964 2 Sheets-Sheet 1 FIG. I.
2 INVENTORS WITNESSES Richard E. Kennon a 40 aw ATTOR Y 3,412,273 LITY Nov. 19, 1968 R. E. KENNON ETAL HIGH VOLTAGE LIGHTNING ARRESTER HAVING A PLURA OF ARRESTER ELEMENTS 2 Sheets-Sheet z Filed Oct. 28, 1964 FIG. 2
F I G. 4
a as
United States Patent 3,412,273 HIGH VOLTAGE LIGHTNING ARRESTER HAVING A PLURALITY 0F ARRESTER ELEMENTS Richard E. Kennon, Bloomington, and John E. Harder,
Richland Township, Bloomington, Ind., assignors to Westinghouse Electric Corporation, Pittsburgh, Pa., a
corporation of Pennsylvania Filed Oct. 28, 1964, Ser. No. 407,012 9 Claims. (Cl. 3131) ABSTRACT OF THE DISCLOSURE A high voltage lightning arrester having a plurality of columns of arrester elements divided into sections by insulating plates which also support the columns.
The present invention relates to lightning arresters, and more particularly to arresters adapted for servicing high voltage lines or equipment.
In the manufacture of high voltage lightning arresters, it is now common practice to provide a single series circuit of arrester elements through multiple (usually three and sometimes two, but other numbers are feasible) physical columns of the elements. In this manner, the required total arrester voltage rating can be achieved while physical height of the device is held sufficiently low to provide convenient use of the device.
The arrester elements must be physically supported in the columnar arrangement while intercolumnar connections are provided to establish a series arrester circuit through the elements. Sufficient insulation level (through gas and other insulative material) must exist between all physically proximate circuit points subject to any potential difference.
One basic structural approach is that in which a plurality of horizontally disposed insulative plates are interposed and spaced along the height of the arrester element columns. Physical support of the individual arrester elements is provided by the plates which in turn can be mechanically interconnected by means of insulative tie rods and thereby fixed in relation to the arrester housing. Intercolumnar connections between the arrester elements are made adjacent the vertically spaced insulative plates to provide a series arrester circuit which spirals along the arrester height.
It is desirable that the assembly of plates and arrester elements be characterized with mechanical strength and relatively minimum height as well as with manufacturing facility and economy including minimal usage of insulative materials consistent with required insulation levels. With respect to usage of insulative material, it is known that too much material in the wrong places can be detrimental to arrester operation since voltage gradients can be established across two materials of different dielectric constants that will cause ionization leading to insulation failure or radio interference. A primary determinant of these manufacturing and end product features is the structure of the insulative plates and the manner in which cooperation is provided among the plates and the arrester elements.
In accordance with the principles of the present invention, there is provided in an arrester device a multiple column assembly of arrester elements characterized with the foregoing as well as other structural and manufacturing features. The assembly comprises a plurality of suitable valve blocks and arrester gap units arranged in at least three physical columns and interconnected in a series circuit with insulative plates horizontally disposed at spaced levels along the assembly height to provide mechanical support and required insulation between physically proximate but electrically diverse circuit points. Each physical column is divided by the plates into a plurality of sections, with each section having top and bottom vertical support provided by the bottom and top sides of respective associated plates. In turn, top and bottom sides of each plate are provided with insulative wall means projecting in the vertical direction so as to provide a creepage barrier and, if desired, to provide side support for the arrester elements in adjacent sections of all but one of the columns. Each plate also has at least one opening preferably formed by a pair of arms in the plate solid plane to provide side support for arrester elements in a transfer section of the column.
It is therefore an object of the invention to provide a novel high voltage arrester in which a multiple column assembly of arrester elements is efficiently organized for achieving relatively minimal or comparatively reduced arrester height.
Another object of the invention is to provide a novel high voltage arrester in which a multiple column assembly of arrester elements is arranged for manufacturing facility and economy.
