US3429758A - Method of making filament wound structural columns - Google Patents

Method of making filament wound structural columns Download PDF

Info

Publication number
US3429758A
US3429758A US522644A US3429758DA US3429758A US 3429758 A US3429758 A US 3429758A US 522644 A US522644 A US 522644A US 3429758D A US3429758D A US 3429758DA US 3429758 A US3429758 A US 3429758A
Authority
US
United States
Prior art keywords
pole
resin
glass
lighting
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US522644A
Inventor
Edwin C Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDWIN C YOUNG
Original Assignee
EDWIN C YOUNG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDWIN C YOUNG filed Critical EDWIN C YOUNG
Application granted granted Critical
Publication of US3429758A publication Critical patent/US3429758A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/24Cross arms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S273/00Amusement devices: games
    • Y10S273/07Glass fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1314Contains fabric, fiber particle, or filament made of glass, ceramic, or sintered, fused, fired, or calcined metal oxide, or metal carbide or other inorganic compound [e.g., fiber glass, mineral fiber, sand, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2936Wound or wrapped core or coating [i.e., spiral or helical]

Definitions

  • Such lighting installations are found principally where underground electrical service is used in such areas as interstate highway interchanges, municipal street and boulevard lighting, general automobile parking areas, sporting arenas and stadiums, industrial plants and the like.
  • these poles should be constructed in one piece for maximum strength, using materials that produce an electrically insulated pole and which are inert to atmospheric conditions to reduce pole maintenance. It is also desirable that these poles be as light-weight as possible consistent with maximum strength to reduce the cost of installation and minimize possible personal injury and property damage resulting from vehicular collision.
  • filament wound lighting poles to withstand compressive and bending loads.
  • Another object is to provide a lighting pole that is chemically resistant to the elements.
  • Still another object is to provide a lighting pole that is light-weight while yielding maximum strength.
  • a further object is to provide a lighting pole that has high strength continuous glass fibers positioned on the periphery of the circumference at the point of maximum fiber stress.
  • a still further object is to use a low strength, low cost core material to increase the section modulus and reduce the deflection due to bending.
  • Another object is to provide a method of fabrication of said pole in a simple and economical manner.
  • the present invention provides a structural column with a filament wound inner layer which forms a hollow core with said inner layer being comprised of fibers, preferably continuous glass fiber filaments bonded together with a suitable catalysed resin as a bonding agent.
  • a core material is sprayed over said inner layer which has the characteristic of forming a Cce bond with the inner layer of fiber glass and is expanded to a controlled density and thickness of rigid nature to provide structural stiffness.
  • the core material is also overwound with continuous glass fiber filaments bonded together and to the core material with a suitable resin binder to provide additional structural strength for the column.
  • various layers of glass fibers are built up with a predetermined fiber orientation to provide maximum strength in all directions of compression, tension, bending or twisting.
  • FIGURE 1 is a side elevational view of a lighting pole assembled with standard accessories
  • FIGURES 2A and 2B are section views taken through section lines 2 2 shown in FIGURE 1 for lighting poles having circular and elliptical cross-sections, respectively, and constructed according to the invention;
  • FIGURE 3 is a fragmentary, side elevational view of a tapered structural column constructed according to the invention, with various layers broken away to show the details of construction thereof;
  • FIGURE 4 is a perspective view of a shoe base flange bonded to the lower end of the -pole for attachment to the foundation;
  • FIGURE 5 is a perspective view of a cap used for sealing off the top end ofthe pole
  • FIGURE 6 is a perspective view of a clamp-type bracket used for attaching the lamp arm to the pole.
  • FIGURE 7 is a perspective view of an alternate bondedtype bracket for attaching the lamp arm to the pole.
  • the structural column is comprised of a hollow tapered pole 10 with a base flange 13 for securing the pole to a foundation, and a cap 14 for sealing off the top of the pole. Both the base flange and the cap can be made from any suitable material.
  • An arm 15 is secured to the pole by a suitable bracket 16 as described below.
  • FIGURES 2A and 2B Two different shaped cross-sections of the pole are shown in FIGURES 2A and 2B wherein FIGURE 2A shows a circular cross-section for most uses in structural column applications, and FIGURE 2B shows an oval or elliptical cross-section that is designed for reducing the fiber stress by loading along the major axis of the crosssection.
  • the structural column as shown in FIGURE 2A has a hollow interior 18 and is comprised of an inner wall 20 of filament wound fibers, preferably fiber glass, forming a plurality of layers impregnated with resin which serves to seal off the inner surface of the pole and provide structural strength around the center hole through the pole.
  • a core material 22, such as a self-rising rigid foam (or similar inexpensive material) is used to build up the section modulus of the pole for the purpose of making the pole more rigid.
  • An outer wall 24 comprising a plurality of filament wound layers is provided on the exterior of the core material and preferably comprises a combination of fiber glass of approximately 70% by weight impregnated with a catalysed resin of approximately 3()% by weight and built up in sufficient layers of glass filaments to provide the desired strength, all as explained in detail hereinafter.
  • the final layers of the vouter wall can be Wound with a resin pigmented to a desired color and overwrapped with a film of transparent plastic 26, such as a lluorocarbon, to give the exterior of the pole a smooth surface to improve the esthetic appearance of the pole and to give the pole better weathering characteristics.
  • a film of transparent plastic 26 such as a lluorocarbon
  • the tilm may contain an ultraviolet absorber to protect the resin system used from ultraviolet attack.
  • the film may also be colored to eliminate pigmentation of the outer ber glass layer.
  • FIGURE 2B A similar structural column is shown in FIGURE 2B which differs only from that just described in the geometry of cross-section thereof for a different type of loading, wherein like reference numerals, plus the character prime, refer to like parts.
  • FIGURE 3 A typical fiber glass pole constructed according to the invention is shown in FIGURE 3 in the various stages of fabrication.
  • a mandrel 30 is used which has dimensions which conform to the desired inner diameter of the pole and is tapered to facilitate the removal of the pole after completion. It will be understood, however, that the mandrel and pole do not have to be tapered.
  • the mandrel Before winding the inner wall of the pole over the mandrel, the mandrel is treated with a releasing agent to prevent the liber glass material and resin from adhering to the mandrel and to facilitate the stripping of the pole from the mandrel. Any suitable releasing agent may be used for this purpose, such as a polyvinyl alcohol film, or alternatively, the mandrel may be wrapped with a protective covering.
  • the inner liber glass wall is composed of two layers 31 and 32 of continuous glass 'filaments impregnated with resin and these layers are overwound with equal but opposite helix angles.
  • the configuration shown consists of bands of filaments placed on the mandrel 3() adjacent the preceding band and of sufficient width to provide the desired helix angle.
  • Other winding patterns such as single circuit or multiple circuit patterns, can be used to achieve the same results.
  • the method described herein is used for rapid production and to eliminate bending the glass lilaments over previously wound filaments by allowing7 all filaments to be laid down straight to produce uniform stress under load.
  • the inner liber glass surface 31 acts as a protection to the core material (to be added later) against atmospheric conditions, especially moisture, and against damage in pulling electrical wires or cable through the center of the pole for electrical hook-up. Additional layers of liber glass can be added to the inner wall but do not necessarily provide any useful advantage to the pole, while increasing costs; however, for other applications such additional layers may be desirable.
  • the fiber glass filaments comprising the various warps or layers of the inner wall are impregnated with a resin which acts to reinforce the inner surface and serves as a medium for forming a unitary member of the inner wall when the resin has set-up or cured.
  • resins such as thermosetting resins, that are suitable for this purpose and applicable to this process.
  • the silicones, phenolics, polyesters and epoxies are all suitable, among many others that are well-known.
  • the physical properties of the epoxies condensation products of epichlorohydrin and bisphenol A make them especially suitable.
  • a low viscosity resin such as Epon 826 or Epon S28, both being trade names of Shell Chemical Company, is especially suitable and desirable for filament winding of this nature.
  • Epon 826 or Epon S28 are in liquid form and are polymerized by using a catalyst or hardener to produce a solid structure.
  • a low temperature e.g. 200 F. or below, eure system for the resin.
  • Suitable curing agents for this purpose can be selected from the polyamine group, although others will readily come to mind, wherein consideration should be given to both pot life and cure times and temperatures.
  • any of diethylenetriamine, triethylenetetramine and diethylamino propylamine can be used.
  • a core material 33 is then added and comprises a selfrising rigid foam, e.g., such as a urethane foam, and is applied over the inner fiber glass wall 32 with a constant density and to a constant thickness.
  • This core material must have good adhesive properties and adhere to the inner fiber glass surface after it rises and sets to a rigid condition.
