US3428560A - Yarn-lubricating composition - Google Patents

Yarn-lubricating composition Download PDF

Info

Publication number
US3428560A
US3428560A US618995A US3428560DA US3428560A US 3428560 A US3428560 A US 3428560A US 618995 A US618995 A US 618995A US 3428560D A US3428560D A US 3428560DA US 3428560 A US3428560 A US 3428560A
Authority
US
United States
Prior art keywords
weight
percent
composition
parts
sulfosuccinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US618995A
Inventor
John Sylvester Olsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Application granted granted Critical
Publication of US3428560A publication Critical patent/US3428560A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M3/00Liquid compositions essentially based on lubricating components other than mineral lubricating oils or fatty oils and their use as lubricants; Use as lubricants of single liquid substances
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M7/00Treating fibres, threads, yarns, fabrics, or fibrous goods made of other substances with subsequent freeing of the treated goods from the treating medium, e.g. swelling, e.g. polyolefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/18Natural waxes, e.g. ceresin, ozocerite, bees wax, carnauba; Degras
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/46Textile oils
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions

Definitions

  • a self-emulsifiable yarn-lubricating composition consisting essentially of at least 40% by weight of isocetyl stearate, about to 30% by weight of a sodium di-(2- ethylhexyl)sulfosuccinate and at least 20% by weight of a nonionic emulsifying agent of glyceryl oleate, the condensation product of one mol of stearyl alcohol with 3 mols of ethylene oxide, the condensation product of 30 mols of ethylene oxide with 1 mol of sorbitol trioleatelaurate or mixtures of said nonionic agents.
  • the present invention relates to textile lubricants and, more particularly, to textile lubricants of the type usually applied in the form of aqueous emulsions.
  • lubricating compositions are applied in order to improve their handling characteristics, particularly at high speeds.
  • the aqueous emulsion should not only be staple and retain its properties over extended periods of time, but should also serve to lubricate the fibers with a composition having properties that do not change under varying use conditions.
  • nonionic emulsifiers to stabilize selfemulsifiable lubricating compositions results in residual lubricating compositions on the yarn which are sensitive to moisture, i.e., under changing moisture conditions, the physical properties of the lubricating composition change, becoming more viscous and tacky with increases in humidity.
  • the presence of such compositions on yarns results in higher running tensions and can also cause deposit problems at yarn contact surfaces.
  • compositions comprised of a textile lubricant, a nonionic emulsifying agent, and an alkali metal or ammonium salt of a dialkyl sulfosuccinic acid.
  • These compositions provide essentially unchanged lubricating and cohesion properties over 3,428,560 Patented Feb. 18, 1969 a broad range of relative humidities such as would be encountered during dry winter and humid summer seasons.
  • Other materials may be added, e.g., bactericides, ionic antistatic agents, antioxidants, emulsion stabilizers, without making the finish sensitive to changes in moisture content.
  • the textile lubricant used in the practice of this invention can be a mineral oil, an animal oil, a vegetable oil or, preferably, a synthetic ester.
  • the synthetic esters are of the kind obtained through the reaction of a fatty acid having 8 to 20 carbon atoms in its chain with a monohydric aliphatic alcohol having 3 to 20 carbon atoms.
  • the long-chain fatty acids can be relatively pure compounds or mixtures such as can be obtained from naturally occurring products. While the monohydric aliphatic alcohols are preferred, polyhydric aliphatic alcohols, e.g., trimethylolpropane and pentaerythritol, are also suitable.
  • lubrication materials such as natural and synthetic waxes, e.g., a microcrystalline wax or a polyethylene wax, can be substituted for a portion of the lubricant.
  • the wax should constitute no more than 25 percent of the lubricant component.
  • the nonionic emulsifying agent can be the condensate of ethylene oxide with an organic compound having an active hydrogen atom.
  • Compounds suitable for use in preparing such condensates are fatty acids and fatty alcohols having 12 to 20 carbon atoms in their chain, polyhydric aliphatic alcohols and partial esters thereof, and alkyl phenols.
  • Other suitable nonionic emulsifiers include the partial fatty acid esters of polyols or their ethylene oxide condensates and the ethylene oxide condensates of the amides of ethanol amines and a fatty acid having 15 to 20 carbon atoms in its chain.
  • nonionic emulsifier When the nonionic emulsifier contains condensed ethylene oxide, it is essential that no more than about 15 mols of ethylene oxide be condensed with each mol of the organic compound containing an active hydrogen atom. In examining a large number of textile lubricating compositions, it has been found that nonionic emulsifiers containing more than about 15 mols of condensed ethylene oxide eliminate, or seriously impair, the self-emulsifiability of the composition.