An additional object of the invention is to provide a novel high voltage arrester in which a multiple column assembly of arrester elements is characterized with good mechanical strength.
It is a further object of the invention to provide a novel high voltage arrester in which a multiple column assembly of arrester elements is arranged with relatively minimal use of insulative material.
It is an additional object of the invention to provide a novel high voltage arrester in which a multiple column assembly of arrester elements is provided with relatively optimal insulative separation between circuit points subject to relatively large potential drop during arrester operation.
These and other objects of the invention will become more apparent upon consideration of the following detailed description along with the attached drawings, in which:
FIGURE 1 shows an exploded perspective view of an arrester constructed in accordance with the principles of the invention and having parts thereof broken away;
FIG. 2 shows a schematic diagram of an arrester circuit formed within the device of FIG. 1;
FIG. 3 shows a top view of an insulative plate used in an arrester element assembly of the device of FIG. 1; and
FIG. 4 shows a cross-section of the insulative plate taken along the reference line IVIV of FIG. 3.
More specifically, there is shown in FIG. 1 a high voltage lightning arrester 10 constructed in accordance with the principles of the invention for connection, alone or in series with additional identical arresters or arrester units, between a high voltage conductor and ground. The arrester 10 includes an insulative or porcelain housing 12 filled with an insulative atmosphere such as dry nitrogen and having end terminal plates 14 and 16 disposed at the top and bottom thereof and in sealed securance therewith. Within the housing 12, an assembly 18 of arrester elements is supported between the terminal plates 14 and 16. Preferably, coil springs 20 hold the assembly 18 in compression to provide stable mechanical support for the assembly 18 during shipment and during use and to maintain reliable electrical connections throughout the arrester circuit provided by the assembly 18.
The arrester circuit comprises a suitable plurality of arrester elements or suitable gap units 22 and suitable valve blocks 24 connected in a single series electrical circuit physically disposed in three columns. The number and the voltage rating of the elements 22 and 24 are determinative of the overall arrester voltage rating. It is apparent that the pluralistic columnar arrangement of elements 22 and 24 leads to height conservation for the arrester device 10.
Each gap unit 22 can for example comprise the magnetic blowout gap structure disclosed in a copending application Ser. No. 405,945, filed by J. Osterhout on Oct. 23, 1964 and assigned to the present assignee. To facilitate arrester discharge current flow While providing for gap interruption of power follow current, each block 24 is characterized with resistance which decreases with increasing voltage. To obtain this variant resistance property, each block 24 can be formed from granular silicon carbide with a suitable binder. As is well known, end surfaces of the blocks 24 can be suitably metallized (not shown) to provide for circuit connections.
The assembly 18 includes top and bottom connector plates 26 and 28 between which the arrester elements 22 and 24 are supported in the columns by means of insulative (for example porcelain) plates 30 which are tied together to the connector plates 26 and 28 by means of insulative tie rods 32. The insulative plates 30 generally have an outer contour which encompasses that of the arrester element columns and further divide each column into vertical sections so that the arrester circuit can be formed spirally through the sections from column to column along the assembly height.
Generally, each section of each column forms a series circuit segment and is supported at its top by means of a bottom side 34 of an adjacent plate 30 and at its bottom by means of a top side 36 of an adjacent plate. Twoexceptions are the topmost and bottommost sections which receive top and bottom support respectively by the end connector plates 26 and 28.
To provide such mechanical support throughout the assembly 18 while providing for an intercolumnar series arrester circuit, each plate 30 is provided with an opening 38 (FIG. 3) preferably formed by a pair of arms 40 and 42 in the plane of the plate 30. The ends of the arms 40 and '42 are provided with accurate indents 44 and 46 between which there is horizontally supported in the opening 38 an element or block 24 of a transfer section of one of the columns. Preferably, an open space 48 is provided radially inwardly from the opening 38 for the purpose of providing the necessary single dielectric constant gaseous insulation and adequately long creepage path between columns.