  • the Core material is usually of a two lbs/ft.3 density and of one inch thickness, both properties being approximate for process variations and chosen on both an economic and physical property analysis.
  • a suitable method of applying the core material is by spraying onto the fiber glass surface, although any method of application may be used which yields the desired results. It is obvious that alternate layers of foam and fiber glass can be combined to produce thicker structures of high strength.
  • plastic foams can be used for the core material discussed above; among those is the group of polyurethanes, polystyrenes, epoxies, polyvinyl chlorides, phenolics, silicones, and urea-formaldehydes, to name examples only. Spraying of the foam material onto the inner fiber glass surface has been found especially suitable as being fast and adapted for controlling the density and thickness of the core.
  • the most suitable foams for spraying are the polyurethanes, epoxies, and silicones, wherein these and the rest of the above-enumerated foams are all characterized by forming an adhesive bond with the fiber glass inner wall.
  • the strength properties of the polyurethanes make them the prime candidate for the foam core material for this purpose.
  • the polyurethane polymer is formed from polyol and polyisocyanate.
  • the polyurethane is mixed with a catalyst such as, for example, tertiary amines and tin salts in conjunction with a cell control agent such as, for example, a polyglycolsilicone polymer and a blowing agent, such as fluorotrichloroethane, all in the proper proportions (which are well-known) to produce a cell structure that yields the best physical properties at the lowest cost.
  • An outer surface or wall is provided over the core material to seal it olf and to ygive the structural column a better appearance.
  • the outer surface is also provided for the purpose of increasing the strength of the pole.
  • a fiber glass-resin combination is also used for this purpose similar to the inner wall previously described, wherein the following description will also have reference to the use of the structural column as a lighting pole.
  • the outer fiber glass surface is designed to take the compressive and tensile loadings of the installed pole as well as the bending and twisting loads encountered from normal atmospheric conditions and from high winds of hurricane magnitude. Glass filaments 34 and 35 impregnated with resin are wound over the core in a manner similar to that described above for the inner wall. These helically wound outer layers take the combined axial and longitudinal stresses and are designed accordingly.
  • the helix angle of the windings will gradually change from the top to the bottom of the pole. Since the longitudinal strength is important for the loads ⁇ under consideration, longitudinal glass filaments 36 are formed on top of helical layers 34 and 35 to compensate for the lower longitudinal components of the helical windings. Additional helical windings 37 and 38 and another longitudinal layer 39 are continued in a similar manner and subsequent layers of this pattern may be added until the required thickness of outer windings is obtained to meet the load specifications. The winding pattern need not go the entire length of the pole. Since the bending moment increases towards the bottom or the larger diameter of the pole, additional thickness will be required to compensate for the increase in bending.
  • Helical windings 40 and 41 are ⁇ wound over the entire length of the pole and put all layers previously wound under compression along the entire length of the pole.
  • a final layer of helical fiber glass winding 42 may be used which has the resin impregnated with a pigment to meet ywhatever color -might be required for the pole.
  • a final outer winding 43 may be used which comprises a -film of plastic with good weathering prope-rties, such as a fiuorocarbon.
  • the side of the film contacting the outer windin-g -42 is treated, if necessary, to provide a good bonding surface for the resin system used on the pole.
  • the purpose of the 4film is to improve the weathering properties and the esthetic appearance of the pole. ⁇ In the case where the resin system used in the winding process is not affected by atmospheric conditions, or where the outer surface is not critical, the use of the film can be considered to be superfluous.
  • the completed pole will be heated prior to stripping from the mandrel. Both ends of the pole can be machined perpendicular to the pole centerline for assuring vertical -mounting on the ⁇ fiange base described hereinafter.
  • FIGURE 4 For purposes of explanation in the -use of the structural column just described as a lighting pole, the following provides a description of mounting means that may be used therewith.
  • FIGURE 4 suitable means for attaching the pole to a foundation wherein, in almost all underground electrical installations, the pole is attached to a concrete base with anchor bolts as an integral part of this base.
  • a ange 44 used to make this attachment, has the same internal diameter as the outside of the pole 45.
  • the tapered joint formed by placing the ange over the pole provides a positive hold-down for the pole.
  • the flange and pole are bonded together in assembly with a catalysed resin similar to that used on the pole.
  • Variations in the pole diameters will be small and the base flange or the pole can be machined to compensate for the variations and provide a tight fit between the flange and pole.
  • the fiange will be provided with holes 46 to match the bolting pattern of the foundation and be secured to it by conventional means.
  • the flange is fabricated from a suitable material that satisfies the strength and weathering specifications. In the case where a transformer base is used between the pole Iand the foundation, the flange can be made adaptable by changing the bolting pattern.
  • the flange would be eliminated and the pole height increased to provide adequate under-ground support for the ⁇ height of the pole above ground.
  • the chemical inertness of the fiber glass construction would provide a long-life, maintenance-free installation.
  • the pole 45 is capped to seal off the top of the lhollow core to protect the electrical wiring from atmospheric conditions.
  • a cap 47 of any suitable material, is attached to an insert 48 by means of ma- Chine screws 49 with -a gasket 50 ⁇ used as a seal between the cap and pole.
  • Insert 48 can be imbedded in the pole top during fabrication, bonded to the pole top after the pole has been completed, or in any other manner attached permanently to the pole. In the event that a removable cover is not desired, the cap 47 can be bonded directly to the top of the pole.
  • the pole bracket arm for holding the lighting fixture must be securely attached to the pole.
  • Two typical means are shown but are not to be construed as being the only type fastening devices possible; good engineering practice will normally dictate the type of attachment to be used.
  • the clamp type attachment is shown in .FIGURE 6 and comprises a split-type clamp ⁇ 51 which conforms to the pole taper and is secured thereto with bolts and nuts 52.
  • the bracket arm 53 fits into a slip collar 54 which is a part of the clamp 51.
  • the arm S3 can be welded, bonded or clamped to collar 54, depending on the nature of the material used. Since the electrical cable or wiring must be pulled from the base of the pole through the arm to the lighting fixture, the arm must be hollow and a hole must be made through the wall of the pole and aligned with the slip collar holding the arm.
  • FIGURE 7 An alternate means is shown in FIGURE 7 where the attachment is made by bonding a tapered sleeve 55 of appropriate diameter and taper to the pole to maintain proper lamp height.
  • the arm 53 ⁇ fits into a collar 56 that is an integral part of sleeve 55.
  • the attachment of the arm to the collar and the alignment of the hole through the pole are the same as described above.
  • fiber glass has been indicated as filament material for use with this invention.
  • the economics, physical properties and availability make fiber glass the preferred material for use as filaments. It is to be understood, however, that the invention is not limited to fiber glass filaments, but embodies the use of any usitable filament material.
  • reference to the core material being a rigid foam should not be construed as being limited and is used herein for illustrative purposes and because of its economic, structural and physical assets, as well as its adaptability to the process and its availability.
  • T-he invention describes in detail a hollow tapered pole for use as a lighting pole and methods for forming same. This is to be construed as being only for the purpose of illustration and not to be limited to this one illustration. For those skilled in the art, it Will be evident that this process and method can be used to produce a wide range of structural columns for use in many applications. Only one method of filament winding has been explained in detail and it is to be understood that there are several methods of winding filaments to specific patterns and that these could be adapted to the making of these structural columns as described in this invention. Likewise, changes may be made in the above method and modifications may be made in the structures and combinations of the same which embody the invention without departing from the scope thereof. Therefore it is intended that the invention be limited only as defined in the appended claims.
  • a method of making a tubular structural member comprising the steps of:
  • a method of making a tubular structural member as claimed in claim 1 including the additional step of applying a release agent to said mandrel prior to forming said first layer on said mandrel.
  • said first layer of warps of resin reinforced with fibers is formed by helically wrapping a first resincarrying warp of glass fibers about said mandrel and helically wrapping a second resin-carrying warp of glass fibers about said mandrel in an opposite sense to said first warp on top of said first warp;
  • said second layer of warp of resin reinforced with fibers is formed by helically wrapping a third resin- 7 8 carrying warp of glass fibers about the outer surface References Cited of said cellular core and helically wrapping a fourth resin-carrying warp of glass fibers about the outer UNITED STATES PATENTS surface of said cellular core in an opposite sense to 2,747,616 5/1956 De Ganahl 156--175 XR said third Warp on top of said third Warp. 2,870,793 1/1959 Bailey.
  • a method of making a tubular structure as claimed PHILIP DIER, Primary Examiner. in claim 1 including the additional step of heating said U s C1 XR mandrel and said structure formed thereon to cure the resins in said rst and second warps. 15