  • the sulfosuccinates useful in this invention are the alkali metal and ammonium salts of a dialkyl sulfosuccinic acid.
  • each alkyl group in the sulfosuccinate will contain between 4 and 16 carbon atoms in its chain.
  • the dialkyl sulfosuccinate functions to minimize viscosity changes when the lubricated fiber is exposed to a high humidity environment.
  • the neutral salts of partial esters of phosphoric acid and a long-chain fatty alcohol are preferred.
  • Suitable fatty alcohols are those containing about 12 to 18 carbon atoms in their alkyl chains, for example, lauryl, oleyl, and stearyl alcohols.
  • the amount of long-chain fatty alcohol should be suflicient to introduce about one or two ester groups in the phosphoric acid.
  • the neutral salts are obtained by neutralization of the partial ester with a suitable base such as, for example, potassium hydroxide, sodium hydroxide, ammonia and aliphatic amines.
  • the salt is a potassium salt.
  • the corresponding morpholine, diethanol amine and triethanol amine salts also are satisfactory.
  • the lubricant compositions of this invention contain, by weight, at least 40 percent of a lubricating material, at least 10 percent of a nonionic emulsifier and between 10 and 30 percent of a dialkyl sulfosuccinate.
  • concentration of the sulfosuccinate must not exceed about 30 percent in order to maintain a relatively constant viscosity under changing conditions of relative humidity. Amounts of the sulfosuccinate below about 10 percent provide insufficient protection to viscosity change.
  • the composition can also contain from 10 to 15 percent of an antistatic agent. When the neutral salt of the partial phosphate ester is used as an antistatic agent, the combinedconcentration of the sulfosuccinate and phosphate must not exceed a concentration of about 30 percent.
  • the lubricating compositions are prepared by mixing the ingredients until a smooth, uniform blend is obtained. The blend is then dispersed with the appropriate amount of water to give stable emulsions containing from about 1 to 20 percent by weight of the composition.
  • the emulsion may be applied to filamentary material in any convenient manner, such as, for example, by a roll rotating in a trough containing the aqueous emulsion, or by bathdipping, spraying, and the like.
  • the new emulsions are applied to continuous filaments or staple fibers, the surfaces of which may be smooth or roughened, of conventional denier in the usual amounts, ie from less than one to several percent or more, based on the material being treated.
  • these lubricants can be employed with any synthetic polymer filamentary material desired, but usually will be used on the various nylons (polyamides) that are presently commercial. Typical nylons known in the art are disclosed in US. Patents Nos. 2,130,948, 2,071,251, and 2,071,253 and like disclosures.
  • dialkyl sulfosuccinates possess emulsifier characteristics, they are not sufficiently effective to give stable emulsions of the lubricant when used, as the only emulsifying agent, in amounts less than 30 percent of the total weight of the ingredients.
  • the aqueous emulsions still have poor stability.
  • the use of an ionic antistatic agent aggravates this situation since it necessitates a reduction in the amount of sulfosuccinate with a concomitant decrease in emulsion stability.
  • aqueous emulsions of a lubricant composition containing 10 percent of sodium dioctyl sulfosuccinate and 10 percent of the product obtained by condensing 1 mol of lauric acid with 13 mols of ethylene oxide are highly stable.
  • the viscosity of the lubricating compositions is measured at 35 C. using Ostwald-Fenske type capillary viscometers. All of the lubricating compositions have an initial water content of 0.4 percent or less which corresponds to an estimated equilibrium relative humidity of about 20 percent or less. Incremental amounts of water are added and the equilibrium relative humidity measured. The equilibrium relative humidity is determined by placing 50 milliliters of the lubricating composition into a one-quart Mason jar. A lid containing a moisture-sensing element is used to seal the jar. The contents of the jar are allowed to stand for 48 hours and the electrical resistance of the moisture-sensing element is measured and the percent relative-humidity determined from a standard curve. The relative humidity measurements are made over the range of about 20 to about 100 percent. At 100 percent relative humidity the measurement becomes uncertain because condensation on the sensing element.
  • Example I A lubricant composition is prepared by blending together 65 parts by weight of isobutyl palmitate, 10 parts by weight of sodium di(2-ethylhexyl) sulfosuccinate, 10 parts by weight of the product obtained by condensing 1 mol of lauric acid with 13 mols of ethylene oxide, and 15 parts by weight of the potassium salt of a mixture consisting essentially of monoand dioleyl orthophosphates. As measured at 35 C., the lubricating composition has a viscosity of about 30 centipoises over the range of 10 to percent relative humidity. The above mixture is warmed to 60 C.
  • the 15 percent aqueous emulsion is translucent and highly stable. It is also highly suitable for lubricating nylon continuous-filament yarns in that no appreciable variations in running tension are experienced.