The term transfer is used to denote a columnar section which provides a circuit path to a new higher or lower insulative plate level in the assembly 18. Accordingly, each transfer section is provided with midpoint support by the arms 40 and 42 of an intermediately located plate 30 as well as top and bottom support by top and bottom plates 30 located at the ends of the transfer section. In this instance, every alternate columnar section in the series circuit path is a transfer section.
In addition, each plate 30 is provided with vertically projecting wall means 50 on its top side 36 and preferably identical vertical projecting wall means 50 on its bottom side 34. The wall means 50 is in the form of a single vertically projecting wall 52 which circnmscribes the end arrester elements 22 or 24 of a pair of sections vertically supported therewithin. If desired, side support can thus be provided for the ends of each section, but primarily a barrier is provided against creepage between end elements aligned with each other in the same column and disposed in spaced relation on opposite sides of the plate 30. Further, as can be observed in FIG. 1, the plates 30 are successively rotated from one another by 120 so that the spiraling intercolumnar circuit path can be formed as described.
To provide for assembly securance by means of the tie rods 32, each plate 30 is also provided with openings 54 and 56 in the plate arms 40 and 42 and an opening 58 extended through the solid plane of the plate radially outwardly of the creepage wall 52. When the insulative tie rods 32 are extended through the aligned plate openings 54, '56 and 58 of the various plates 30, side support is provided for the plates 30 against horizontal dislocation from the assembly 18. Vertical support is provided as previously described, namely by means of compressive force applied among the arrester elements 22 and 24 and the plates 30 by means of the coil springs 20.
The various arrester element columnar sections are cross connected in the overall arrester series circuit by suitable means, preferably by conductive metallic plates 60 respectively disposed within the plate walls 52 against the bottom side 34 or the top side 36 of each insulative plate 30. Preferably, the portion of the horizontal plate surface \within the wall 52 on each plate side 34 or 36- is metallized or sprayed with conductive paint to establish fixed capacitance between the two plate sides 34 and 36. Such capacitance electrically parallels portions of the arrester circuit as more fully described in US. Patent No. 2,542,805, entitled, Lightning Arrester, issued to A. J. Fink on Feb. 20, 1951, and assigned to the present assignee.
The purpose of the built-in capacitance is to produce substantially uniform voltage gradient across the arrester circuit. If the dielectric constant of the plate material is relatively high, it is not necessary to use auxiliary capacitors to supplement the indicated capacitance effect. For the lower frequency components of arrester voltage it is normally necessary to use suitably connected nonlinear resistors (not shown) for voltage grading purposes.
In FIG. 2, there is schematically illustrated a sample arrangement for the gaps 22 and the blocks 24 in the various sections of the columns. In this schematic, the reference characters 22 .and 24 are used for the gaps and the blocks and the reference character 52 represents the insulation provided by the plate walls 52 against creepage. It is assumed in this example that an overall arrester rating of 48 kv. is specified and that the gaps are rated at 6 kv. and the blocks are rated at 4 kv. Further, to facilitate illustration, the columns of aligned elements in FIG. 2 do not correspond with the physical columns in FIG. 1.
A first columnar section 62 comprises a block 24 and a gap 22 supported at its top against top connector plate 26 and at its bottom within the top wall 52 of an insulative plate 30 indicated in this schematic by the reference character 64. The block 24 in the section 62 is operable at a potential of 48 kv.
Another section 66 is serially connected with the section 62 by means of a connector 60 and it also is supported within the top wall 52 of the insulative plate 64. The section '66 comprises a pair of blocks 24 which are operable at a potential of 42 kv. because of a 6 kv. voltage drop in the gap 22 of the section 62. A topmost insulative plate 68 is disposed on the section 66 with the topmost block 24 of the section 66 disposed within the bottom wall 52 of the plate 68. A connector 60 extends from the section 66 to the next columnar section which is a transfer section 70.