Description

EL C. YOUNG Feb. 25, 1969 METHOD OF MAKING FILAMENT WOUND STRUCTURAL COLUMNS Filed Jan. 24, 1956 FIG.
INVENTOR EDWIN C. YOUNG FIG.6
FIG.7
ATTORNEY United States Patent O 3,429,758 METHOD F MAKING FILAMENT WOUND STRUCTURAL COLUMNS Edwin C. Young, 7139 Dover Lane, Richland Hills, Tex. 76118 Filed Ian. 24, 1966, Ser. No. 522,644 U.S. Cl. 156-79 Int. Cl. B32b 5/20 6 Claims ABSTRACT OF THE DISCLOSURE The present invention relates to filament wound structural columns and methods of forming the same and is particularly concerned with such columns for use as lighting poles or standards with hollow cores. There is presently a need for lighting poles of heights in excess of forty feet to produce lighting patterns of more uniform light distribution for the same lamp wattage. Such lighting installations are found principally where underground electrical service is used in such areas as interstate highway interchanges, municipal street and boulevard lighting, general automobile parking areas, sporting arenas and stadiums, industrial plants and the like. Ideally these poles should be constructed in one piece for maximum strength, using materials that produce an electrically insulated pole and which are inert to atmospheric conditions to reduce pole maintenance. It is also desirable that these poles be as light-weight as possible consistent with maximum strength to reduce the cost of installation and minimize possible personal injury and property damage resulting from vehicular collision.
Accordingly, it is an object of the present invention to provide such a pole which has all of the desirable characteristics enumerated above.
More specifically, it is an object of the invention to provide filament wound lighting poles to withstand compressive and bending loads.
Another object is to provide a lighting pole that is chemically resistant to the elements.
Still another object is to provide a lighting pole that is light-weight while yielding maximum strength.
A further object is to provide a lighting pole that has high strength continuous glass fibers positioned on the periphery of the circumference at the point of maximum fiber stress.
A still further object is to use a low strength, low cost core material to increase the section modulus and reduce the deflection due to bending.
Another object is to provide a method of fabrication of said pole in a simple and economical manner.
In accordance with these objects, the present invention provides a structural column with a filament wound inner layer which forms a hollow core with said inner layer being comprised of fibers, preferably continuous glass fiber filaments bonded together with a suitable catalysed resin as a bonding agent. A core material is sprayed over said inner layer which has the characteristic of forming a Cce bond with the inner layer of fiber glass and is expanded to a controlled density and thickness of rigid nature to provide structural stiffness. The core material is also overwound with continuous glass fiber filaments bonded together and to the core material with a suitable resin binder to provide additional structural strength for the column. In both the inner and outer layers of glass fibers, various layers of glass fibers are built up with a predetermined fiber orientation to provide maximum strength in all directions of compression, tension, bending or twisting.
Additional objects, features and advantages will in part be obvious and in part pointed out in the following description of the invention when taken in conjunction with the appended claims and the accompanying drawings wherein:
FIGURE 1 is a side elevational view of a lighting pole assembled with standard accessories;
FIGURES 2A and 2B are section views taken through section lines 2 2 shown in FIGURE 1 for lighting poles having circular and elliptical cross-sections, respectively, and constructed according to the invention;
FIGURE 3 is a fragmentary, side elevational view of a tapered structural column constructed according to the invention, with various layers broken away to show the details of construction thereof;
FIGURE 4 is a perspective view of a shoe base flange bonded to the lower end of the -pole for attachment to the foundation;
FIGURE 5 is a perspective view of a cap used for sealing off the top end ofthe pole;
FIGURE 6 is a perspective view of a clamp-type bracket used for attaching the lamp arm to the pole; and
FIGURE 7 is a perspective view of an alternate bondedtype bracket for attaching the lamp arm to the pole.
In the following description of the invention, reference will be had in the application thereof to a lighting pole, a1- though it will readily be apparent that the invention is adapted to many other applications for structural columns or for tubular members having various purposes, e.g., fluid conduit means. As applied to a lighting pole as shown in FIGURE 1, the structural column is comprised of a hollow tapered pole 10 with a base flange 13 for securing the pole to a foundation, and a cap 14 for sealing off the top of the pole. Both the base flange and the cap can be made from any suitable material. An arm 15 is secured to the pole by a suitable bracket 16 as described below.
Two different shaped cross-sections of the pole are shown in FIGURES 2A and 2B wherein FIGURE 2A shows a circular cross-section for most uses in structural column applications, and FIGURE 2B shows an oval or elliptical cross-section that is designed for reducing the fiber stress by loading along the major axis of the crosssection. The structural column as shown in FIGURE 2A has a hollow interior 18 and is comprised of an inner wall 20 of filament wound fibers, preferably fiber glass, forming a plurality of layers impregnated with resin which serves to seal off the inner surface of the pole and provide structural strength around the center hole through the pole. A core material 22, such as a self-rising rigid foam (or similar inexpensive material) is used to build up the section modulus of the pole for the purpose of making the pole more rigid. An outer wall 24 comprising a plurality of filament wound layers is provided on the exterior of the core material and preferably comprises a combination of fiber glass of approximately 70% by weight impregnated with a catalysed resin of approximately 3()% by weight and built up in sufficient layers of glass filaments to provide the desired strength, all as explained in detail hereinafter. The final layers of the vouter wall can be Wound with a resin pigmented to a desired color and overwrapped with a film of transparent plastic 26, such as a lluorocarbon, to give the exterior of the pole a smooth surface to improve the esthetic appearance of the pole and to give the pole better weathering characteristics. The tilm may contain an ultraviolet absorber to protect the resin system used from ultraviolet attack. The film may also be colored to eliminate pigmentation of the outer ber glass layer.
A similar structural column is shown in FIGURE 2B which differs only from that just described in the geometry of cross-section thereof for a different type of loading, wherein like reference numerals, plus the character prime, refer to like parts.
A typical fiber glass pole constructed according to the invention is shown in FIGURE 3 in the various stages of fabrication. A mandrel 30 is used which has dimensions which conform to the desired inner diameter of the pole and is tapered to facilitate the removal of the pole after completion. It will be understood, however, that the mandrel and pole do not have to be tapered. Before winding the inner wall of the pole over the mandrel, the mandrel is treated with a releasing agent to prevent the liber glass material and resin from adhering to the mandrel and to facilitate the stripping of the pole from the mandrel. Any suitable releasing agent may be used for this purpose, such as a polyvinyl alcohol film, or alternatively, the mandrel may be wrapped with a protective covering.
The inner liber glass wall is composed of two layers 31 and 32 of continuous glass 'filaments impregnated with resin and these layers are overwound with equal but opposite helix angles. The configuration shown consists of bands of filaments placed on the mandrel 3() adjacent the preceding band and of sufficient width to provide the desired helix angle. Other winding patterns, such as single circuit or multiple circuit patterns, can be used to achieve the same results. The method described herein is used for rapid production and to eliminate bending the glass lilaments over previously wound filaments by allowing7 all filaments to be laid down straight to produce uniform stress under load. The inner liber glass surface 31 acts as a protection to the core material (to be added later) against atmospheric conditions, especially moisture, and against damage in pulling electrical wires or cable through the center of the pole for electrical hook-up. Additional layers of liber glass can be added to the inner wall but do not necessarily provide any useful advantage to the pole, while increasing costs; however, for other applications such additional layers may be desirable.
As mentioned earlier, the fiber glass filaments comprising the various warps or layers of the inner wall are impregnated with a resin which acts to reinforce the inner surface and serves as a medium for forming a unitary member of the inner wall when the resin has set-up or cured. There are many types of resins, such as thermosetting resins, that are suitable for this purpose and applicable to this process. As examples, the silicones, phenolics, polyesters and epoxies are all suitable, among many others that are well-known. In particular, the physical properties of the epoxies (condensation products of epichlorohydrin and bisphenol A) make them especially suitable. A low viscosity resin, such as Epon 826 or Epon S28, both being trade names of Shell Chemical Company, is especially suitable and desirable for filament winding of this nature. These particular epoxy resins are in liquid form and are polymerized by using a catalyst or hardener to produce a solid structure. Because of the nature of preferred foam core material to be discussed below, it is advisable to use a low temperature, e.g., 200 F. or below, eure system for the resin. Suitable curing agents for this purpose can be selected from the polyamine group, although others will readily come to mind, wherein consideration should be given to both pot life and cure times and temperatures. As specific examples only of low temperature curing agents for the epoxy resins, any of diethylenetriamine, triethylenetetramine and diethylamino propylamine can be used.
A core material 33 is then added and comprises a selfrising rigid foam, e.g., such as a urethane foam, and is applied over the inner fiber glass wall 32 with a constant density and to a constant thickness. This core material must have good adhesive properties and adhere to the inner fiber glass surface after it rises and sets to a rigid condition. For fiber glass poles under consideration for use as lighting poles, for example, the Core material is usually of a two lbs/ft.3 density and of one inch thickness, both properties being approximate for process variations and chosen on both an economic and physical property analysis. A suitable method of applying the core material is by spraying onto the fiber glass surface, although any method of application may be used which yields the desired results. It is obvious that alternate layers of foam and fiber glass can be combined to produce thicker structures of high strength.