  • Example II A self-emulsifiable textile lubricant is prepared by blending together 44.5 parts by weight of isocetyl stearate, 22 parts by weight of sodium di(2-ethylhexyl) sulfosuccinate, 22 parts by weight of the product obtained by condensing 1 mol of stearyl alcohol with 3 mols of ethylene oxide, and 11.1 parts by weight of microcrystalline wax.
  • the composition has a viscosity of to centipoises over the range of 20 to 100 percent relative humidity at 35 C.
  • the composition emulsifies readily when poured into water with stirring.
  • the aqueous emulsions are highly stable.
  • Example III A self-emulsifiable textile lubricant is prepared by blending together 72.5 parts by weight of isocetyl stearate, 12.5 parts by weight of sodium di(2-ethylhexyl) sulfosuccinate, 12.5 parts by weight of glyceryl oleate (a material containing about 60 percent by weight of glyceryl monoleate) and 2.5 parts by weight of the product obtained by con densing 30 mols of ethylene oxide with one mol of sorbitol trioleatelaurate (oleic to lauric ratio of 4:1).
  • the composition ' has a viscosity of 60 to 70 centipoises over the range of 20 to 98 percent relative humidity at 35 C.
  • the composition forms a stable emulsion when added to water with stirring.
  • the emulsion is highly suitable for lubricating continuous-filament nylon yarn in that it provides a product whose running tension is unalfected by humidity changes.
  • Example IV This example illustrates the use of various types of lubricants in the practice of this invention.
  • the self-emulsifiable textile lubricating compositions are prepared by adding one part by weight of sodium di- (2-ethylhexyl) sulfosuccinate and one part by weight of the product obtained by condensing 3 mols of ethylene oxide with one mol of stearyl alcohol to two parts by weight of the lubricant.
  • the lubricants are listed in Table I. All of the compositions have an initial water content of 0.4 percent or less which corresponds to an estimated equilibrium relative humidity of 15 to 25 percent.
  • the viscosity of each composition over the relative humidity range of about 20 to about 90 percent and higher is determined as previously described.
  • the viscosity range, and the relative humidity range for which it is determined, are given in Table I. All of the compositions give stable emulsions upon stirring one part of the composition into 9 parts of water.
  • Example V This example illustrates the use of various types of nonionic emulsifiers used in the practice of this invention.
  • This example is the same as Example IV except that the same lubricant, isocetyl stearate, is used in all the compositions and the nonionic emulsifier differs with each composition. The same procedure is used and the results obtained are analogous.
  • two parts by weight of lubricant and 1 part each by weight of nonionic emulsifier and sodium di(2-ethylhexyl) sulfosuccinate are used in preparing the compositions.
  • the emulsifiers used and the results obtained are given in Table II.
  • Notations such as Stearyl Alcohol/ E0 refer to the condensation product obtained by condensing stearyl alcohol with 10 mols of ethylene oxide.
  • Example VI This example illustrates the use of sulfosuccinates other than sodium di(Z-ethylhexyl) sulfosuccinate.
  • a self-emulsifiable textile lubricating composition is prepared by adding 1 part by weight of sodium diamyl sulfosuccinate and 1 part by weight of the product obtained by condensing 1 mol of stearyl alcohol with 3 mols of ethylene oxide to 2 parts by weight of isocetyl stearate.
  • the composition has a viscosity of 55 to 100 centipoises over the relative humidity range of to 99 percent, measured at C.
  • compositions described above give stable emulsions when stirred into water, e.g., by adding 1 part by weight to 9 parts by weight of water.
  • the composition has a constant relative viscosity of 60 centipoises at 35 C, over the range of 20 to 100 percent relative humidity.
  • the composition emulsifies when stirred into Water and forms a stable emulsion.
  • the finish reduces deposits, results in lower drafting forces, and causes less roll wrapping when used under high humidity conditions.
  • Example VIII This example illustrates, for comparative purposes, the viscosity behavior of a commercial self-emulsifiable textile lubricating composition with respect to changes in relative humidity.
  • the composition contains, as essential ingredients, in parts by weight, 36 parts of No. 50 White oil, 19 parts of a mixture of -monoand dioleyl acid orthophosphates, 15 parts of butyl stearate, 15 parts of the product obtained by condensing 1 mol of lauryl alcohol with 4 mols of ethylene oxide, 8.3 parts of dieth-anol amine, and 4.7 parts of palmitic acid.
  • the composition has a viscosity ranging from about 100 centipoises at 20 percent relative humidity to over 5,000 centipoises at percent relative humidity as measured at 35 C. Such a viscosity variation can only lead to undesirable variations in running tensions.
  • a self-emulsifiable yarn-lubricating composition consisting essentially of at least 40% by weight of isocetyl stearate, about 10 to 30% by weight of a sodium di-(2-ethylhexyl) sulfosuccinate and at least 20% by weight of a nonionic emulsifying agent selected from the group consisting of glyceryl oleate, the condensation prodnot of one mol of stearyl alcohol with 3 mols of ethylene oxide, the condensation product of 30 mols of ethylene oxide with 1 mol of sorbitol trioleate-laurate and mixtures of said nonionic agents.