The section 70 cooperates with the section 66 in supporting the plate 68 and it includes a pair of gaps 22 separated by a block 24 (operable at 36 kv.) with the block 24 side supported by the arms 40 and 42 of the plate 64. The transfer section 70 is provided with bottom support by another insulative plate 72 within the top wall 52 thereof.
Another connector 60 within the top wall 52 of the plate 72 establishes connection between the transfer section 70 to another section 74 comprising a pair of blocks (operable at 30 kv.). The section 74 and another transfer section 76 support the plate 64, and the transfer section 76 in turn is supported by another plate 78. The arrester circuit is thus continued to the bottom connector plate 28 (operable at 0 kv.) at the bottom of the assembly 18. The gaps 22 and blocks 24 and plates 30 mutually support one another as indicated while a series intercolumnar arrester circuit is established with adequate but not excessive placement of insulation.
The assembly 18 is formed with facility by layering insulative plates 30, blocks 24 and gaps 22 yet it is clear that the support relationships within the assembly 18 provide excellent mechanical strength. Further, the structural organization of the plates 30 is such that required insulation is provided while economy in use of insulative material is achieved and while overall arrester height is relatively conserved. I
The foregoing description has been presented only to illustrate the principles of the invention. Accordingly, it is desired that the invention be not limited to the embodilment described, but, rather, that it be accorded an interpretation consistent with the scope and spirit of its broad principles.
What is claimed is:
1. A lightning arrester comprising an insulative housing, a plurality of arrester elements disposed in a plurality of vertical columns within said housing, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections including transfer sections with each section supported between a pair of said plates, an opening in each of said plates through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, creepage barrier Wall means disposed on each side of said plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, and means for connecting said sections into a series arrester circuit.
2. A lightning arrester comprising an insulative housing, a plurality of arrester elements disposed in a plurality of vertical columns within said housing, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections with each section supported between a pair of said plates, said sections including transfer sections each of which includes some of said arrester elements of which at least one is a gap unit, an opening in each of said plates through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, creepage barrier wall means disposed on each side of said plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, and means for connecting said sections into a series arrester circuit.
3. A lightning arrester comprising an insulative housing, a plurality of arrester elements disposed in three vertical columns within said housing, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections with each section supported between a pair of said plates, said sections including transfer sections each of which contains some of said arrester elements of which at least one is a gap unit, an opening in each of said plates through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, creepage barrier wall means disposed on each side of said plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, means connecting said sections into a series arrester circuit, every alternate section in said series circuit being a transfer section.
4. A lightning arrester comprising an insulative housing, a plurality of arrester elements disposed in a plurality of vertical columns within said housing, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections including transfer sections with each section supported between a pair of said plates, an opening in each of said plates through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, a vertically projecting creepage barrier wall disposed on each side of said plates and circumscribing the end elements of superjacent and subjacent sections which are supported against said plate sides, and means for connecting said sections into a series arrester circuit.
5. A lightning arrester comprising an insulative housing, a plurality of arrester elements disposed in a plurality of vertical columns within said housing, a plurality of insulative plates interposed in vetrically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections including transfer sections with each section supported between a pair of said plates, each plate having a pair of arms extending in the solid plane thereof, an opening provided between the ends of said arms through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, creepage barrier wall means disposed on each side of said plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, and means for connecting said sections into a series .arrester circuit.
6. A lightning arrester comprising an insulative housing, a plurality of arrester elements disposed in a plurality of vertical columns within said housing, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections including transfer sections with each section supported between a pair of said plates, each plate having a pair of arms extending in the solid plane thereof, an indent in the outer end of each of said arms with an opening therebetween through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, and another opening between said arms inwardly of the end opening to provide single dielectric constant gaseous insulation and an adequately long creepage path between said columns, creepage barrier wall means disposed on each side of said plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, and means for connecting said sections into a series arrester circuit.