Many different plastic foams can be used for the core material discussed above; among those is the group of polyurethanes, polystyrenes, epoxies, polyvinyl chlorides, phenolics, silicones, and urea-formaldehydes, to name examples only. Spraying of the foam material onto the inner fiber glass surface has been found especially suitable as being fast and adapted for controlling the density and thickness of the core. The most suitable foams for spraying are the polyurethanes, epoxies, and silicones, wherein these and the rest of the above-enumerated foams are all characterized by forming an adhesive bond with the fiber glass inner wall. In particular, the strength properties of the polyurethanes, coupled with their much lower costs, make them the prime candidate for the foam core material for this purpose. Basically, the polyurethane polymer is formed from polyol and polyisocyanate. In forming the core material, the polyurethane is mixed with a catalyst such as, for example, tertiary amines and tin salts in conjunction with a cell control agent such as, for example, a polyglycolsilicone polymer and a blowing agent, such as fluorotrichloroethane, all in the proper proportions (which are well-known) to produce a cell structure that yields the best physical properties at the lowest cost.
An outer surface or wall is provided over the core material to seal it olf and to ygive the structural column a better appearance. The outer surface is also provided for the purpose of increasing the strength of the pole. A fiber glass-resin combination is also used for this purpose similar to the inner wall previously described, wherein the following description will also have reference to the use of the structural column as a lighting pole. The outer fiber glass surface is designed to take the compressive and tensile loadings of the installed pole as well as the bending and twisting loads encountered from normal atmospheric conditions and from high winds of hurricane magnitude. Glass filaments 34 and 35 impregnated with resin are wound over the core in a manner similar to that described above for the inner wall. These helically wound outer layers take the combined axial and longitudinal stresses and are designed accordingly. With the tapered pole construction as described herein and with the constant band width of filaments, the helix angle of the windings will gradually change from the top to the bottom of the pole. Since the longitudinal strength is important for the loads `under consideration, longitudinal glass filaments 36 are formed on top of helical layers 34 and 35 to compensate for the lower longitudinal components of the helical windings. Additional helical windings 37 and 38 and another longitudinal layer 39 are continued in a similar manner and subsequent layers of this pattern may be added until the required thickness of outer windings is obtained to meet the load specifications. The winding pattern need not go the entire length of the pole. Since the bending moment increases towards the bottom or the larger diameter of the pole, additional thickness will be required to compensate for the increase in bending. Thus, the additional layers in the winding 4pattern need to go only as high as needed for obtaining the required strength. Helical windings 40 and 41 are `wound over the entire length of the pole and put all layers previously wound under compression along the entire length of the pole. A final layer of helical fiber glass winding 42 may be used which has the resin impregnated with a pigment to meet ywhatever color -might be required for the pole.
All filament windings described above are applied under tension to make the pole a prestressed structure.
A final outer winding 43 may be used which comprises a -film of plastic with good weathering prope-rties, such as a fiuorocarbon. The side of the film contacting the outer windin-g -42 is treated, if necessary, to provide a good bonding surface for the resin system used on the pole. As pointed out previously, the purpose of the 4film is to improve the weathering properties and the esthetic appearance of the pole. `In the case where the resin system used in the winding process is not affected by atmospheric conditions, or where the outer surface is not critical, the use of the film can be considered to be superfluous.
If the resin system used requires heat for adequate cure, the completed pole will be heated prior to stripping from the mandrel. Both ends of the pole can be machined perpendicular to the pole centerline for assuring vertical -mounting on the `fiange base described hereinafter.
For purposes of explanation in the -use of the structural column just described as a lighting pole, the following provides a description of mounting means that may be used therewith. There is shown in FIGURE 4 suitable means for attaching the pole to a foundation wherein, in almost all underground electrical installations, the pole is attached to a concrete base with anchor bolts as an integral part of this base. A ange 44, used to make this attachment, has the same internal diameter as the outside of the pole 45. The tapered joint formed by placing the ange over the pole provides a positive hold-down for the pole. To supplement this hold-down the flange and pole are bonded together in assembly with a catalysed resin similar to that used on the pole. Variations in the pole diameters will be small and the base flange or the pole can be machined to compensate for the variations and provide a tight fit between the flange and pole. The fiange will be provided with holes 46 to match the bolting pattern of the foundation and be secured to it by conventional means. The flange is fabricated from a suitable material that satisfies the strength and weathering specifications. In the case where a transformer base is used between the pole Iand the foundation, the flange can be made adaptable by changing the bolting pattern.
For the case where the pole is buried as a permanent type of installation, the flange would be eliminated and the pole height increased to provide adequate under-ground support for the `height of the pole above ground. In this case, the chemical inertness of the fiber glass construction Would provide a long-life, maintenance-free installation.
As shown in FIGURE 5, the pole 45 is capped to seal off the top of the lhollow core to protect the electrical wiring from atmospheric conditions. A cap 47, of any suitable material, is attached to an insert 48 by means of ma- Chine screws 49 with -a gasket 50` used as a seal between the cap and pole. Insert 48 can be imbedded in the pole top during fabrication, bonded to the pole top after the pole has been completed, or in any other manner attached permanently to the pole. In the event that a removable cover is not desired, the cap 47 can be bonded directly to the top of the pole.
The pole bracket arm for holding the lighting fixture must be securely attached to the pole. Two typical means are shown but are not to be construed as being the only type fastening devices possible; good engineering practice will normally dictate the type of attachment to be used. The clamp type attachment is shown in .FIGURE 6 and comprises a split-type clamp `51 which conforms to the pole taper and is secured thereto with bolts and nuts 52. The bracket arm 53 fits into a slip collar 54 which is a part of the clamp 51. The arm S3 can be welded, bonded or clamped to collar 54, depending on the nature of the material used. Since the electrical cable or wiring must be pulled from the base of the pole through the arm to the lighting fixture, the arm must be hollow and a hole must be made through the wall of the pole and aligned with the slip collar holding the arm.
An alternate means is shown in FIGURE 7 where the attachment is made by bonding a tapered sleeve 55 of appropriate diameter and taper to the pole to maintain proper lamp height. The arm 53 `fits into a collar 56 that is an integral part of sleeve 55. The attachment of the arm to the collar and the alignment of the hole through the pole are the same as described above.
In the foregoing description, fiber glass has been indicated as filament material for use with this invention. The economics, physical properties and availability make fiber glass the preferred material for use as filaments. It is to be understood, however, that the invention is not limited to fiber glass filaments, but embodies the use of any usitable filament material. Likewise, reference to the core material being a rigid foam should not be construed as being limited and is used herein for illustrative purposes and because of its economic, structural and physical assets, as well as its adaptability to the process and its availability.
T-he invention describes in detail a hollow tapered pole for use as a lighting pole and methods for forming same. This is to be construed as being only for the purpose of illustration and not to be limited to this one illustration. For those skilled in the art, it Will be evident that this process and method can be used to produce a wide range of structural columns for use in many applications. Only one method of filament winding has been explained in detail and it is to be understood that there are several methods of winding filaments to specific patterns and that these could be adapted to the making of these structural columns as described in this invention. Likewise, changes may be made in the above method and modifications may be made in the structures and combinations of the same which embody the invention without departing from the scope thereof. Therefore it is intended that the invention be limited only as defined in the appended claims.
What I claim is:
1. A method of making a tubular structural member, comprising the steps of:
(a) forming a first layer of warps of resin reinforced with fibers about the outer surface of a tubular mandrel;
(b) spraying a foamable resinous composition including a catalyst onto said first layer of resin reinforced with fibers;
(c) forming a second layer of warps of resin reinforced with fibers about the outer surface of said foamable composition;
(d) permitting said composition to foam in situ until cured; and
(e) removing said mandrel from within said layer along the longitudinal axis thereof when said first and second layers and said cellular core have been rigidly formed into an integral tubular structure.
2. A method of making a tubular structural member as claimed in claim 1 including the additional step of applying a release agent to said mandrel prior to forming said first layer on said mandrel.
3. A method of making a tubular structural member as claimed in claim 2 wherein:
(a) said first layer of warps of resin reinforced with fibers is formed by helically wrapping a first resincarrying warp of glass fibers about said mandrel and helically wrapping a second resin-carrying warp of glass fibers about said mandrel in an opposite sense to said first warp on top of said first warp; and
(b) said second layer of warp of resin reinforced with fibers is formed by helically wrapping a third resin- 7 8 carrying warp of glass fibers about the outer surface References Cited of said cellular core and helically wrapping a fourth resin-carrying warp of glass fibers about the outer UNITED STATES PATENTS surface of said cellular core in an opposite sense to 2,747,616 5/1956 De Ganahl 156--175 XR said third Warp on top of said third Warp. 2,870,793 1/1959 Bailey.
4. A method of making a tubular structural member 5 3,303,617 2/1967 Hessburg et al. 156--79 XR as claimed in claim 2 wherein said foamable composition 2,642,920 6/ 1953 Simon et al, 161- 161 is a thermosetting resin compound.
5. A method of making a tubular structural member FOREIGN PATENTS as claimed in claim 2 wherein said foamable composition 558,633 7/ 1957 Belgium. is a thermoplastic resin compound. 10
6. A method of making a tubular structure as claimed PHILIP DIER, Primary Examiner. in claim 1 including the additional step of heating said U s C1 XR mandrel and said structure formed thereon to cure the resins in said rst and second warps. 15
US522644A 1966-01-24 1966-01-24 Method of making filament wound structural columns Expired - Lifetime US3429758A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US52264466A 1966-01-24 1966-01-24

