US3433220A - Intramedullary rod and cross-nail assembly for treating femur fractures - Google Patents

Intramedullary rod and cross-nail assembly for treating femur fractures Download PDF

Info

Publication number
US3433220A
US3433220A US606145A US3433220DA US3433220A US 3433220 A US3433220 A US 3433220A US 606145 A US606145 A US 606145A US 3433220D A US3433220D A US 3433220DA US 3433220 A US3433220 A US 3433220A
Authority
US
United States
Prior art keywords
rod
cross
nail
femur
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US606145A
Inventor
Robert E Zickel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROBERT E ZICKEL
Original Assignee
ROBERT E ZICKEL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROBERT E ZICKEL filed Critical ROBERT E ZICKEL
Application granted granted Critical
Publication of US3433220A publication Critical patent/US3433220A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/74Devices for the head or neck or trochanter of the femur
    • A61B17/742Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck
    • A61B17/744Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck the longitudinal elements coupled to an intramedullary nail

Definitions

  • the present invention relates to a surgical appliance for use in treating fractures of the femur and, more particularly, to an intramedullary rod assembly especially adapted for immobilizing the femur parts involved in fractures occuring in the upper one third or subtrochanteric portion of the femur.
  • an object of the present invention has been to provide a surgical appliance including an intramedullary rod of simple and rugged construction which with accessory anchoring devices is capable of being employed with special advantage to produce effective fixation or immobilization of the bone fragments or parts and thereby to facilitate reduction of fractures in the upper third or subtrochanteric portion of the femur shaft.
  • a further object has been to provide a fixation appliance which in use substantially eliminates need for post operative traction and prevents varus angulation and bone comminution in the fracture area.
  • an appliance embodying the present invention comprises, when assembled in operative condition,
  • 3,433,220 Patented Mar. 18, 1969 primarily three cooperating elements conveniently identified as (1) an intramedullary rod, (2) an anchoring de vice, as a cross-nail including a peripherally grooved portion, and (3) means for maintaining the cross-nail in operative rod locking condition while the rod is operatively engaged in a fractured femur.
  • Said rod is advantageously of generally square cross-sectional contour and includes a head and a stem connected thereto by a tapered neck, the longitudinal axis of said stem being disposed at an angle to the longitudinal axis of the head in a direction and to an extent whereby the rod being of proper dimensions may snugly occupy or fit into the femur marrow canal.
  • an intermediate portion of the cross-nail When assembled with the rod in use, an intermediate portion of the cross-nail is engaged in an angulated hole or tunnel extending transversely through said head at an angle to the head axis and in a direction whereby end portions of the nail are engaged in the bone process of adjoining trochanteric portions of the femur.
  • a set screw mounted longitudinally in a threaded axial bore in the head is positioned with its inner end extending into said angulated hole therein and engaging said grooved intermediate part of the nail, thereby locking the latter against endwise displacement and in operative rod retaining or anchoring condition in the femur cavity.
  • FIG. 1 is a front view partly in longitudinal vertical section of the intramedullary rod element of the subject fixation appliance as applied in FIG. 10;
  • FIG. 2 is an inner or left side view of the rod as seen in FIG. 1;
  • FIG. 3 is a transverse section across the head of said rod on the line 33 of FIG. 1;
  • FIG. 4 is a transverse section across the tapered neck portion of the rod on the line 4--4 of FIG. 1;
  • FIG. 5 is a transverse section across a lower end portion of the rod stem on the line 55 of FIG. 1;
  • FIG. 6 is a side elevation of a cross-nail designed for use with the rod of FIGS. 1 and 2;
  • FIG. 7 is a transverse section on the line 77 of FIG. 6;
  • FIG. 8 is a side elevation partly in longitudinal vertical section of a set screw designed for use in locking the cross-nail of FIG. 6 in operative relation to the rod of FIGS. 1 and 2;
  • FIG. 9 is an end elevation showing the outer end of the set screw of FIG. 8.
  • FIG. 10 is a fragmentary front view partly in longitudinal section showing a typical assembly of elements of the subject fixation appliance as operatively applied to a right leg femur having a transverse fracture in the sub-trochanteric region thereof.
  • a fixation appliance according to my invention comprises an intromedullary rod 10, FIGS. 1 and 2, a cross-nail 11, FIG. 6, and a set screw 12, FIG. 8, said parts being shown in operative assembled relation in FIG. 10.
  • These parts are advantageously formed from a cobalt chromium molybdenum alloy produced by Austenal Company and sold under the trademark Vitallium.
  • rod 10 includes a head 13, a neck 14 and a stem 15, the central longitudinal axis of said rod being in effect bent or curved to conform to the normal axial contour of the femur marrow cavity.
  • said rod tapers from maximum thickness in its head portion to a reduced thickness at its stem end, thus to substantially conform in volume distribution to the greater dimensions of the medullary canal at its proximal or top end and to the reduced dimensions thereof at its distal or lower end.
  • the stem portion of said rod is deflected downwardly, as seen in FIG.
  • Head 13 of rod 10 is advantageously provided with a transversely extending angulated hole or tunnel 23 opening through the opposite side faces A and D, FIG. 1, of said head, said hole being shaped and dimensioned to receive the cross-nail 11, FIG. 6, which may conveniently be of generally cylindrical cross-section interrupted at an inner end portion by longitudinal grooves 16 alternating with fins 17, FIG. 7, which are advantageously provided with chisel shaped ends.
  • An outer end portion of said cross-nail 11 is provided with peripheral grooves 18 alternating with ribs 19.
  • a transversely extending slot 24, FIGS. 1 and 2, which opens through the oposite faces A and D may be employed to facilitate handling in manufacture and/or in removal of the rod from engagement in the medullary canal.
  • a notch N is provided in the surface A of head 13 to aid in locating hole 23 by X-ray when the rod is operatively engaged in the femur canal as hereinafter noted.
  • Head 13 is also formed with a threaded axial bore 20 extending inwardly and opening into hole 23.
  • Cross-nail 11 can be locked in said operative or rod anchoring position by advancing said set screw 12 to bring its inner end into pressing engagement with one of said grooves 18 between peripheral ribs 19 of the cross-nail.
  • the outer end of set screw 12 conveniently may be formed with a recess or socket 21, FIG. 8, to receive and be actuated by a suitable wrench or the like.
  • stem 15 is advantageously shaped to a chisel like edge 22 to facilitate advance of rod 10 into effective operative position in the femur canal.
  • the proximal (upper) fragment is reamed through the greater trochanter canal to provide a coaxial hole opening through the tip of said trochanter to readily receive the wide or thicker (head) end of rod 10.
  • Said rod of proper size and design i.e. for right or left femur, is attached to a McReynolds driver and introduced through said opening into said hole at the tip of the greater trochanter, said rod being oriented so that notch N is on the medial side. It is then driven distally to cross the fracture site F, FIG. 10, after reducing the fracture, the parts being held by appropriate means to effectively con- 4. nect the component fragments in their proper positions as the rod is driven.
  • Rotation of the rod during driving is conveniently controlled by use of the open end wrench to ensure that the axis of the tunnel or bore 23 matches the anteversion or retroversion of the femoral neck.
  • the rod is impacted or driven until it is seated against the medial cortex, usually leaving about A. inch extending outwardly from the opening in the tip of the greater trochanter.
  • a tunnel finding gauge is attached to the exposed end of rod 16 in a known manner and a standard anteriorposterior roentgenogram is taken which, by reference to notch N, accurately reveals the angular position of the hole 23, the angle that the cross-nail will take and where, in the trochanter mass, the longitudinal center of the cross-nail will enter the femoral neck. It will be understood that the rod can be longitudinally adjusted to bring the hole 23 to the desired position by driving or extracting.
  • the arm of the tunnel finding gauge With rod 10 in proper position, the arm of the tunnel finding gauge will point to the spot on the lateral femoral cortex where a bone hole coaxial with the hole 23 in rod 10 is to be made by suitable instruments to receive the cross-nail 11 which is now inserted in said bone hole and driven through hole 23 in rod 10 into the femoral neck bone process approximately as seen in FIG. 10.
  • Said cross-nail is now locked in operative anchoring condition by set screw 12 as previously noted, the Allen screw driver being conveniently employed for this purpose as well as for withdrawing set screw 12 as and when desired.
  • the McReynolds driver-extractor may be similarly employed to withdraw cross-nail 11 by engaging the threaded end of said instrument in the threaded socket 11' at the outer end of said cross-nail.
  • my improved surgical appliance provides an effective anchor for the medullary rod in both the proximal and distal fragments of a fractured femur; that the appliance parts are so securely interconnected and anchored in the bone structure that greatly improved immobilization of the femur parts is obtained; that angulation and rotation of the fragments are controlled; and that earlier ambulation by the patient is permitted even where comminuted fragments are present in the fractured bone.
  • a surgical appliance for use in treating fractures of the femur comprising an intramedullary rod having a head and a stem arranged with their longitudinal axes intersecting at an angle and shaped and proportioned to be operatively located in and to substantially occupy a major portion of the length of the marrow canal of a femur, a cross-nail arranged and adapted in use to operatively engage said rod and portions of the femur wall to anchor the rod against longitudinal and rotative displacement in said marrow canal, said head having a cross-nail receiving hole extending transversely therethrough and with its longitudinal axis disposed at an angle to the longitudinal axis of said head, and said head having an axially extending threaded hole open at its outer end and opening at its inner end into an intermediate portion of said cross-nail hole, and a set screw mounted in said axially extending hole and longitudinally movable therein toward and from operative locking engagement with the cross-nail thereby to retain said rod
  • an end portion of the cross-nail is provided with a plurality of longitudinally spaced peripheral grooves arranged and adapted to be operatively engaged selectively by the inner end of the set screw whereby the cross-nail may be locked in the cross-nail receiving hole of said rod at different longitudinal positions of engagement therein.