Description

United States Patent 1 Claim ABSTRACT OF THE DISCLOSURE A self-emulsifiable, stable yarn-lubricating composition of isocetyl stearate, sodium di-(Z-ethyl hexyl) sulfosuccinate, and a non-ionic emulsifying agent.
A self-emulsifiable yarn-lubricating composition consisting essentially of at least 40% by weight of isocetyl stearate, about to 30% by weight of a sodium di-(2- ethylhexyl)sulfosuccinate and at least 20% by weight of a nonionic emulsifying agent of glyceryl oleate, the condensation product of one mol of stearyl alcohol with 3 mols of ethylene oxide, the condensation product of 30 mols of ethylene oxide with 1 mol of sorbitol trioleatelaurate or mixtures of said nonionic agents.
This application is a continuation of my copending application Ser. No. 419,207 filed Dec. 17, 1964 now Patent No. 3,306,850 which is a continuation-in-part of my copending application Ser. No. 332,888 filed Dec. 23, 1963 which in turn is a continuation-in-part of my copending application Ser. No. 290,333 filed June 25, 1963. The latter two applications are now abandoned.
The present invention relates to textile lubricants and, more particularly, to textile lubricants of the type usually applied in the form of aqueous emulsions.
In the processing of yarns spun from polycondensation materials, such as polyesters, polyamides and the like, lubricating compositions are applied in order to improve their handling characteristics, particularly at high speeds. In many applications, it has been found desirable to apply the lubricating compositions in the form of an aqueous emulsion. Except for equilibrium amounts, the water is removed subsequently, e.g., by heat generated during drawing or other yarn-treating processes, or by evaporation in storage. To be satisfactory for commercial use, the aqueous emulsion should not only be staple and retain its properties over extended periods of time, but should also serve to lubricate the fibers with a composition having properties that do not change under varying use conditions. The use of nonionic emulsifiers to stabilize selfemulsifiable lubricating compositions results in residual lubricating compositions on the yarn which are sensitive to moisture, i.e., under changing moisture conditions, the physical properties of the lubricating composition change, becoming more viscous and tacky with increases in humidity. The presence of such compositions on yarns results in higher running tensions and can also cause deposit problems at yarn contact surfaces.
It is the primary object of this invention to provide textile-lubricating compositions that do not undergo appreciable viscosity changes with changes in relative humidity.
This and other objects of the invention are attained with self-emulsifiable textile-lubricating compositions comprised of a textile lubricant, a nonionic emulsifying agent, and an alkali metal or ammonium salt of a dialkyl sulfosuccinic acid. These compositions provide essentially unchanged lubricating and cohesion properties over 3,428,560 Patented Feb. 18, 1969 a broad range of relative humidities such as would be encountered during dry winter and humid summer seasons. Other materials may be added, e.g., bactericides, ionic antistatic agents, antioxidants, emulsion stabilizers, without making the finish sensitive to changes in moisture content.
The textile lubricant used in the practice of this invention can be a mineral oil, an animal oil, a vegetable oil or, preferably, a synthetic ester. Preferably the synthetic esters are of the kind obtained through the reaction of a fatty acid having 8 to 20 carbon atoms in its chain with a monohydric aliphatic alcohol having 3 to 20 carbon atoms. The long-chain fatty acids can be relatively pure compounds or mixtures such as can be obtained from naturally occurring products. While the monohydric aliphatic alcohols are preferred, polyhydric aliphatic alcohols, e.g., trimethylolpropane and pentaerythritol, are also suitable. For special purposes, e.g., high-temperature processing, it may be desirable to use selected diesters such as di-(Z-ethylhexyl) sebacate as the lubricant.
If desired, minor amounts of other lubrication materials, such as natural and synthetic waxes, e.g., a microcrystalline wax or a polyethylene wax, can be substituted for a portion of the lubricant. When employed, the wax should constitute no more than 25 percent of the lubricant component.
The nonionic emulsifying agent can be the condensate of ethylene oxide with an organic compound having an active hydrogen atom. Compounds suitable for use in preparing such condensates are fatty acids and fatty alcohols having 12 to 20 carbon atoms in their chain, polyhydric aliphatic alcohols and partial esters thereof, and alkyl phenols. Other suitable nonionic emulsifiers include the partial fatty acid esters of polyols or their ethylene oxide condensates and the ethylene oxide condensates of the amides of ethanol amines and a fatty acid having 15 to 20 carbon atoms in its chain. When the nonionic emulsifier contains condensed ethylene oxide, it is essential that no more than about 15 mols of ethylene oxide be condensed with each mol of the organic compound containing an active hydrogen atom. In examining a large number of textile lubricating compositions, it has been found that nonionic emulsifiers containing more than about 15 mols of condensed ethylene oxide eliminate, or seriously impair, the self-emulsifiability of the composition.
The sulfosuccinates useful in this invention are the alkali metal and ammonium salts of a dialkyl sulfosuccinic acid. Preferably, each alkyl group in the sulfosuccinate will contain between 4 and 16 carbon atoms in its chain. In addition to serving as an acid in the emulsification of the lubricant, the dialkyl sulfosuccinate functions to minimize viscosity changes when the lubricated fiber is exposed to a high humidity environment.
When an antistatic agent is used, the neutral salts of partial esters of phosphoric acid and a long-chain fatty alcohol are preferred. Suitable fatty alcohols are those containing about 12 to 18 carbon atoms in their alkyl chains, for example, lauryl, oleyl, and stearyl alcohols. In preparing the partial esters, the amount of long-chain fatty alcohol should be suflicient to introduce about one or two ester groups in the phosphoric acid. The neutral salts are obtained by neutralization of the partial ester with a suitable base such as, for example, potassium hydroxide, sodium hydroxide, ammonia and aliphatic amines. Preferably, the salt is a potassium salt. The corresponding morpholine, diethanol amine and triethanol amine salts also are satisfactory.