Publications (1)

Publication Number Publication Date
US3429758A true US3429758A (en) 1969-02-25

Family

ID=24081718

Family Applications (1)

Application Number Title Priority Date Filing Date
US522644A Expired - Lifetime US3429758A (en) 1966-01-24 1966-01-24 Method of making filament wound structural columns

Country Status (1)

Country Link
US (1) US3429758A (en)

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524780A (en) * 1967-09-13 1970-08-18 Rohr Corp Process for the on-site fabrication of a large capacity fiber reinforced resin tank
US3562403A (en) * 1968-03-20 1971-02-09 Cascade Pole Co Resin coated wooden poles and light standards incorporating same
US3651661A (en) * 1970-02-02 1972-03-28 United Aircraft Corp Composite shaft with integral end flange
US3813837A (en) * 1972-10-16 1974-06-04 Cascade Pole Co Fiberglass pole and method and apparatus for fabricating same
US3850722A (en) * 1971-09-18 1974-11-26 Maschf Augsburg Nuernberg Ag Component for transmitting forces
US3853418A (en) * 1973-02-28 1974-12-10 Celanese Corp Safety support for use adjacent a vehicular trafficway
US3888283A (en) * 1971-12-27 1975-06-10 Ford B Cauffiel Tapered pole made of variable width metal strips
US3896858A (en) * 1973-02-28 1975-07-29 William J Whatley Utility pole
US3929543A (en) * 1971-11-22 1975-12-30 Shakespeare Co Hank forming machine for a pole construction and method of forming a pole
US3938288A (en) * 1973-03-06 1976-02-17 Regie Nationale Des Usines Renault Reinforcing device for automobile body
US3969557A (en) * 1975-02-27 1976-07-13 Amf Incorporated Fiberglass vaulting pole
US3991532A (en) * 1973-05-07 1976-11-16 Desert Outdoor Advertising, Inc. Sign post construction
US3997695A (en) * 1975-06-12 1976-12-14 Gitco, Inc. Protective covering for fiberglass boom
US4058940A (en) * 1976-03-15 1977-11-22 Max Von Erdmannsdorff Synthetic monument marker
US4106528A (en) * 1973-12-19 1978-08-15 Nikolaus Laing Tube for fluid substances under pressure
US4135035A (en) * 1976-05-20 1979-01-16 Avco Corporation Laminated composite golf club shaft
US4137119A (en) * 1976-01-29 1979-01-30 Dayton G.R.P. S.R.L. Apparatus for manufacturing poles of reinforced plastics material
US4152183A (en) * 1977-01-14 1979-05-01 Dart Industries, Inc. Method for producing hollow cylindrical structures
US4155305A (en) * 1976-02-18 1979-05-22 Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Bending-resistant gripper carriage for use in offset printing machines, and process for manufacture thereof
US4172175A (en) * 1978-02-17 1979-10-23 Tillotson-Pearson, Inc. Pole construction
US4273161A (en) * 1974-10-09 1981-06-16 Ameron, Inc. Insulated plastic pipe product and method
US4283446A (en) * 1976-09-07 1981-08-11 Shakespeare Company Fiber reinforced plastic members
US4380252A (en) * 1981-03-23 1983-04-19 The Gates Rubber Company Wire reinforced hose and method
DE3239804A1 (en) * 1981-12-28 1983-07-07 United Technologies Corp., 06101 Hartford, Conn. METHOD FOR PRODUCING AN OBJECT BY FIBER WINDING
DE3239803A1 (en) * 1981-12-28 1983-07-07 United Technologies Corp., 06101 Hartford, Conn. METHOD FOR PRODUCING A FIBER WINDED OBJECT
US4473420A (en) * 1980-07-21 1984-09-25 Koch Engineering Company, Inc. Method and apparatus for applying hoop windings to a cylindrical member
US4597346A (en) * 1984-03-14 1986-07-01 The Coleman Company, Inc. Non-conducting mast for sailboats
US4682747A (en) * 1986-04-24 1987-07-28 King Jr Halm C Utility insulated cross-arm
US4718369A (en) * 1984-03-14 1988-01-12 Coast Catamaran Corporation Non-conducting mast for sailboats
US5529731A (en) * 1994-07-13 1996-06-25 Caine Corporation Method of making an elongate composite structural member
US5555696A (en) * 1995-03-20 1996-09-17 William S. Morrison, III Filament wound architectural column
US5633057A (en) * 1994-03-04 1997-05-27 Fawley; Norman C. Composite reinforcement for support columns
US5680739A (en) * 1994-08-01 1997-10-28 Xxsys Technologies, Inc. Apparatus and method for reinforcing a stationary vertical column
US5704187A (en) * 1994-02-09 1998-01-06 Shakespeare Company Composite utility pole
WO1999013162A1 (en) * 1997-09-08 1999-03-18 Jerol Oy Ab A pole
WO1998053160A3 (en) * 1997-05-22 1999-05-20 Permapole Inc Methods of reinforcing wooden supports, apparatuses for use in reinforcing wooden supports, and reinforced wooden supports
US5924262A (en) * 1994-03-04 1999-07-20 Fawley; Norman C. High elongation reinforcement for concrete
US5946880A (en) * 1995-03-20 1999-09-07 William S. Morrison, III Filament wound tubular column
WO2000044991A1 (en) * 1999-01-29 2000-08-03 Jerol Industri Ab A post
US6219991B1 (en) 1990-08-06 2001-04-24 Hexcel Corporation Method of externally strengthening concrete columns with flexible strap of reinforcing material
US6367225B1 (en) 1999-07-26 2002-04-09 Wasatch Technologies Corporation Filament wound structural columns for light poles
US20030231097A1 (en) * 2002-06-16 2003-12-18 Victor Almgren Composite insulator for fuse cutout
US20040001298A1 (en) * 2002-06-16 2004-01-01 Scott Henricks Composite insulator
US6736689B2 (en) * 2000-07-28 2004-05-18 Salomon S.A. Subassembly designed to produce an aquatic gliding board
US20050011161A1 (en) * 2003-06-02 2005-01-20 Polymer Group, Inc. Concrete reinforcement structure
US20050229532A1 (en) * 2004-03-11 2005-10-20 The Hong Kong Polytechnic University Double-skin tubular structural members
US20060007691A1 (en) * 2004-07-06 2006-01-12 Depenbusch Dennis H Aerodynamic elliptical outdoor lighting support
US7028998B2 (en) 2001-04-30 2006-04-18 Maclean-Fogg Company Stabilizer bar
US7041913B2 (en) 2000-12-26 2006-05-09 Barker Jr James W Method and arrangement for providing a gas-tight housing joint
US20060101778A1 (en) * 2004-11-04 2006-05-18 Masahiro Yamamoto Steel post having corrosion control property for embedded part
US20060180723A1 (en) * 2005-02-01 2006-08-17 The Southern Company Temporary arm gain and saddle
US20060185218A1 (en) * 2003-02-27 2006-08-24 Win Leisure Products, Inc. Two piece bonded fishing rod blank and fishing rod
US7096814B1 (en) * 2005-01-04 2006-08-29 Webb Douglas C Variable buoyancy device
US20060218873A1 (en) * 2005-03-31 2006-10-05 Jason Christensen Composite architectural column
US20060236649A1 (en) * 2005-03-31 2006-10-26 Jason Christensen Architectural capital having an astragal formed thereon
US20070058363A1 (en) * 2005-09-06 2007-03-15 Copeland S D Wound-In Tenon/Wound-In Tenon Collar for Attachment of Luminaire
US20070129158A1 (en) * 2005-04-26 2007-06-07 Watts Robert C Springpole recreational apparatus
US7228672B2 (en) * 2002-04-19 2007-06-12 Powertrusion International, Inc. Fiber architecture for a composite pole
US20070137552A1 (en) * 2005-12-19 2007-06-21 Bridges Robert J Flat or open water single-person rowing shell
FR2904980A1 (en) * 2006-08-16 2008-02-22 Christophe Esquirol Finishing street furniture profiles, e.g. posts, by applying resin-impregnated textile underlayer, resin-impregnated textile or wood finishing layer and plastics film then stoving
EP1911911A2 (en) * 2006-10-11 2008-04-16 Ameron International Corporation Fiber reinforced resin polymer mortar pole
GB2448363A (en) * 2007-04-13 2008-10-15 3M Innovative Properties Co Tubular support of composite material
GB2448362A (en) * 2007-04-13 2008-10-15 3M Innovative Properties Co Tubular support of composite material
WO2009009425A2 (en) * 2007-07-09 2009-01-15 Scott Ryan Support pole structure and method of manufacture
US7490964B2 (en) 2002-10-09 2009-02-17 Genlyte Thomas Group Llc Modular pole system for a light fixture
US20090211173A1 (en) * 2008-02-27 2009-08-27 General Electric Company Composite wind turbine tower
WO2010071466A1 (en) * 2008-12-20 2010-06-24 Universidade Do Minho Pole in thermoplastic matrix composite
US20100218449A1 (en) * 2009-03-02 2010-09-02 Charles Christopher Hamilton Lateral strenthening of poles
WO2010135835A1 (en) * 2009-05-27 2010-12-02 University Of Ontario Institute Of Technology Internally supported modular and non-modular linked structures
US20110047900A1 (en) * 2009-08-24 2011-03-03 UC Solutions, LLC Modular Composite Utility Pole
US20110183094A1 (en) * 2008-06-30 2011-07-28 Bo Blomqvist Unstayed composite mast
US8061666B1 (en) 2008-08-05 2011-11-22 Philips Electronics Ltd Adapter assembly for pole luminaire
GB2484587A (en) * 2010-10-14 2012-04-18 Vetco Gray Inc Thick walled composite tubular with varying angled hoopwise fibers
CN102493704A (en) * 2011-12-27 2012-06-13 祁锦明 Cement-based composite rod
US20120225237A1 (en) * 2011-03-04 2012-09-06 Brockwell Michael Ian Exotensioned structural members with energy-absorbing effects
US20130042573A1 (en) * 2010-04-20 2013-02-21 Conett, Inc. Composite pole and method for making the same
US20130081342A1 (en) * 2011-09-30 2013-04-04 Siemens Aktiengesellschaft Wind turbine tower
US20130180194A1 (en) * 2012-01-18 2013-07-18 Automated Dynamics Ultra light fiber placed truss
US20140157715A1 (en) * 2011-07-17 2014-06-12 Philipp Wagner Method and Sliding Form for Producing a Structure and Corresponding Structure
US20140237919A1 (en) * 2011-09-30 2014-08-28 Siemens Aktiengesellschaft Wind turbine tower and method of production thereof
US9890546B2 (en) * 2009-11-13 2018-02-13 Mohammad Reza Ehsani Reinforcement and repair of structural columns
US20180291535A1 (en) * 2017-04-10 2018-10-11 Other Lab, Llc Coiled actuator system and method
US10793981B2 (en) 2015-05-21 2020-10-06 Other Lab, Llc System and method for thermally adaptive materials
US20210079682A1 (en) * 2019-09-16 2021-03-18 Valmont Industries, Inc. Fire resistant composite pole
WO2021186082A1 (en) * 2020-03-20 2021-09-23 Ecopole As Fibre-reinforced support poles
US20220259882A1 (en) * 2019-06-14 2022-08-18 Balfour Beatty Plc Modular tube and method of manufacturing
US11885577B2 (en) 2015-05-20 2024-01-30 Other Lab, Llc Heat exchanger array system and method for an air thermal conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE558633A (en) *
US2642920A (en) * 1950-10-04 1953-06-23 Lockheed Aircraft Corp Housing for electrical apparatus
US2747616A (en) * 1951-07-07 1956-05-29 Ganahl Carl De Pipe structure
US2870793A (en) * 1955-02-08 1959-01-27 Gar Wood Ind Inc Supporting members
US3303617A (en) * 1963-04-16 1967-02-14 Stainless & Steel Products Co Cored wall construction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE558633A (en) *
US2642920A (en) * 1950-10-04 1953-06-23 Lockheed Aircraft Corp Housing for electrical apparatus
US2747616A (en) * 1951-07-07 1956-05-29 Ganahl Carl De Pipe structure
US2870793A (en) * 1955-02-08 1959-01-27 Gar Wood Ind Inc Supporting members
US3303617A (en) * 1963-04-16 1967-02-14 Stainless & Steel Products Co Cored wall construction