Description

March 18. 1969 INTRAMEDULLAR Filed Dec. 30, 1966 E. ZICKEL R. Y ROD AND CR -NAIL ASSEMBLY FOR TREATING FEMUR ACTURES Sheet 012 INVENTOR.
Babel- If. Zia/set w am y March 18, 1969 R. E. zlcKEL 3,433,220
INTRAMEDULLARY non AND CROSS-NAIL ASSEMBLY FOR TREATING FEMUR FRACTURES 2 Filed Dec. 50, 1966 Sheet of 2 ll 16v [7 United States Patent 3 433,220 INTRAMEDULLARY ROD AND CROSS-NAIL ASSEMBLY FOR TREATING FEMUR FRA'CTURES Robert E. Zickel, 115 E. 61st St., New York, N.Y. 10021 Filed Dec. 30, 1966, Ser. No. 606,145 US. Cl. 12892 Int. Cl. A61f 5/04 6 Claims ABSTRACT OF THE DISCLOSURE The present invention relates to a surgical appliance for use in treating fractures of the femur and, more particularly, to an intramedullary rod assembly especially adapted for immobilizing the femur parts involved in fractures occuring in the upper one third or subtrochanteric portion of the femur.
It is known that the bone parts or fragments involved in such fractures have commonly been difiicult to immobilize satisfactorily, in part because of the extent and direction of muscular stresses in that area. As a result, treatments by known expedients too often involve or produce the need for undesirable mechanical post operative procedures. For example, in cases employing well known types of fixation devices, as nail-plate combinations, which are usually elfective for immobilizing intertrochanteric fractures, such devices often have been inadequate for treatment of fractures occurring in said upper third or sub-trochanteric region of the femur shaft. The more serious failures include bending or breaking of the plates and/ or nails, loosening of the attaching screws and medial migration of the femoral shaft. Accordingly, to avoid or offset these difficulties, at least in part, it has often been necessary to unduly complicate the treatment by applying post operative traction to the injured parts during the healing period.
Known forms of standard or conventional intramedullary rods, which are occasionally employed successfully in treatments for reducing transverse fractures in lower parts of the femur shaft, fail to povide effective fixation when employed in connection with fractures occurring in upper or higher sub-trochanteric portions of the femur. Their use in this area fails to prevent various angulation and/or severe comminution or shredding of the bone structure at the fracture.
Accordingly, an object of the present invention has been to provide a surgical appliance including an intramedullary rod of simple and rugged construction which with accessory anchoring devices is capable of being employed with special advantage to produce effective fixation or immobilization of the bone fragments or parts and thereby to facilitate reduction of fractures in the upper third or subtrochanteric portion of the femur shaft.
A further object has been to provide a fixation appliance which in use substantially eliminates need for post operative traction and prevents varus angulation and bone comminution in the fracture area.
In general, an appliance embodying the present invention comprises, when assembled in operative condition,
3,433,220 Patented Mar. 18, 1969 primarily three cooperating elements conveniently identified as (1) an intramedullary rod, (2) an anchoring de vice, as a cross-nail including a peripherally grooved portion, and (3) means for maintaining the cross-nail in operative rod locking condition while the rod is operatively engaged in a fractured femur. Said rod is advantageously of generally square cross-sectional contour and includes a head and a stem connected thereto by a tapered neck, the longitudinal axis of said stem being disposed at an angle to the longitudinal axis of the head in a direction and to an extent whereby the rod being of proper dimensions may snugly occupy or fit into the femur marrow canal. When assembled with the rod in use, an intermediate portion of the cross-nail is engaged in an angulated hole or tunnel extending transversely through said head at an angle to the head axis and in a direction whereby end portions of the nail are engaged in the bone process of adjoining trochanteric portions of the femur. A set screw mounted longitudinally in a threaded axial bore in the head is positioned with its inner end extending into said angulated hole therein and engaging said grooved intermediate part of the nail, thereby locking the latter against endwise displacement and in operative rod retaining or anchoring condition in the femur cavity.
It is contemplated that other and further objects and advantages in use of my invention will appear from the following specification and the accompanying drawings wherein:
FIG. 1 is a front view partly in longitudinal vertical section of the intramedullary rod element of the subject fixation appliance as applied in FIG. 10;
FIG. 2 is an inner or left side view of the rod as seen in FIG. 1;
FIG. 3 is a transverse section across the head of said rod on the line 33 of FIG. 1;
FIG. 4 is a transverse section across the tapered neck portion of the rod on the line 4--4 of FIG. 1;
FIG. 5 is a transverse section across a lower end portion of the rod stem on the line 55 of FIG. 1;
FIG. 6 is a side elevation of a cross-nail designed for use with the rod of FIGS. 1 and 2;
FIG. 7 is a transverse section on the line 77 of FIG. 6;
FIG. 8 is a side elevation partly in longitudinal vertical section of a set screw designed for use in locking the cross-nail of FIG. 6 in operative relation to the rod of FIGS. 1 and 2;
FIG. 9 is an end elevation showing the outer end of the set screw of FIG. 8; and
FIG. 10 is a fragmentary front view partly in longitudinal section showing a typical assembly of elements of the subject fixation appliance as operatively applied to a right leg femur having a transverse fracture in the sub-trochanteric region thereof.
Referring to the drawings, a fixation appliance according to my invention comprises an intromedullary rod 10, FIGS. 1 and 2, a cross-nail 11, FIG. 6, and a set screw 12, FIG. 8, said parts being shown in operative assembled relation in FIG. 10. These parts are advantageously formed from a cobalt chromium molybdenum alloy produced by Austenal Company and sold under the trademark Vitallium.
As seen in FIGS. 1 and 2, rod 10 includes a head 13, a neck 14 and a stem 15, the central longitudinal axis of said rod being in effect bent or curved to conform to the normal axial contour of the femur marrow cavity. Also, said rod tapers from maximum thickness in its head portion to a reduced thickness at its stem end, thus to substantially conform in volume distribution to the greater dimensions of the medullary canal at its proximal or top end and to the reduced dimensions thereof at its distal or lower end. To achieve the desired conforming curvature of the rod shown in FIG. and as adapted for use in a right side femur, the stem portion of said rod is deflected downwardly, as seen in FIG. 1, to bring its longitudinal axis into a position at an angle of approximately 12 from the plane of the inner side surface A of head 13; and is also deflected in the direction as seen in FIG. 2, to bring its longitudinal axis into position at an angle approximately 9 from the plane of the rear surface B of head 13. These axial deflections produce a rod which in general eflectively conforms to the axial direction of the medullary canal thus not only facilitating insertion of the rod but also producing more effective immobilization.