The lubricant compositions of this invention contain, by weight, at least 40 percent of a lubricating material, at least 10 percent of a nonionic emulsifier and between 10 and 30 percent of a dialkyl sulfosuccinate. The concentration of the sulfosuccinate must not exceed about 30 percent in order to maintain a relatively constant viscosity under changing conditions of relative humidity. Amounts of the sulfosuccinate below about 10 percent provide insufficient protection to viscosity change. The composition can also contain from 10 to 15 percent of an antistatic agent. When the neutral salt of the partial phosphate ester is used as an antistatic agent, the combinedconcentration of the sulfosuccinate and phosphate must not exceed a concentration of about 30 percent.
The lubricating compositions are prepared by mixing the ingredients until a smooth, uniform blend is obtained. The blend is then dispersed with the appropriate amount of water to give stable emulsions containing from about 1 to 20 percent by weight of the composition. The emulsion may be applied to filamentary material in any convenient manner, such as, for example, by a roll rotating in a trough containing the aqueous emulsion, or by bathdipping, spraying, and the like. The new emulsions are applied to continuous filaments or staple fibers, the surfaces of which may be smooth or roughened, of conventional denier in the usual amounts, ie from less than one to several percent or more, based on the material being treated. Similarly, these lubricants can be employed with any synthetic polymer filamentary material desired, but usually will be used on the various nylons (polyamides) that are presently commercial. Typical nylons known in the art are disclosed in US. Patents Nos. 2,130,948, 2,071,251, and 2,071,253 and like disclosures.
Although the dialkyl sulfosuccinates possess emulsifier characteristics, they are not sufficiently effective to give stable emulsions of the lubricant when used, as the only emulsifying agent, in amounts less than 30 percent of the total weight of the ingredients. When 30 percent or more of the sulfosuccinate is employed, the aqueous emulsions still have poor stability. The use of an ionic antistatic agent aggravates this situation since it necessitates a reduction in the amount of sulfosuccinate with a concomitant decrease in emulsion stability. By comparison, aqueous emulsions of a lubricant composition containing 10 percent of sodium dioctyl sulfosuccinate and 10 percent of the product obtained by condensing 1 mol of lauric acid with 13 mols of ethylene oxide are highly stable.
The viscosity of the lubricating compositions is measured at 35 C. using Ostwald-Fenske type capillary viscometers. All of the lubricating compositions have an initial water content of 0.4 percent or less which corresponds to an estimated equilibrium relative humidity of about 20 percent or less. Incremental amounts of water are added and the equilibrium relative humidity measured. The equilibrium relative humidity is determined by placing 50 milliliters of the lubricating composition into a one-quart Mason jar. A lid containing a moisture-sensing element is used to seal the jar. The contents of the jar are allowed to stand for 48 hours and the electrical resistance of the moisture-sensing element is measured and the percent relative-humidity determined from a standard curve. The relative humidity measurements are made over the range of about 20 to about 100 percent. At 100 percent relative humidity the measurement becomes uncertain because condensation on the sensing element.
It is not unusual for finish oils equilibrated at about 100 percent relative humidity to gain sufficient moisture to comprise up to 45 percent of their total weight. In this regard, high moisture content, e.g., 30 to 45 percent, may result in the beginning of gel formation. The beginning of gel formation is readily detected since at this point the normally clear lubricating composition becomes turbid. Gel formation seriously interferes with viscosity measurements due to the formation of a second phase. When the dropwise addition of water produces a change from clear to turbid, the addition of water is stopped and the equilibrium relative humidity and viscosity are measured. It is for this reason that some of the relative humidity values are given less than 99 percent. However, the change in viscosity of the composition between this point and that Example I A lubricant composition is prepared by blending together 65 parts by weight of isobutyl palmitate, 10 parts by weight of sodium di(2-ethylhexyl) sulfosuccinate, 10 parts by weight of the product obtained by condensing 1 mol of lauric acid with 13 mols of ethylene oxide, and 15 parts by weight of the potassium salt of a mixture consisting essentially of monoand dioleyl orthophosphates. As measured at 35 C., the lubricating composition has a viscosity of about 30 centipoises over the range of 10 to percent relative humidity. The above mixture is warmed to 60 C. and the resulting clear solution is poured, with agitation, into 566 parts of water at 60 C. The 15 percent aqueous emulsion is translucent and highly stable. It is also highly suitable for lubricating nylon continuous-filament yarns in that no appreciable variations in running tension are experienced.
Example II A self-emulsifiable textile lubricant is prepared by blending together 44.5 parts by weight of isocetyl stearate, 22 parts by weight of sodium di(2-ethylhexyl) sulfosuccinate, 22 parts by weight of the product obtained by condensing 1 mol of stearyl alcohol with 3 mols of ethylene oxide, and 11.1 parts by weight of microcrystalline wax. The composition has a viscosity of to centipoises over the range of 20 to 100 percent relative humidity at 35 C. The composition emulsifies readily when poured into water with stirring. The aqueous emulsions are highly stable.