Cited By (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524780A (en) * 1967-09-13 1970-08-18 Rohr Corp Process for the on-site fabrication of a large capacity fiber reinforced resin tank
US3562403A (en) * 1968-03-20 1971-02-09 Cascade Pole Co Resin coated wooden poles and light standards incorporating same
US3651661A (en) * 1970-02-02 1972-03-28 United Aircraft Corp Composite shaft with integral end flange
US3850722A (en) * 1971-09-18 1974-11-26 Maschf Augsburg Nuernberg Ag Component for transmitting forces
US3929543A (en) * 1971-11-22 1975-12-30 Shakespeare Co Hank forming machine for a pole construction and method of forming a pole
US3888283A (en) * 1971-12-27 1975-06-10 Ford B Cauffiel Tapered pole made of variable width metal strips
US3813837A (en) * 1972-10-16 1974-06-04 Cascade Pole Co Fiberglass pole and method and apparatus for fabricating same
US3853418A (en) * 1973-02-28 1974-12-10 Celanese Corp Safety support for use adjacent a vehicular trafficway
US3896858A (en) * 1973-02-28 1975-07-29 William J Whatley Utility pole
US3938288A (en) * 1973-03-06 1976-02-17 Regie Nationale Des Usines Renault Reinforcing device for automobile body
US3991532A (en) * 1973-05-07 1976-11-16 Desert Outdoor Advertising, Inc. Sign post construction
US4106528A (en) * 1973-12-19 1978-08-15 Nikolaus Laing Tube for fluid substances under pressure
US4273161A (en) * 1974-10-09 1981-06-16 Ameron, Inc. Insulated plastic pipe product and method
US3969557A (en) * 1975-02-27 1976-07-13 Amf Incorporated Fiberglass vaulting pole
US3997695A (en) * 1975-06-12 1976-12-14 Gitco, Inc. Protective covering for fiberglass boom
US4137119A (en) * 1976-01-29 1979-01-30 Dayton G.R.P. S.R.L. Apparatus for manufacturing poles of reinforced plastics material
US4155305A (en) * 1976-02-18 1979-05-22 Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Bending-resistant gripper carriage for use in offset printing machines, and process for manufacture thereof
US4058940A (en) * 1976-03-15 1977-11-22 Max Von Erdmannsdorff Synthetic monument marker
US4135035A (en) * 1976-05-20 1979-01-16 Avco Corporation Laminated composite golf club shaft
US4283446A (en) * 1976-09-07 1981-08-11 Shakespeare Company Fiber reinforced plastic members
US4152183A (en) * 1977-01-14 1979-05-01 Dart Industries, Inc. Method for producing hollow cylindrical structures
US4172175A (en) * 1978-02-17 1979-10-23 Tillotson-Pearson, Inc. Pole construction
US4473420A (en) * 1980-07-21 1984-09-25 Koch Engineering Company, Inc. Method and apparatus for applying hoop windings to a cylindrical member
US4380252A (en) * 1981-03-23 1983-04-19 The Gates Rubber Company Wire reinforced hose and method
DE3239803A1 (en) * 1981-12-28 1983-07-07 United Technologies Corp., 06101 Hartford, Conn. METHOD FOR PRODUCING A FIBER WINDED OBJECT
DE3239804A1 (en) * 1981-12-28 1983-07-07 United Technologies Corp., 06101 Hartford, Conn. METHOD FOR PRODUCING AN OBJECT BY FIBER WINDING
US4718369A (en) * 1984-03-14 1988-01-12 Coast Catamaran Corporation Non-conducting mast for sailboats
US4597346A (en) * 1984-03-14 1986-07-01 The Coleman Company, Inc. Non-conducting mast for sailboats
WO1989001108A1 (en) * 1986-04-24 1989-02-09 Halm Chris King Utility insulated cross-arm
US4682747A (en) * 1986-04-24 1987-07-28 King Jr Halm C Utility insulated cross-arm
US6219991B1 (en) 1990-08-06 2001-04-24 Hexcel Corporation Method of externally strengthening concrete columns with flexible strap of reinforcing material
US5704187A (en) * 1994-02-09 1998-01-06 Shakespeare Company Composite utility pole
US5924262A (en) * 1994-03-04 1999-07-20 Fawley; Norman C. High elongation reinforcement for concrete
US5633057A (en) * 1994-03-04 1997-05-27 Fawley; Norman C. Composite reinforcement for support columns
US6519909B1 (en) 1994-03-04 2003-02-18 Norman C. Fawley Composite reinforcement for support columns
US5529731A (en) * 1994-07-13 1996-06-25 Caine Corporation Method of making an elongate composite structural member
US5680739A (en) * 1994-08-01 1997-10-28 Xxsys Technologies, Inc. Apparatus and method for reinforcing a stationary vertical column
US5946880A (en) * 1995-03-20 1999-09-07 William S. Morrison, III Filament wound tubular column
US5555696A (en) * 1995-03-20 1996-09-17 William S. Morrison, III Filament wound architectural column
WO1998053160A3 (en) * 1997-05-22 1999-05-20 Permapole Inc Methods of reinforcing wooden supports, apparatuses for use in reinforcing wooden supports, and reinforced wooden supports
WO1999013162A1 (en) * 1997-09-08 1999-03-18 Jerol Oy Ab A pole
AU740845B2 (en) * 1997-09-08 2001-11-15 Jerol Industri Ab A pole
US6434906B1 (en) 1997-09-08 2002-08-20 Jerol Industri Ab Pole
WO2000044991A1 (en) * 1999-01-29 2000-08-03 Jerol Industri Ab A post
US20040006947A1 (en) * 1999-07-26 2004-01-15 Clint Ashton Filament wound structural light poles
US6367225B1 (en) 1999-07-26 2002-04-09 Wasatch Technologies Corporation Filament wound structural columns for light poles
US6955024B2 (en) 1999-07-26 2005-10-18 North Pacific Group, Inc. Filament wound structural light poles
US20040198112A1 (en) * 2000-07-28 2004-10-07 Salomon S.A. Aquatic gliding board
US7331835B2 (en) 2000-07-28 2008-02-19 Salomon S.A. Aquatic gliding board
US6736689B2 (en) * 2000-07-28 2004-05-18 Salomon S.A. Subassembly designed to produce an aquatic gliding board
US20060118327A1 (en) * 2000-12-26 2006-06-08 S&C Electric Company And Maclean Power, L.L.C. Method and arrangement for providing a gas-tight joint
US7180004B2 (en) 2000-12-26 2007-02-20 Maclean-Fogg Company Method and arrangement for providing a gas-tight joint
US7041913B2 (en) 2000-12-26 2006-05-09 Barker Jr James W Method and arrangement for providing a gas-tight housing joint
US7028998B2 (en) 2001-04-30 2006-04-18 Maclean-Fogg Company Stabilizer bar
US7228672B2 (en) * 2002-04-19 2007-06-12 Powertrusion International, Inc. Fiber architecture for a composite pole
US20040001298A1 (en) * 2002-06-16 2004-01-01 Scott Henricks Composite insulator
US6831232B2 (en) 2002-06-16 2004-12-14 Scott Henricks Composite insulator
US20030231097A1 (en) * 2002-06-16 2003-12-18 Victor Almgren Composite insulator for fuse cutout
US7490964B2 (en) 2002-10-09 2009-02-17 Genlyte Thomas Group Llc Modular pole system for a light fixture
US20060185218A1 (en) * 2003-02-27 2006-08-24 Win Leisure Products, Inc. Two piece bonded fishing rod blank and fishing rod
US7219478B2 (en) * 2003-06-02 2007-05-22 Polymer Group, Inc. Concrete reinforcement structure
US20050011161A1 (en) * 2003-06-02 2005-01-20 Polymer Group, Inc. Concrete reinforcement structure
US20050229532A1 (en) * 2004-03-11 2005-10-20 The Hong Kong Polytechnic University Double-skin tubular structural members
US7673432B2 (en) * 2004-03-11 2010-03-09 The Hong Kong Polytechnic University Double-skin tubular structural members
US20060007691A1 (en) * 2004-07-06 2006-01-12 Depenbusch Dennis H Aerodynamic elliptical outdoor lighting support
US20060101778A1 (en) * 2004-11-04 2006-05-18 Masahiro Yamamoto Steel post having corrosion control property for embedded part