Head 13 of rod 10 is advantageously provided with a transversely extending angulated hole or tunnel 23 opening through the opposite side faces A and D, FIG. 1, of said head, said hole being shaped and dimensioned to receive the cross-nail 11, FIG. 6, which may conveniently be of generally cylindrical cross-section interrupted at an inner end portion by longitudinal grooves 16 alternating with fins 17, FIG. 7, which are advantageously provided with chisel shaped ends. An outer end portion of said cross-nail 11 is provided with peripheral grooves 18 alternating with ribs 19. A transversely extending slot 24, FIGS. 1 and 2, which opens through the oposite faces A and D may be employed to facilitate handling in manufacture and/or in removal of the rod from engagement in the medullary canal. As seen in FIGS. 1 and 2, a notch N is provided in the surface A of head 13 to aid in locating hole 23 by X-ray when the rod is operatively engaged in the femur canal as hereinafter noted.
Head 13 is also formed with a threaded axial bore 20 extending inwardly and opening into hole 23. Thus, when cross-nail 11 is operatively engaged in hole 23, FIG. 10, one or another of said peripheral grooves 18 is conveniently located opposite said inner end opening of bore 20. Cross-nail 11 can be locked in said operative or rod anchoring position by advancing said set screw 12 to bring its inner end into pressing engagement with one of said grooves 18 between peripheral ribs 19 of the cross-nail. The outer end of set screw 12 conveniently may be formed with a recess or socket 21, FIG. 8, to receive and be actuated by a suitable wrench or the like.
As seen in FIG. 1, the inner or distal end of stem 15 is advantageously shaped to a chisel like edge 22 to facilitate advance of rod 10 into effective operative position in the femur canal.
Various procedures involving use of the above described appliance may be employed by surgeons skilled in the reduction and treatment of femur fractures. However, favorable results have been achieved in operative technique with the aid of certain accessory instruments such as standard Kuntschner reamers, McReynolds driverextractors, Allen screw drivers, an open end wrench, a tunnel finding gauge. Thus, with the patients leg properly positioned the fracture site is opened to expose the medullary canal of the distal (lower) fragment. The canal is reamed where necessary to accommodate the proper size (i.e. cross-sectional area) medullary rod 10 the stem of which is driven into the canal or the distal fragment to insure ease of fit and then is extracted.
The proximal (upper) fragment is reamed through the greater trochanter canal to provide a coaxial hole opening through the tip of said trochanter to readily receive the wide or thicker (head) end of rod 10. Said rod of proper size and design, i.e. for right or left femur, is attached to a McReynolds driver and introduced through said opening into said hole at the tip of the greater trochanter, said rod being oriented so that notch N is on the medial side. It is then driven distally to cross the fracture site F, FIG. 10, after reducing the fracture, the parts being held by appropriate means to effectively con- 4. nect the component fragments in their proper positions as the rod is driven.
Rotation of the rod during driving is conveniently controlled by use of the open end wrench to ensure that the axis of the tunnel or bore 23 matches the anteversion or retroversion of the femoral neck. The rod is impacted or driven until it is seated against the medial cortex, usually leaving about A. inch extending outwardly from the opening in the tip of the greater trochanter.
A tunnel finding gauge is attached to the exposed end of rod 16 in a known manner and a standard anteriorposterior roentgenogram is taken which, by reference to notch N, accurately reveals the angular position of the hole 23, the angle that the cross-nail will take and where, in the trochanter mass, the longitudinal center of the cross-nail will enter the femoral neck. It will be understood that the rod can be longitudinally adjusted to bring the hole 23 to the desired position by driving or extracting.
With rod 10 in proper position, the arm of the tunnel finding gauge will point to the spot on the lateral femoral cortex where a bone hole coaxial with the hole 23 in rod 10 is to be made by suitable instruments to receive the cross-nail 11 which is now inserted in said bone hole and driven through hole 23 in rod 10 into the femoral neck bone process approximately as seen in FIG. 10. Said cross-nail is now locked in operative anchoring condition by set screw 12 as previously noted, the Allen screw driver being conveniently employed for this purpose as well as for withdrawing set screw 12 as and when desired. Also, the McReynolds driver-extractor may be similarly employed to withdraw cross-nail 11 by engaging the threaded end of said instrument in the threaded socket 11' at the outer end of said cross-nail.
From the foregoing description it appears that my improved surgical appliance provides an effective anchor for the medullary rod in both the proximal and distal fragments of a fractured femur; that the appliance parts are so securely interconnected and anchored in the bone structure that greatly improved immobilization of the femur parts is obtained; that angulation and rotation of the fragments are controlled; and that earlier ambulation by the patient is permitted even where comminuted fragments are present in the fractured bone.
What is claimed is:
1. A surgical appliance for use in treating fractures of the femur comprising an intramedullary rod having a head and a stem arranged with their longitudinal axes intersecting at an angle and shaped and proportioned to be operatively located in and to substantially occupy a major portion of the length of the marrow canal of a femur, a cross-nail arranged and adapted in use to operatively engage said rod and portions of the femur wall to anchor the rod against longitudinal and rotative displacement in said marrow canal, said head having a cross-nail receiving hole extending transversely therethrough and with its longitudinal axis disposed at an angle to the longitudinal axis of said head, and said head having an axially extending threaded hole open at its outer end and opening at its inner end into an intermediate portion of said cross-nail hole, and a set screw mounted in said axially extending hole and longitudinally movable therein toward and from operative locking engagement with the cross-nail thereby to retain said rod in operative position in the femur.
2. An appliance according to claim 1 and wherein an end portion of the cross-nail is provided with a plurality of longitudinally spaced peripheral grooves arranged and adapted to be operatively engaged selectively by the inner end of the set screw whereby the cross-nail may be locked in the cross-nail receiving hole of said rod at different longitudinal positions of engagement therein.
3. An appliance according to claim 2 and wherein the opposite end portion provides a terminal chisel-drill.
4. An appliance according to claim 1 and wherein inner end portions of said stem are of approximately quadrangular cross-sectional contour tapered to provide a chisel-like terminal edge.
5. An appliance according to claim 1 and wherein said rod is of substantially square cross-sectional contour and includes a neck portion connecting said head and said stem and tapering toward said stem.
6. An appliance according to claim 5 and wherein the longitudinal axis of said stem extends at one angle from the plane of one longitudinal face of the head and at a different angle from the plane of an adjoining longitudinal face of the head which plane is substantially normal to the plane of said first mentioned face.
References Cited UNITED STATES PATENTS 2,48 6, 1 3 6 10/1949 Ericsson 12892 2,614,559 10/1952 Livingston 128-92 FOREIGN PATENTS 757,951 11/ 1953 Germany. 935,859 12/1955 Germany. 118,595 4/ 1947 Sweden. 235,382 4/ 1945 Switzerland.
RICHARD A. GAUDET, Primary Examiner.
RONALD L. FRINKS, Assistant Examiner.
US606145A 1966-12-30 1966-12-30 Intramedullary rod and cross-nail assembly for treating femur fractures Expired - Lifetime US3433220A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US60614566A 1966-12-30 1966-12-30