7. A lightning arrester comprising an insulative housing, an assembly of arrester elements disposed within said housing, said arrester elements arranged in a plurality of vertical columns, a top end connector plate and a bottom end connector plate for said assembly with said elements disposed in said columns therebetween, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections including transfer sections with each section supported adjacent its top and bottom ends against a pair of said plates, an opening in each of said insulative plates through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, creepage barrier wall means disposed on each side of said insulative plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, means for connecting said sections into a series arrester circuit, and a plurality of insulative tie rods extending between said end connector plates and through respective tie rod openings in each of said insulative plates to tie said assembly together.
8. A lightning arrester comprising an insulative housing, an assembly of arrester elements disposed within said housing, said arrester elements arranged in a plurality of vertical columns, a top end connector plate and a bottom end connector plate for said assembly with said elements disposed in said columns therebetween, a plurality of insulative plates interposed in vertically spaced relation in said columns to divide said columns into a plurality of vertical columnar sections including transfer sections with each section supported adjacent its top and bottom ends against a pair of said plates, each plate having a pair of arms extending in the solid plane thereof, an opening provided between the ends of said arms through which a transfer section extends in side supported relation from a next higher plate level to a next lower plate level, creepage barrier wall means disposed on each side of said insulative plates and generally about the end elements of superjacent and subjacent sections which are supported against said plate sides, means for connecting said sections into a series arrester circuit, and a plurality of insulative tie rods extending between said end connector plates and through respective tie rod openings in each of said insulative plates to tie said assembly together, said tie rod openings including at least one opening in each of said insulative plate arms and another opening disposed horizontally outwardly of said wall means.
9. A lightning arrester as set forth in claim 8 wherein said insulative plate wall means comprises a vertically extending wall circumscribing the adjacent section end elements.
References Cited UNITED STATES PATENTS 2,542,805 2/1951 Fink 315-36 X 2,881,362 4/1959 Kalb 3l5-36 X 2,973,448 2/1961 Yost 31536 X JAMES w. LAWRENCE, Primary Examiner. C. R. CAMPBELL, Assistant Examiner.
US407012A 1964-10-28 1964-10-28 High voltage lightning arrester having a plurality of arrester elements Expired - Lifetime US3412273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US407012A US3412273A (en) 1964-10-28 1964-10-28 High voltage lightning arrester having a plurality of arrester elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US407012A US3412273A (en) 1964-10-28 1964-10-28 High voltage lightning arrester having a plurality of arrester elements

Publications (1)

Publication Number Publication Date
US3412273A true US3412273A (en) 1968-11-19

Family

ID=23610245

Family Applications (1)

Application Number Title Priority Date Filing Date
US407012A Expired - Lifetime US3412273A (en) 1964-10-28 1964-10-28 High voltage lightning arrester having a plurality of arrester elements

Country Status (1)

Country Link
US (1) US3412273A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534221A (en) * 1969-04-16 1970-10-13 Westinghouse Electric Corp Lightning arrester configuration
EP0037363A1 (en) * 1980-03-28 1981-10-07 Siemens Aktiengesellschaft Over voltage arrester
US4502089A (en) * 1982-04-24 1985-02-26 Hitachi, Ltd. Lightning arrester