US7096814B1 (en) * 2005-01-04 2006-08-29 Webb Douglas C Variable buoyancy device
US20090308021A1 (en) * 2005-02-01 2009-12-17 The Southern Company Temporary Arm Gain and Saddle
US20060180723A1 (en) * 2005-02-01 2006-08-17 The Southern Company Temporary arm gain and saddle
US7578488B2 (en) 2005-02-01 2009-08-25 The Southern Company Temporary arm gain and saddle
US20060236649A1 (en) * 2005-03-31 2006-10-26 Jason Christensen Architectural capital having an astragal formed thereon
US20060218873A1 (en) * 2005-03-31 2006-10-05 Jason Christensen Composite architectural column
US7547371B2 (en) * 2005-03-31 2009-06-16 Jason Christensen Composite architectural column
US20070129158A1 (en) * 2005-04-26 2007-06-07 Watts Robert C Springpole recreational apparatus
US20070058363A1 (en) * 2005-09-06 2007-03-15 Copeland S D Wound-In Tenon/Wound-In Tenon Collar for Attachment of Luminaire
US7363751B2 (en) 2005-09-06 2008-04-29 Shakespeare Composite Structures, Llc Wound-in tenon/wound-in tenon collar for attachment of luminaire
US20070137552A1 (en) * 2005-12-19 2007-06-21 Bridges Robert J Flat or open water single-person rowing shell
FR2904980A1 (en) * 2006-08-16 2008-02-22 Christophe Esquirol Finishing street furniture profiles, e.g. posts, by applying resin-impregnated textile underlayer, resin-impregnated textile or wood finishing layer and plastics film then stoving
EP2837754A1 (en) * 2006-10-11 2015-02-18 Ameron International Corporation Fiber reinforced resin polymer mortar pole
EP1911911A3 (en) * 2006-10-11 2012-10-24 Ameron International Corporation Fiber reinforced resin polymer mortar pole
US20110132524A1 (en) * 2006-10-11 2011-06-09 Ameron International Fiber Reinforced Resin Polymer Mortar Pole
US9879440B2 (en) 2006-10-11 2018-01-30 Nov North America I/P, Llc Fiber reinforced resin polymer mortar pole
US9057204B2 (en) 2006-10-11 2015-06-16 Ameron International Corporation Fiber reinforced resin polymer mortar pole
US20080087371A1 (en) * 2006-10-11 2008-04-17 Ameron International Corporation Fiber reinforced resin polymer mortar pole
EP1911911A2 (en) * 2006-10-11 2008-04-16 Ameron International Corporation Fiber reinforced resin polymer mortar pole
US8341860B2 (en) 2007-04-13 2013-01-01 Frangible Safety Posts Limited Sign post comprising composite material
US20100112249A1 (en) * 2007-04-13 2010-05-06 Boyce Gerard S Sign post comprising composite material
US20100101130A1 (en) * 2007-04-13 2010-04-29 Boyce Gerard S Sign post comprising composite material
GB2448363A (en) * 2007-04-13 2008-10-15 3M Innovative Properties Co Tubular support of composite material
GB2448362B (en) * 2007-04-13 2012-02-29 Frangible Safety Posts Ltd Sign post comprising composite material
GB2448362A (en) * 2007-04-13 2008-10-15 3M Innovative Properties Co Tubular support of composite material
WO2009009425A2 (en) * 2007-07-09 2009-01-15 Scott Ryan Support pole structure and method of manufacture
WO2009009425A3 (en) * 2007-07-09 2009-07-30 Scott Ryan Support pole structure and method of manufacture
US20090211173A1 (en) * 2008-02-27 2009-08-27 General Electric Company Composite wind turbine tower
US20110183094A1 (en) * 2008-06-30 2011-07-28 Bo Blomqvist Unstayed composite mast
US8061666B1 (en) 2008-08-05 2011-11-22 Philips Electronics Ltd Adapter assembly for pole luminaire
WO2010071466A1 (en) * 2008-12-20 2010-06-24 Universidade Do Minho Pole in thermoplastic matrix composite
US20100218449A1 (en) * 2009-03-02 2010-09-02 Charles Christopher Hamilton Lateral strenthening of poles
WO2010135835A1 (en) * 2009-05-27 2010-12-02 University Of Ontario Institute Of Technology Internally supported modular and non-modular linked structures
US9745750B2 (en) 2009-08-24 2017-08-29 Highland Industries, Inc. Modular composite pole
US20110047900A1 (en) * 2009-08-24 2011-03-03 UC Solutions, LLC Modular Composite Utility Pole
US9091097B2 (en) 2009-08-24 2015-07-28 Utility Composite Solutions International, Inc. Modular composite pole
US9890546B2 (en) * 2009-11-13 2018-02-13 Mohammad Reza Ehsani Reinforcement and repair of structural columns
CN103025982A (en) * 2010-04-20 2013-04-03 康耐特有限公司 Composite pole and method for making the same
US20130042573A1 (en) * 2010-04-20 2013-02-21 Conett, Inc. Composite pole and method for making the same
US8679606B2 (en) 2010-10-14 2014-03-25 Vetco Gray Inc. Thick walled composite tubular and method of making
GB2484587A (en) * 2010-10-14 2012-04-18 Vetco Gray Inc Thick walled composite tubular with varying angled hoopwise fibers
GB2484587B (en) * 2010-10-14 2017-01-11 Vetco Gray Inc A thick walled composite tubular and method of making
US20140158285A1 (en) * 2011-03-04 2014-06-12 Michael Ian BROCKWELL Exotensioned structural members with energy-absorbing effects
US20120225237A1 (en) * 2011-03-04 2012-09-06 Brockwell Michael Ian Exotensioned structural members with energy-absorbing effects
US8621822B2 (en) * 2011-03-04 2014-01-07 Michael Ian BROCKWELL Exotensioned structural members with energy-absorbing effects
US9102130B2 (en) * 2011-03-04 2015-08-11 Michael Ian BROCKWELL Exotensioned structural members with energy-absorbing effects
US9739061B2 (en) 2011-03-04 2017-08-22 Michael Ian BROCKWELL Exotensioned structural members with energy-absorbing effects
US9657722B2 (en) * 2011-07-17 2017-05-23 X-Tower Consructions GmbH Method and sliding form for producing a structure and corresponding structure
US20140157715A1 (en) * 2011-07-17 2014-06-12 Philipp Wagner Method and Sliding Form for Producing a Structure and Corresponding Structure
US20130081342A1 (en) * 2011-09-30 2013-04-04 Siemens Aktiengesellschaft Wind turbine tower
US20140237919A1 (en) * 2011-09-30 2014-08-28 Siemens Aktiengesellschaft Wind turbine tower and method of production thereof
US9567981B2 (en) * 2011-09-30 2017-02-14 Siemens Aktiengesellschaft Wind turbine tower and method of production thereof
CN102493704A (en) * 2011-12-27 2012-06-13 祁锦明 Cement-based composite rod
US9404249B2 (en) * 2012-01-18 2016-08-02 Adc Acquisition Company Ultra light fiber placed truss
US20130180194A1 (en) * 2012-01-18 2013-07-18 Automated Dynamics Ultra light fiber placed truss
US11885577B2 (en) 2015-05-20 2024-01-30 Other Lab, Llc Heat exchanger array system and method for an air thermal conditioner
US11686024B2 (en) 2015-05-21 2023-06-27 Other Lab, Llc System and method for thermally adaptive materials
US10793981B2 (en) 2015-05-21 2020-10-06 Other Lab, Llc System and method for thermally adaptive materials
US10793979B2 (en) * 2017-04-10 2020-10-06 Other Lab, Llc Coiled actuator system and method
US11519106B2 (en) 2017-04-10 2022-12-06 Other Lab, Llc Coiled actuator system and method
US20180291535A1 (en) * 2017-04-10 2018-10-11 Other Lab, Llc Coiled actuator system and method
US20220259882A1 (en) * 2019-06-14 2022-08-18 Balfour Beatty Plc Modular tube and method of manufacturing
US20210079682A1 (en) * 2019-09-16 2021-03-18 Valmont Industries, Inc. Fire resistant composite pole
US11879258B2 (en) * 2019-09-16 2024-01-23 Valmont Industries, Inc. Fire resistant composite pole
WO2021186082A1 (en) * 2020-03-20 2021-09-23 Ecopole As Fibre-reinforced support poles