Publications (1)

Publication Number Publication Date
US3433220A true US3433220A (en) 1969-03-18

Family

ID=24426755

Family Applications (1)

Application Number Title Priority Date Filing Date
US606145A Expired - Lifetime US3433220A (en) 1966-12-30 1966-12-30 Intramedullary rod and cross-nail assembly for treating femur fractures

Country Status (1)

Country Link
US (1) US3433220A (en)

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3561437A (en) * 1967-11-08 1971-02-09 Jose Luis Orlich Apparatus for fixing fractures of the femur
US3918441A (en) * 1974-09-17 1975-11-11 Philip E Getscher Intramedullary hip pin
US4011863A (en) * 1976-07-19 1977-03-15 Zickel Robert E Supracondylar prosthetic nail
US4103683A (en) * 1977-06-03 1978-08-01 Neufeld John A Sub-trochanteric nail
US4503847A (en) * 1982-01-15 1985-03-12 Howmedica, Inc. Prosthetic nail
EP0192840A1 (en) * 1985-01-11 1986-09-03 Michael O. Williams Appliance for fixing fractures of the femur
US4622959A (en) * 1985-03-05 1986-11-18 Marcus Randall E Multi-use femoral intramedullary nail
DE8701164U1 (en) * 1987-01-24 1987-06-04 Howmedica Gmbh, 2314 Schoenkirchen, De
US4712541A (en) * 1982-05-18 1987-12-15 Howmedica International, Inc. Bone nail and instruments for the treatment of fractures
EP0251583A2 (en) * 1986-06-23 1988-01-07 Howmedica Inc. Modular femoral fixation system
GB2209947A (en) * 1987-09-23 1989-06-01 Halder Dr Subhash Chandra Device for fixing femur fractures
US4875474A (en) * 1988-01-29 1989-10-24 Biomet, Inc. Variable wall thickness interlocking intramedullary nail
EP0382395A1 (en) 1989-02-08 1990-08-16 Smith & Nephew Richards, Inc. Modular system for femoral fixation
US5032125A (en) * 1990-02-06 1991-07-16 Smith & Nephew Richards Inc. Intramedullary hip screw
US5066296A (en) * 1989-02-02 1991-11-19 Pfizer Hopsital Products Group, Inc. Apparatus for treating a fracture
US5176681A (en) * 1987-12-14 1993-01-05 Howmedica International Inc. Intramedullary intertrochanteric fracture fixation appliance and fitting device
US5179915A (en) * 1992-01-06 1993-01-19 Osteonics Corporation Anatomically matching intramedullary alignment rod
EP0528128A1 (en) * 1991-08-09 1993-02-24 Howmedica GmbH Centromedullary nail for treatment of central and trochanteral fractives of the femur
EP0586824A1 (en) * 1992-07-13 1994-03-16 Luigi Battaglia Internal prosthesis for synthesis of the proximal femur region
WO1994027508A2 (en) * 1993-06-01 1994-12-08 Endocare Ag Osteosynthetic device for treating subtrochanteric and pertrochanteric fractures and fractures of the neck of the femur
US5454813A (en) * 1991-06-24 1995-10-03 Howmedica International Inc. Intramedullary intertrochanteric fracture fixation appliance
US5484439A (en) * 1992-09-16 1996-01-16 Alphatec Manufacturing, Inc. Modular femur fixation device
WO1999044528A1 (en) * 1998-03-05 1999-09-10 Synthes Ag Chur Intramedullary nail with locking hole
US6126661A (en) * 1997-01-20 2000-10-03 Orthofix S.R.L. Intramedullary cavity nail and kit for the treatment of fractures of the hip
US6235031B1 (en) 2000-02-04 2001-05-22 Encore Medical Corporation Intramedullary fracture fixation device
WO2001039679A1 (en) * 1999-12-03 2001-06-07 Synthes Ag Chur Intramedullary nail
WO2002045606A1 (en) 2000-12-08 2002-06-13 Synthes Ag Chur Device for fixing bones, particularly vertebral bodies, in relation to one another
US20030074000A1 (en) * 2001-10-17 2003-04-17 Roth Christoph Andreas Bone fixation system
US20030171819A1 (en) * 2002-03-11 2003-09-11 Sotereanos Nicholas G. Modular hip implants
US20040127898A1 (en) * 2002-11-04 2004-07-01 Michael Adam Bone fixing system
US20050010223A1 (en) * 2003-07-08 2005-01-13 Yechiel Gotfried Intramedullary nail system and method for fixation of a fractured bone
US6921400B2 (en) 1999-10-21 2005-07-26 Gary W. Sohngen Modular intramedullary nail
US20050203510A1 (en) * 2004-03-11 2005-09-15 Sohngen Gary W. Fixation instrument for treating a bone fracture
US20050277936A1 (en) * 2004-06-11 2005-12-15 Mark Siravo Intramedullary rod with spiraling flutes
US20060015101A1 (en) * 2004-07-15 2006-01-19 Wright Medical Technology, Inc. Intramedullary fixation assembly and devices and methods for installing the same
US20060015123A1 (en) * 2004-07-15 2006-01-19 Wright Medical Technology, Inc. Guide assembly for intramedullary fixation and method of using the same
US20060036248A1 (en) * 2004-07-01 2006-02-16 Ferrante Joseph M Fixation elements
US20060064095A1 (en) * 2003-03-07 2006-03-23 Peter Senn Locking screw for an intramedullary nail
US20060142715A1 (en) * 2004-12-29 2006-06-29 Long Andrew M Absorbent article featuring a temperature change member
US20060142763A1 (en) * 2002-10-03 2006-06-29 Chad Munro Device for bone fixation
US20060149248A1 (en) * 2003-06-12 2006-07-06 Andre Schlienger Surgical nail
US20060155281A1 (en) * 2002-10-01 2006-07-13 Thomas Kaup Device for fixing bones
US20060161155A1 (en) * 2003-06-12 2006-07-20 Andre Schlienger Surgical nail
US20060189988A1 (en) * 2003-07-30 2006-08-24 Andre Schlienger Surgical nail
US20060200142A1 (en) * 2005-02-22 2006-09-07 Sohngen Gary W Humeral nail
US20060200144A1 (en) * 2000-09-22 2006-09-07 Warburton Mark J Intramedullary interlocking fixation devices for the distal radius