US4656555A (en) * 1984-12-14 1987-04-07 Harvey Hubbell Incorporated Filament wrapped electrical assemblies and method of making same
US4899248A (en) * 1984-12-14 1990-02-06 Hubbell Incorporated Modular electrical assemblies with plastic film barriers
US4905118A (en) * 1988-03-31 1990-02-27 Hubbell Incorporated Base mounted electrical assembly
US5138517A (en) * 1984-12-14 1992-08-11 Hubbell Incorporated Polymer housed electrical assemblies using modular construction
US6008975A (en) * 1997-03-03 1999-12-28 Mcgraw-Edison Company Self-compressive surge arrester module and method of making same
WO2014173462A1 (en) * 2013-04-26 2014-10-30 Siemens Aktiengesellschaft Encapsulated surge arrester
EP3131098A1 (en) 2015-08-12 2017-02-15 Siemens Aktiengesellschaft Enclosed surge voltage protector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2542805A (en) * 1948-06-01 1951-02-20 Westinghouse Electric Corp Lightning arrester
US2881362A (en) * 1954-01-20 1959-04-07 Ohio Brass Co Lightning arresters
US2973448A (en) * 1957-09-23 1961-02-28 Ohio Brass Co Lightning arrester and housing therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2542805A (en) * 1948-06-01 1951-02-20 Westinghouse Electric Corp Lightning arrester
US2881362A (en) * 1954-01-20 1959-04-07 Ohio Brass Co Lightning arresters
US2973448A (en) * 1957-09-23 1961-02-28 Ohio Brass Co Lightning arrester and housing therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534221A (en) * 1969-04-16 1970-10-13 Westinghouse Electric Corp Lightning arrester configuration
EP0037363A1 (en) * 1980-03-28 1981-10-07 Siemens Aktiengesellschaft Over voltage arrester
US4502089A (en) * 1982-04-24 1985-02-26 Hitachi, Ltd. Lightning arrester
US4656555A (en) * 1984-12-14 1987-04-07 Harvey Hubbell Incorporated Filament wrapped electrical assemblies and method of making same
US4899248A (en) * 1984-12-14 1990-02-06 Hubbell Incorporated Modular electrical assemblies with plastic film barriers
US5138517A (en) * 1984-12-14 1992-08-11 Hubbell Incorporated Polymer housed electrical assemblies using modular construction
US4905118A (en) * 1988-03-31 1990-02-27 Hubbell Incorporated Base mounted electrical assembly
US6008975A (en) * 1997-03-03 1999-12-28 Mcgraw-Edison Company Self-compressive surge arrester module and method of making same
WO2014173462A1 (en) * 2013-04-26 2014-10-30 Siemens Aktiengesellschaft Encapsulated surge arrester
CN105122386A (en) * 2013-04-26 2015-12-02 西门子公司 Encapsulated surge arrester
JP2016521003A (en) * 2013-04-26 2016-07-14 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Encapsulated surge arrester
EP3131098A1 (en) 2015-08-12 2017-02-15 Siemens Aktiengesellschaft Enclosed surge voltage protector

Similar Documents

Publication Publication Date Title
US3412273A (en) High voltage lightning arrester having a plurality of arrester elements
US4326232A (en) Lightning arrester
CN101896981B (en) High voltage surge arrester and method of operating the same
US2890383A (en) Stacking arrangement for lightning arrester components
US3346783A (en) Assembly of solid electrolytic capacitors
US3195082A (en) Electrical reactor
US4940961A (en) Braking resistor for a high tension electrical network
US1703408A (en) Transformer
JPS58186183A (en) Arrester
US2608600A (en) Arrangement at surge diverters for increasing the discharging ability
US2618765A (en) Excess voltage grounding device
US3265934A (en) Capacitor stacking unit
US3706009A (en) Lightning arrester capacitive grading circuit mounting means
US2542805A (en) Lightning arrester
US2611107A (en) Electric lightning arrester
US4234902A (en) Enclosed lightning arrester
CN102568725B (en) Lightning arrester
US2179297A (en) Porcelain-surface protection
US3963965A (en) Surge arrester construction
US1628627A (en) Electrical structure
EP0106315A1 (en) Circuit breaker of porcelain insulator type
US2881362A (en) Lightning arresters
US2161326A (en) Electrical condenser for high tension circuits
US3069521A (en) Air or gas blast electric circuit breakers
US4369480A (en) Overvoltage arrester including a column of arrester elements and shielding therefor