Similar Documents

Publication Publication Date Title
US3429758A (en) Method of making filament wound structural columns
US3574104A (en) Glass fiber constructional member
US20050271845A1 (en) Composite poles with an integral mandrel and methods for making the same
US2732423A (en) morrison
US3449182A (en) Method of making a hollow,fiber-reinforced plastic pressure vessel
US3567541A (en) Method of winding laminated sections for use as electromechanical structural elements which contain a central core of cellular plastic foam
US4491687A (en) Method of manufacturing a composite type stay insulator, and an insulator obtained by the method
US3033730A (en) Method of forming a prestressed article of fiber reinforced resin
US3709754A (en) Method of forming a construction member of glass fiber elements
USH1872H (en) Modular fiber reinforced plastic enclosed bridge
PL226196B1 (en) Composite high-pressure vessel and method for producing the composite high-pressure vessel
US4701577A (en) Cable support for an electric power-line pole
US20020106469A1 (en) Composite structures for high damage tolerant stanchions and other stiff composite structures
US4038118A (en) Three dimensional composite structure and method for incorporating fittings
KR890002723B1 (en) Stator end turn support system
JP2868738B2 (en) Structure and manufacturing method of optical fiber composite overhead ground wire
US20040206576A1 (en) Scaffolding member and production method
US3098582A (en) Fiber reinforced plastic vessel and method of making the same
CN113370559B (en) Continuous linear resin-based fiber reinforced prepreg
WO1994026501A1 (en) Support pole for electricity power transmission line
US4749422A (en) Process for preparing a fiber-reinforced plastic structure having branching points
JPS61277780A (en) Pole for supporting power cable or telephone cable
US3141052A (en) Method of forming seamless hollow plastic shapes
US5780075A (en) Mandrel for filament winding - application to the manufacture of curved profiles
US3436289A (en) Method of making a corrugated tube of fiber-reinforced plastic material