Example III A self-emulsifiable textile lubricant is prepared by blending together 72.5 parts by weight of isocetyl stearate, 12.5 parts by weight of sodium di(2-ethylhexyl) sulfosuccinate, 12.5 parts by weight of glyceryl oleate (a material containing about 60 percent by weight of glyceryl monoleate) and 2.5 parts by weight of the product obtained by con densing 30 mols of ethylene oxide with one mol of sorbitol trioleatelaurate (oleic to lauric ratio of 4:1). The composition 'has a viscosity of 60 to 70 centipoises over the range of 20 to 98 percent relative humidity at 35 C. The composition forms a stable emulsion when added to water with stirring. The emulsion is highly suitable for lubricating continuous-filament nylon yarn in that it provides a product whose running tension is unalfected by humidity changes.
'Replacement of the sulfosuccinate with an equivalent weight of potassium oleate emulsifier results in a composition whose viscosity, as measured at 35 C., varies from about 75 to over 1,000 centipoises over the 20 to 9 8 percent relative humidity range. Such viscosity variations can only lead to undesirable variations in running tensions.
Example IV This example illustrates the use of various types of lubricants in the practice of this invention.
The self-emulsifiable textile lubricating compositions are prepared by adding one part by weight of sodium di- (2-ethylhexyl) sulfosuccinate and one part by weight of the product obtained by condensing 3 mols of ethylene oxide with one mol of stearyl alcohol to two parts by weight of the lubricant. The lubricants are listed in Table I. All of the compositions have an initial water content of 0.4 percent or less which corresponds to an estimated equilibrium relative humidity of 15 to 25 percent. The viscosity of each composition over the relative humidity range of about 20 to about 90 percent and higher is determined as previously described. The viscosity range, and the relative humidity range for which it is determined, are given in Table I. All of the compositions give stable emulsions upon stirring one part of the composition into 9 parts of water.
Example V This example illustrates the use of various types of nonionic emulsifiers used in the practice of this invention. This example is the same as Example IV except that the same lubricant, isocetyl stearate, is used in all the compositions and the nonionic emulsifier differs with each composition. The same procedure is used and the results obtained are analogous. As in Example IV, two parts by weight of lubricant and 1 part each by weight of nonionic emulsifier and sodium di(2-ethylhexyl) sulfosuccinate are used in preparing the compositions. The emulsifiers used and the results obtained are given in Table II. Notations such as Stearyl Alcohol/ E0 refer to the condensation product obtained by condensing stearyl alcohol with 10 mols of ethylene oxide.
Example VI This example illustrates the use of sulfosuccinates other than sodium di(Z-ethylhexyl) sulfosuccinate.
A self-emulsifiable textile lubricating composition is prepared by adding 1 part by weight of sodium diamyl sulfosuccinate and 1 part by weight of the product obtained by condensing 1 mol of stearyl alcohol with 3 mols of ethylene oxide to 2 parts by weight of isocetyl stearate. The composition has a viscosity of 55 to 100 centipoises over the relative humidity range of to 99 percent, measured at C.
Replacing the sodium diamyl sulfosuccinate with an equal weight of sodium di(tridecyl) sulfosuccinate gives a composition having a viscosity of 50 to 105 centipoises over the relative humidity range of 20 to 99 percent, measured at 35 C.
The compositions described above give stable emulsions when stirred into water, e.g., by adding 1 part by weight to 9 parts by weight of water.
Example VII A self-emulsifiable textile lubricant is prepared by blending together 35 parts by weight of isocetyl stearate, 23 parts by weight of butyl stearate, 30 parts by weight of sodium di(Z-ethylhexyl) sulfosuccinate, 10 parts by Weight of the product obtained by condensing 3 mols of ethylene oxide with 1 mol of stearyl alcohol, 1 part by weight of 2,2-=thio-bis-(4,6-dichlorophenol) and 1 part by Weight of didecylpentaerythritol diphosphite. The composition has a constant relative viscosity of 60 centipoises at 35 C, over the range of 20 to 100 percent relative humidity. The composition emulsifies when stirred into Water and forms a stable emulsion. When applied to polyester staple, the finish reduces deposits, results in lower drafting forces, and causes less roll wrapping when used under high humidity conditions.
Example VIII This example illustrates, for comparative purposes, the viscosity behavior of a commercial self-emulsifiable textile lubricating composition with respect to changes in relative humidity.
The composition contains, as essential ingredients, in parts by weight, 36 parts of No. 50 White oil, 19 parts of a mixture of -monoand dioleyl acid orthophosphates, 15 parts of butyl stearate, 15 parts of the product obtained by condensing 1 mol of lauryl alcohol with 4 mols of ethylene oxide, 8.3 parts of dieth-anol amine, and 4.7 parts of palmitic acid. The composition has a viscosity ranging from about 100 centipoises at 20 percent relative humidity to over 5,000 centipoises at percent relative humidity as measured at 35 C. Such a viscosity variation can only lead to undesirable variations in running tensions.
While the foregoing invention has been described and illustrated with respect to specific materials and detail, it will be appreciated that changes can be made without departing from its scope.
What is claimed is:
1. A self-emulsifiable yarn-lubricating composition consisting essentially of at least 40% by weight of isocetyl stearate, about 10 to 30% by weight of a sodium di-(2-ethylhexyl) sulfosuccinate and at least 20% by weight of a nonionic emulsifying agent selected from the group consisting of glyceryl oleate, the condensation prodnot of one mol of stearyl alcohol with 3 mols of ethylene oxide, the condensation product of 30 mols of ethylene oxide with 1 mol of sorbitol trioleate-laurate and mixtures of said nonionic agents.
References Cited UNITED STATES PATENTS 2,597,708 5/1952 Cresswcll 252-8.75 2,690,426 9/1954 Jeiferson et al 2528.8 3,301,328 1/1967: Campion 252-855 X 3,306,850 2/1967 Olsen 2528.7
FOREIGN PATENTS 73 8,749 10/ 1955 Great Britain.
HERBERT B. GUYNN, Primary Examiner.
US. 01. X.R. 2528.6, 8.75, 8.9; 117-1395
US618995A 1967-02-27 1967-02-27 Yarn-lubricating composition Expired - Lifetime US3428560A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61899567A 1967-02-27 1967-02-27