US20060235395A1 (en) * 2003-08-29 2006-10-19 Robert Frigg Intramedullary nail
US20060241605A1 (en) * 2003-10-21 2006-10-26 Andre Schlienger Intramedullary nail
US20070049939A1 (en) * 2005-08-31 2007-03-01 Wallace Matthew S Intramedullary nail assembly with sleeve and screw for use therewith
US20070049940A1 (en) * 2005-08-31 2007-03-01 Wallace Matthew S Intramedullary nail assembly with fixed securement and associated method
EP1759649A1 (en) 2005-08-31 2007-03-07 Depuy Products, Inc. Intramedullary nail assembly
US20070123875A1 (en) * 2005-10-31 2007-05-31 Czartoski Timothy J Intramedullary nail
US20070123876A1 (en) * 2005-10-31 2007-05-31 Czartoski Timothy J Multiple purpose nail, nail assembly and associated method
US20070123873A1 (en) * 2005-10-31 2007-05-31 Czartoski Timothy J Intramedullary nail with oblique openings
US20070123874A1 (en) * 2005-10-31 2007-05-31 Czartoski Timothy J Multiple purpose nail with oblique openings
US20070156144A1 (en) * 2004-06-24 2007-07-05 Dieter Ulrich Intramedullary nail
US20070162026A1 (en) * 2001-10-18 2007-07-12 Fxdevices Llc System and method for a cap used in the fixation of bone fractures
US20070225819A1 (en) * 2006-03-24 2007-09-27 Depuy Products, Inc. Apparatus and method for the treatment of periprosthetic fractures
US20070260248A1 (en) * 2001-10-18 2007-11-08 Fxdevices, Llc Cannulated bone screw system and method
US20070288019A1 (en) * 2004-06-22 2007-12-13 Andre Schlienger Intramedullary Nail
US20080119856A1 (en) * 2006-11-20 2008-05-22 Yechiel Gotfried Intramedullary nail system and method for fixation of a fractured bone
US20080147127A1 (en) * 2001-10-18 2008-06-19 Fxdevices, Llc Bone screw system and method
US20080147126A1 (en) * 2001-10-18 2008-06-19 Fxdevices, Llc System and method for a cap used in the fixation of bone fractures
US20080195098A1 (en) * 2007-02-09 2008-08-14 Yechiel Gotfried Intramedullary nail system and method for fixation of a fractured bone
US20080243191A1 (en) * 2001-10-18 2008-10-02 Fx Devices, Llc Adjustable bone plate fixation system and metho
US20080249580A1 (en) * 2005-09-28 2008-10-09 Smith & Nephew, Inc. Methods and Instruments of Reducing a Fracture
US20080262496A1 (en) * 2004-06-30 2008-10-23 Sythes (U.S.A.) Surgical Nail
US20090048606A1 (en) * 2001-10-18 2009-02-19 Fxdevices Llc Guide system and method for the fixation of bone fractures
US20090131936A1 (en) * 2001-10-18 2009-05-21 Kishore Tipirneni System and method for the fixation of bone fractures
US20090131990A1 (en) * 2001-10-18 2009-05-21 Kishore Tipirneni Bone screw system and method
US20090131991A1 (en) * 2001-10-18 2009-05-21 Kishore Tipirneni System and method for the fixation of bone fractures
US20090157077A1 (en) * 2007-12-17 2009-06-18 Wright Medical Technology, Inc. Guide assembly for intramedullary fixation and method of using the same
US20090177199A1 (en) * 2001-10-18 2009-07-09 Lagwire, Llc Cap device for use in the fixation of bone structures
US20090254129A1 (en) * 2007-04-30 2009-10-08 Kishore Tipirneni Bone screw system and method for the fixation of bone fractures
US20090306718A1 (en) * 2001-10-18 2009-12-10 Orthoip, Llc Filament and cap systems and methods for the fixation of bone fractures
US20100121327A1 (en) * 2008-11-11 2010-05-13 Zimmer, Gmbh Orthopedic screw
US20100174284A1 (en) * 2008-10-15 2010-07-08 Zimmer, Gmbh Intramedullary nail
US20100179551A1 (en) * 2007-05-25 2010-07-15 Zimmer, Gmbh Reinforced intramedullary nail
US20100268285A1 (en) * 2001-10-18 2010-10-21 Orthoip, Llc Bone screw system and method for the fixation of bone fractures
US20110034925A1 (en) * 2001-10-18 2011-02-10 Orthoip, Llc Lagwire system and method for the fixation of bone fractures
US20110282397A1 (en) * 2009-12-11 2011-11-17 Small Bone Innovations, Inc. Ankle Fusion Device, Instrumentation and Methods
US8157803B1 (en) 2007-08-21 2012-04-17 Surgical Implant Generation Network Bone fixation using an intramedullary nail interlocked with a buttress member
US20120123415A1 (en) * 2010-11-17 2012-05-17 Vienney Cecile Devices, Methods and Systems for Remedying or Preventing Fractures
US20120265202A1 (en) * 2009-10-13 2012-10-18 Zimmer Gmbh Orthopedic nail and an orthopedic nail system
JP5291719B2 (en) * 2008-10-31 2013-09-18 株式会社ロバート・リード商会 Bone fixation member and femoral fixation system
US20140094802A1 (en) * 2012-10-01 2014-04-03 Stryker Trauma Gmbh Intramedullary nail and implant system comprising the nail
US9060809B2 (en) 2001-10-18 2015-06-23 Orthoip, Llc Lagwire system and method for the fixation of bone fractures
EP2672909B1 (en) * 2011-02-08 2015-10-21 Stryker Trauma GmbH Implant system for bone fixation
US9277945B2 (en) 2012-02-07 2016-03-08 Mnr Device Corporation Method and apparatus for treating a bone fracture
EP3391841A1 (en) 2017-04-20 2018-10-24 Stöckli Group AG Longitudinal bone implant
US10575883B2 (en) 2014-12-15 2020-03-03 Smith & Nephew, Inc. Active fracture compression implants
US11426220B2 (en) 2017-10-11 2022-08-30 Howmedica Osteonics Corp. Humeral fixation plate guides
US11857228B2 (en) 2020-03-06 2024-01-02 Stryker European Operations Limited Set screw for femoral nail