Publications (1)

Publication Number Publication Date
US3428560A true US3428560A (en) 1969-02-18

Family

ID=24480012

Family Applications (1)

Application Number Title Priority Date Filing Date
US618995A Expired - Lifetime US3428560A (en) 1967-02-27 1967-02-27 Yarn-lubricating composition

Country Status (1)

Country Link
US (1) US3428560A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652419A (en) * 1968-03-06 1972-03-28 Witco Chemical Corp Antistatic fiber lubricant
JPS4896857A (en) * 1972-03-15 1973-12-11
US3850819A (en) * 1972-08-25 1974-11-26 Ici America Inc Low fuming spin finish for nylon weaving yarns
US3907689A (en) * 1973-08-29 1975-09-23 Eastman Kodak Co Textile treating composition and textile yarn treated therewith
US3914177A (en) * 1972-03-22 1975-10-21 Pvo International Inc Hydroxy pivalyl hydroxy pivalate esters and method of treating textile filaments therewith
US3975294A (en) * 1972-11-03 1976-08-17 Rhone-Poulenc S.A. Surface active composition
US3993571A (en) * 1975-04-11 1976-11-23 Allied Chemical Corporation Spin finish for yarn used in food packaging
US4039715A (en) * 1973-08-29 1977-08-02 Eastman Kodak Company Textile treating composition and textile yarn treated therewith
US4049766A (en) * 1974-12-09 1977-09-20 Akzona Incorporated Process for improving crystallinity in nylon 6
US4052331A (en) * 1972-11-03 1977-10-04 Rhone-Poulenc S.A. Surface active composition
US4066558A (en) * 1974-02-11 1978-01-03 Ici Americas Inc. Low viscosity spin finish systems for neat finish application
US4129507A (en) * 1978-01-18 1978-12-12 Allied Chemical Corporation Spin finish for polyamide yarn
US4292182A (en) * 1978-10-30 1981-09-29 Badische Corporation Imparting anti-soiling properties to fibers
US4329147A (en) * 1980-12-12 1982-05-11 Allied Chemical Corporation Wetting solution for use in continuous dyeing of polyamide fabric
US4371658A (en) * 1980-05-05 1983-02-01 Allied Corporation Polyamide yarn spin finish containing a glyceride and oxidized polyethylene
US4382993A (en) * 1981-06-08 1983-05-10 Stokely-Van Camp, Inc. Tire cord finish, polyester cord produced therewith and tires using the polyester cord
JPS59163478A (en) * 1983-03-04 1984-09-14 松本油脂製薬株式会社 Treating composition of synthetic fiber
US4784844A (en) * 1979-12-03 1988-11-15 General Electric Company Volatile silicone-water emulsions and methods of preparation and use
US5011616A (en) * 1990-02-23 1991-04-30 Allied-Signal Inc. Finish composition for fine denier polyamide yarn
US5286563A (en) * 1990-12-22 1994-02-15 Toho Rayon Co., Ltd. Acrylic fiber strand suitable for use in carbon fiber production and process for producing the same
US20040007687A1 (en) * 2002-07-11 2004-01-15 Hubert Dobbelstein Formulation of a highly viscous mineral oil for the production of filters for tobacco products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2597708A (en) * 1948-12-30 1952-05-20 American Cyanamid Co Antistatic agent, treatment of shaped articles therewith, and treated articles
US2690426A (en) * 1950-03-07 1954-09-28 Atlas Powder Co Lubricating compositions
GB738749A (en) * 1952-04-18 1955-10-19 Exxon Research Engineering Co Emulsifiable oleaginous composition
US3301328A (en) * 1963-11-01 1967-01-31 Exxon Production Research Co Well stimulation
US3306850A (en) * 1964-12-17 1967-02-28 Du Pont Composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2597708A (en) * 1948-12-30 1952-05-20 American Cyanamid Co Antistatic agent, treatment of shaped articles therewith, and treated articles
US2690426A (en) * 1950-03-07 1954-09-28 Atlas Powder Co Lubricating compositions
GB738749A (en) * 1952-04-18 1955-10-19 Exxon Research Engineering Co Emulsifiable oleaginous composition
US3301328A (en) * 1963-11-01 1967-01-31 Exxon Production Research Co Well stimulation
US3306850A (en) * 1964-12-17 1967-02-28 Du Pont Composition