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH235382A (en) * 1939-12-16 1944-11-30 Pohl Ernst Inner splint for long bones.
US2486136A (en) * 1945-09-01 1949-10-25 Ericsson Ernst Axel Johan Fracture nail
US2614559A (en) * 1950-09-06 1952-10-21 Herman H Livingston Intramedullary bar
DE757951C (en) * 1940-02-06 1953-11-09 Ernst Pohl Inner rail for tubular bones
DE935859C (en) * 1952-02-19 1955-12-01 Heinrich C Ulrich Femoral neck nail

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH235382A (en) * 1939-12-16 1944-11-30 Pohl Ernst Inner splint for long bones.
DE757951C (en) * 1940-02-06 1953-11-09 Ernst Pohl Inner rail for tubular bones
US2486136A (en) * 1945-09-01 1949-10-25 Ericsson Ernst Axel Johan Fracture nail
US2614559A (en) * 1950-09-06 1952-10-21 Herman H Livingston Intramedullary bar
DE935859C (en) * 1952-02-19 1955-12-01 Heinrich C Ulrich Femoral neck nail

Cited By (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3561437A (en) * 1967-11-08 1971-02-09 Jose Luis Orlich Apparatus for fixing fractures of the femur
US3918441A (en) * 1974-09-17 1975-11-11 Philip E Getscher Intramedullary hip pin
US4011863A (en) * 1976-07-19 1977-03-15 Zickel Robert E Supracondylar prosthetic nail
JPS5336982A (en) * 1976-07-19 1978-04-05 Zickel Robert Erwin Upper auxiliary nail
US4103683A (en) * 1977-06-03 1978-08-01 Neufeld John A Sub-trochanteric nail
US4503847A (en) * 1982-01-15 1985-03-12 Howmedica, Inc. Prosthetic nail
US4712541A (en) * 1982-05-18 1987-12-15 Howmedica International, Inc. Bone nail and instruments for the treatment of fractures
EP0192840A1 (en) * 1985-01-11 1986-09-03 Michael O. Williams Appliance for fixing fractures of the femur
US4622959A (en) * 1985-03-05 1986-11-18 Marcus Randall E Multi-use femoral intramedullary nail
US4776330A (en) * 1986-06-23 1988-10-11 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
EP0251583A2 (en) * 1986-06-23 1988-01-07 Howmedica Inc. Modular femoral fixation system
EP0251583A3 (en) * 1986-06-23 1988-06-01 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US5041114A (en) * 1986-06-23 1991-08-20 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
EP0464961A3 (en) * 1986-06-23 1992-01-22 Howmedica Inc. Modular femoral fixation system
EP0464961A2 (en) * 1986-06-23 1992-01-08 Howmedica Inc. Modular femoral fixation system
DE8701164U1 (en) * 1987-01-24 1987-06-04 Howmedica Gmbh, 2314 Schoenkirchen, De
GB2209947B (en) * 1987-09-23 1992-02-19 Halder Dr Subhash Chandra Device for fixating fractures of the femur
GB2209947A (en) * 1987-09-23 1989-06-01 Halder Dr Subhash Chandra Device for fixing femur fractures
US5176681A (en) * 1987-12-14 1993-01-05 Howmedica International Inc. Intramedullary intertrochanteric fracture fixation appliance and fitting device
US4875474A (en) * 1988-01-29 1989-10-24 Biomet, Inc. Variable wall thickness interlocking intramedullary nail
US5066296A (en) * 1989-02-02 1991-11-19 Pfizer Hopsital Products Group, Inc. Apparatus for treating a fracture
US5201735A (en) * 1989-02-02 1993-04-13 Pfizer Hospital Products Group, Inc. Apparatus and method for treating a fracture
EP0382395A1 (en) 1989-02-08 1990-08-16 Smith & Nephew Richards, Inc. Modular system for femoral fixation
US5032125A (en) * 1990-02-06 1991-07-16 Smith & Nephew Richards Inc. Intramedullary hip screw
US5454813A (en) * 1991-06-24 1995-10-03 Howmedica International Inc. Intramedullary intertrochanteric fracture fixation appliance
EP0528128A1 (en) * 1991-08-09 1993-02-24 Howmedica GmbH Centromedullary nail for treatment of central and trochanteral fractives of the femur
US5573536A (en) * 1991-08-09 1996-11-12 Howmedica Gmbh Locking nail for treating femoral fractures
US5179915A (en) * 1992-01-06 1993-01-19 Osteonics Corporation Anatomically matching intramedullary alignment rod
US6261290B1 (en) 1992-06-01 2001-07-17 Wilhelm Friedl Osteosynthesis auxilliary for the treatment of subtrochanteric, peritrochanteric and femoral-neck fractures
EP0586824A1 (en) * 1992-07-13 1994-03-16 Luigi Battaglia Internal prosthesis for synthesis of the proximal femur region
US5484439A (en) * 1992-09-16 1996-01-16 Alphatec Manufacturing, Inc. Modular femur fixation device
WO1994027508A3 (en) * 1993-06-01 1995-03-09 Endocare Ag Osteosynthetic device for treating subtrochanteric and pertrochanteric fractures and fractures of the neck of the femur
EP0745356A2 (en) * 1993-06-01 1996-12-04 Endocare Ag Osteosynthesis aid for the care of subtrochanteric, pertrochanteric and femoral neck fractures
EP0745356A3 (en) * 1993-06-01 1996-12-11 Endocare Ag Osteosynthesis aid for the care of subtrochanteric, pertrochanteric and femoral neck fractures
US5713902A (en) * 1993-06-01 1998-02-03 Endocare Ag Osteosynthesis auxiliary for the treatment of subtrochanteric peritrochanteric and femoral-neck fractures
US5928235A (en) * 1993-06-01 1999-07-27 Endocare Ag Osteosynthesis auxiliary for the treatment of subtrochanteric, peritrochanteric, and femoral-neck fractures
WO1994027508A2 (en) * 1993-06-01 1994-12-08 Endocare Ag Osteosynthetic device for treating subtrochanteric and pertrochanteric fractures and fractures of the neck of the femur
US6224601B1 (en) 1993-06-01 2001-05-01 Endocare Ag Osteosynthesis auxiliary for the treatment of subtrochanteric, peritochanteric and femoral-neck fractures
US6126661A (en) * 1997-01-20 2000-10-03 Orthofix S.R.L. Intramedullary cavity nail and kit for the treatment of fractures of the hip
WO1999044528A1 (en) * 1998-03-05 1999-09-10 Synthes Ag Chur Intramedullary nail with locking hole
US6319253B1 (en) 1998-03-05 2001-11-20 Synthes (U.S.A) Intramedullary nail with locking hole
US6921400B2 (en) 1999-10-21 2005-07-26 Gary W. Sohngen Modular intramedullary nail
US6926719B2 (en) 1999-10-21 2005-08-09 Gary W. Sohngen Modular intramedullary nail
WO2001039679A1 (en) * 1999-12-03 2001-06-07 Synthes Ag Chur Intramedullary nail
US6855146B2 (en) 1999-12-03 2005-02-15 Robert Frigg Intramedullary nail
US6235031B1 (en) 2000-02-04 2001-05-22 Encore Medical Corporation Intramedullary fracture fixation device
US20090157080A1 (en) * 2000-09-22 2009-06-18 Piper Medical, Inc. Intramedullary interlocking fixation devices for the distal radius
US7713271B2 (en) 2000-09-22 2010-05-11 Piper Medical, Inc. Intramedullary interlocking fixation devices for the distal radius
US8092453B2 (en) 2000-09-22 2012-01-10 Piper Medical, Inc. Intramedullary interlocking fixation devices for the distal radius
US8100910B2 (en) 2000-09-22 2012-01-24 Piper Medical, Inc. Intramedullary interlocking fixation devices for the distal radius
US20060200144A1 (en) * 2000-09-22 2006-09-07 Warburton Mark J Intramedullary interlocking fixation devices for the distal radius
WO2002045606A1 (en) 2000-12-08 2002-06-13 Synthes Ag Chur Device for fixing bones, particularly vertebral bodies, in relation to one another
US7182765B2 (en) 2001-10-17 2007-02-27 Synthes (Usa) Bone fixation system
US10271881B2 (en) 2001-10-17 2019-04-30 DePuy Synthes Products, Inc. Bone fixation system
US20030074000A1 (en) * 2001-10-17 2003-04-17 Roth Christoph Andreas Bone fixation system
US7306600B2 (en) 2001-10-17 2007-12-11 Synthes (U.S.A.) Bone fixation system
US9918757B2 (en) 2001-10-17 2018-03-20 DePuy Synthes Products, Inc. Bone fixation system
US20040158249A1 (en) * 2001-10-17 2004-08-12 Roth Christoph Andreas Bone fixation system
US6835197B2 (en) 2001-10-17 2004-12-28 Christoph Andreas Roth Bone fixation system
US20070162026A1 (en) * 2001-10-18 2007-07-12 Fxdevices Llc System and method for a cap used in the fixation of bone fractures
US9060809B2 (en) 2001-10-18 2015-06-23 Orthoip, Llc Lagwire system and method for the fixation of bone fractures
US20090048606A1 (en) * 2001-10-18 2009-02-19 Fxdevices Llc Guide system and method for the fixation of bone fractures
US20080147126A1 (en) * 2001-10-18 2008-06-19 Fxdevices, Llc System and method for a cap used in the fixation of bone fractures
US20080147127A1 (en) * 2001-10-18 2008-06-19 Fxdevices, Llc Bone screw system and method
US8702768B2 (en) 2001-10-18 2014-04-22 Orthoip, Llc Cannulated bone screw system and method
US8679167B2 (en) 2001-10-18 2014-03-25 Orthoip, Llc System and method for a cap used in the fixation of bone fractures
US8828067B2 (en) 2001-10-18 2014-09-09 Orthoip, Llc Bone screw system and method
US20090131936A1 (en) * 2001-10-18 2009-05-21 Kishore Tipirneni System and method for the fixation of bone fractures
US8109936B2 (en) 2001-10-18 2012-02-07 Orthoip, Llc Cap device for use in the fixation of bone structures
US20080243191A1 (en) * 2001-10-18 2008-10-02 Fx Devices, Llc Adjustable bone plate fixation system and metho
US20090131990A1 (en) * 2001-10-18 2009-05-21 Kishore Tipirneni Bone screw system and method
US20090131991A1 (en) * 2001-10-18 2009-05-21 Kishore Tipirneni System and method for the fixation of bone fractures
US20110034925A1 (en) * 2001-10-18 2011-02-10 Orthoip, Llc Lagwire system and method for the fixation of bone fractures
US20100312245A1 (en) * 2001-10-18 2010-12-09 Orthoip, Llc Bone screw system and method for the fixation of bone fractures
US20100268285A1 (en) * 2001-10-18 2010-10-21 Orthoip, Llc Bone screw system and method for the fixation of bone fractures
US20070260248A1 (en) * 2001-10-18 2007-11-08 Fxdevices, Llc Cannulated bone screw system and method
US9028534B2 (en) 2001-10-18 2015-05-12 Orthoip, Llc Bone screw system and method
US20090306718A1 (en) * 2001-10-18 2009-12-10 Orthoip, Llc Filament and cap systems and methods for the fixation of bone fractures
US20090254089A1 (en) * 2001-10-18 2009-10-08 Pogo Screw, Llc Stabilization system and method for the fixation of bone fractures
US20090177199A1 (en) * 2001-10-18 2009-07-09 Lagwire, Llc Cap device for use in the fixation of bone structures
US7247171B2 (en) * 2002-03-11 2007-07-24 Sotereanos Nicholas G Modular hip implants
US20030171819A1 (en) * 2002-03-11 2003-09-11 Sotereanos Nicholas G. Modular hip implants
US20060155281A1 (en) * 2002-10-01 2006-07-13 Thomas Kaup Device for fixing bones
US7632272B2 (en) 2002-10-03 2009-12-15 Synthes Usa, Llc Device for bone fixation
US20060142763A1 (en) * 2002-10-03 2006-06-29 Chad Munro Device for bone fixation
US20040127898A1 (en) * 2002-11-04 2004-07-01 Michael Adam Bone fixing system
US8888779B2 (en) 2003-03-07 2014-11-18 DePuy Synthes Products, LLC Locking screw for an intramedullary nail
US20060064095A1 (en) * 2003-03-07 2006-03-23 Peter Senn Locking screw for an intramedullary nail
US9737347B2 (en) 2003-06-12 2017-08-22 DePuy Synthes Products, Inc. Surgical nail
US8465489B2 (en) 2003-06-12 2013-06-18 Synthes Usa, Llc Surgical nail
US20060161155A1 (en) * 2003-06-12 2006-07-20 Andre Schlienger Surgical nail
US20060149248A1 (en) * 2003-06-12 2006-07-06 Andre Schlienger Surgical nail
US20080058813A1 (en) * 2003-07-08 2008-03-06 Yechiel Gotfried Apparatus and method fixing a fractured bone