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652419A (en) * 1968-03-06 1972-03-28 Witco Chemical Corp Antistatic fiber lubricant
JPS4896857A (en) * 1972-03-15 1973-12-11
JPS5142663B2 (en) * 1972-03-15 1976-11-17
US3914177A (en) * 1972-03-22 1975-10-21 Pvo International Inc Hydroxy pivalyl hydroxy pivalate esters and method of treating textile filaments therewith
US3850819A (en) * 1972-08-25 1974-11-26 Ici America Inc Low fuming spin finish for nylon weaving yarns
US4052331A (en) * 1972-11-03 1977-10-04 Rhone-Poulenc S.A. Surface active composition
US3975294A (en) * 1972-11-03 1976-08-17 Rhone-Poulenc S.A. Surface active composition
US3907689A (en) * 1973-08-29 1975-09-23 Eastman Kodak Co Textile treating composition and textile yarn treated therewith
US3951825A (en) * 1973-08-29 1976-04-20 Eastman Kodak Company Textile treating composition and textile yarn treated therewith
US4039715A (en) * 1973-08-29 1977-08-02 Eastman Kodak Company Textile treating composition and textile yarn treated therewith
US4066558A (en) * 1974-02-11 1978-01-03 Ici Americas Inc. Low viscosity spin finish systems for neat finish application
US4049766A (en) * 1974-12-09 1977-09-20 Akzona Incorporated Process for improving crystallinity in nylon 6
US3993571A (en) * 1975-04-11 1976-11-23 Allied Chemical Corporation Spin finish for yarn used in food packaging
US4129507A (en) * 1978-01-18 1978-12-12 Allied Chemical Corporation Spin finish for polyamide yarn
US4292182A (en) * 1978-10-30 1981-09-29 Badische Corporation Imparting anti-soiling properties to fibers
US4784844A (en) * 1979-12-03 1988-11-15 General Electric Company Volatile silicone-water emulsions and methods of preparation and use
US4371658A (en) * 1980-05-05 1983-02-01 Allied Corporation Polyamide yarn spin finish containing a glyceride and oxidized polyethylene
EP0051357A1 (en) * 1980-10-14 1982-05-12 Badische Corporation Imparting anti-soiling properties to fibres
US4329147A (en) * 1980-12-12 1982-05-11 Allied Chemical Corporation Wetting solution for use in continuous dyeing of polyamide fabric
US4382993A (en) * 1981-06-08 1983-05-10 Stokely-Van Camp, Inc. Tire cord finish, polyester cord produced therewith and tires using the polyester cord
JPS59163478A (en) * 1983-03-04 1984-09-14 松本油脂製薬株式会社 Treating composition of synthetic fiber
JPS6229551B2 (en) * 1983-03-04 1987-06-26 Matsumoto Yushi Seiyaku Kk
US5011616A (en) * 1990-02-23 1991-04-30 Allied-Signal Inc. Finish composition for fine denier polyamide yarn
US5286563A (en) * 1990-12-22 1994-02-15 Toho Rayon Co., Ltd. Acrylic fiber strand suitable for use in carbon fiber production and process for producing the same
US20040007687A1 (en) * 2002-07-11 2004-01-15 Hubert Dobbelstein Formulation of a highly viscous mineral oil for the production of filters for tobacco products
US7153447B2 (en) * 2002-07-11 2006-12-26 Emini Shefqet Formulation of a highly viscous mineral oil for the production of filters for tobacco products

Similar Documents

Publication Publication Date Title
US3428560A (en) Yarn-lubricating composition
US3306850A (en) Composition
US2690426A (en) Lubricating compositions
JP3188518B2 (en) Card-processable hydrophobic polypropylene fiber
US2676122A (en) Antistatic treatment of hydrophobic fiber
US3652419A (en) Antistatic fiber lubricant
US4252528A (en) Lubricant compositions for finishing synthetic fibers
US5525243A (en) High cohesion fiber finishes
US3423314A (en) Antistatic lubricant as a process finish for synthetic fibers
US4169062A (en) Random copolymers of polyoxyethylene polyoxypropylene glycol monoester, process of making the same and textile fiber containing the same
EP0077406B1 (en) Lubricant for treating synthetic fibers
US2695270A (en) Oil soluble cationic textile antistatic agent
US4066558A (en) Low viscosity spin finish systems for neat finish application
JPS628551B2 (en)
US3341451A (en) Textile processing agents
US4624793A (en) Fiber finishes
US2702796A (en) Textile size comprising a partially neutralized polymethacrylic acid
US3634117A (en) A textile material coated with an ammonium dialkyl phosphate antistatic agent
US3503880A (en) Yarn
US3785973A (en) Textile finish
US2805992A (en) Textile conditioning agent
US3563892A (en) Textile-treating composition and process
US3888775A (en) Oil composition for synthetic staple fibers
EP0127293A2 (en) Coning oil lubricant compositions
US2191033A (en) Composition for the treatment of synthetic warp yarns