US7455673B2 (en) * 2003-07-08 2008-11-25 Yechiel Gotfried Intramedullary nail system and method for fixation of a fractured bone
US20050010223A1 (en) * 2003-07-08 2005-01-13 Yechiel Gotfried Intramedullary nail system and method for fixation of a fractured bone
US20080058814A1 (en) * 2003-07-08 2008-03-06 Yechiel Gotfried Apparatus for treating a fractured bone
US8137348B2 (en) 2003-07-08 2012-03-20 Yechiel Gotfried Apparatus for treating a fractured bone
US9237909B2 (en) 2003-07-30 2016-01-19 DePuy Synthes Products, Inc. Surgical nail
US20060189988A1 (en) * 2003-07-30 2006-08-24 Andre Schlienger Surgical nail
US8221419B2 (en) 2003-08-29 2012-07-17 Synthes Usa, Llc Intramedullary nail
US20060235395A1 (en) * 2003-08-29 2006-10-19 Robert Frigg Intramedullary nail
US9814500B2 (en) 2003-08-29 2017-11-14 DePuy Synthes Products, Inc. Intramedullary nail
US20060241605A1 (en) * 2003-10-21 2006-10-26 Andre Schlienger Intramedullary nail
US20050203510A1 (en) * 2004-03-11 2005-09-15 Sohngen Gary W. Fixation instrument for treating a bone fracture
US8702707B2 (en) 2004-03-11 2014-04-22 Gary W. Sohngen Fixation instrument for treating a bone fracture
US8092454B2 (en) 2004-03-11 2012-01-10 Sohngen Gary W Fixation instrument for treating a bone fracture
US20050277936A1 (en) * 2004-06-11 2005-12-15 Mark Siravo Intramedullary rod with spiraling flutes
EP2301459A1 (en) 2004-06-11 2011-03-30 Synthes GmbH Apparatus for internal fixation of a fracture
US9192416B2 (en) 2004-06-11 2015-11-24 DePuy Synthes Products, Inc. Intramedullary rod with spiraling flutes
US7771428B2 (en) 2004-06-11 2010-08-10 Synthes Usa, Llc Intramedullary rod with spiraling flutes
US7892234B2 (en) 2004-06-22 2011-02-22 Synthes Usa, Llc Intramedullary nail
US20070288019A1 (en) * 2004-06-22 2007-12-13 Andre Schlienger Intramedullary Nail
US20070156144A1 (en) * 2004-06-24 2007-07-05 Dieter Ulrich Intramedullary nail
US8066706B2 (en) 2004-06-30 2011-11-29 Synthes Usa, Llc Surgical nail
US20080262496A1 (en) * 2004-06-30 2008-10-23 Sythes (U.S.A.) Surgical Nail
US20060036248A1 (en) * 2004-07-01 2006-02-16 Ferrante Joseph M Fixation elements
US7588577B2 (en) 2004-07-15 2009-09-15 Wright Medical Technology, Inc. Guide assembly for intramedullary fixation and method of using the same
US20060015123A1 (en) * 2004-07-15 2006-01-19 Wright Medical Technology, Inc. Guide assembly for intramedullary fixation and method of using the same
US20060015101A1 (en) * 2004-07-15 2006-01-19 Wright Medical Technology, Inc. Intramedullary fixation assembly and devices and methods for installing the same
US9451971B2 (en) 2004-07-15 2016-09-27 Agilent Technologies, Inc. Intramedullary fixation assembly and devices and methods for installing the same
US20090157079A1 (en) * 2004-07-15 2009-06-18 Wright Medical Technology, Inc. Intramedullary fixation assembly and devices and methods for installing the same
US20090292292A1 (en) * 2004-07-15 2009-11-26 Wright Medical Technology, Inc. Guide assembly for intramedullary fixation and method of using the same
US8034056B2 (en) 2004-07-15 2011-10-11 Wright Medical Technology, Inc. Guide assembly for intramedullary fixation and method of using the same
US7956235B2 (en) 2004-12-29 2011-06-07 Kimberly-Clark Worldwide, Inc. Absorbent article featuring a temperature change member
US20060142715A1 (en) * 2004-12-29 2006-06-29 Long Andrew M Absorbent article featuring a temperature change member
US7232442B2 (en) 2005-02-22 2007-06-19 Advanced Orthopaedic Solutions Humeral nail
US20060200142A1 (en) * 2005-02-22 2006-09-07 Sohngen Gary W Humeral nail
EP1759648A3 (en) * 2005-08-31 2009-11-25 DePuy Products, Inc. Intramedullary nail assembly
EP1759648A2 (en) * 2005-08-31 2007-03-07 DePuy Products, Inc. Intramedullary nail assembly
US20070049940A1 (en) * 2005-08-31 2007-03-01 Wallace Matthew S Intramedullary nail assembly with fixed securement and associated method
US20070049939A1 (en) * 2005-08-31 2007-03-01 Wallace Matthew S Intramedullary nail assembly with sleeve and screw for use therewith
EP1759649A1 (en) 2005-08-31 2007-03-07 Depuy Products, Inc. Intramedullary nail assembly
US20080249580A1 (en) * 2005-09-28 2008-10-09 Smith & Nephew, Inc. Methods and Instruments of Reducing a Fracture
US8679121B2 (en) 2005-10-31 2014-03-25 Biomet C.V. Intramedullary nail with oblique openings
US20070123875A1 (en) * 2005-10-31 2007-05-31 Czartoski Timothy J Intramedullary nail
US10010355B2 (en) 2005-10-31 2018-07-03 Biomet C.V. Intramedullary nail with oblique openings
US20070123876A1 (en) * 2005-10-31 2007-05-31 Czartoski Timothy J Multiple purpose nail, nail assembly and associated method
US20070123873A1 (en) * 2005-10-31 2007-05-31 Czartoski Timothy J Intramedullary nail with oblique openings
US20070123874A1 (en) * 2005-10-31 2007-05-31 Czartoski Timothy J Multiple purpose nail with oblique openings
US20090306666A1 (en) * 2005-10-31 2009-12-10 Czartoski Timothy J Intramedullary nail with oblique openings
US20070225819A1 (en) * 2006-03-24 2007-09-27 Depuy Products, Inc. Apparatus and method for the treatment of periprosthetic fractures
US20080119856A1 (en) * 2006-11-20 2008-05-22 Yechiel Gotfried Intramedullary nail system and method for fixation of a fractured bone
US20080195098A1 (en) * 2007-02-09 2008-08-14 Yechiel Gotfried Intramedullary nail system and method for fixation of a fractured bone
US7763023B2 (en) 2007-02-09 2010-07-27 Yechiel Gotfried Intramedullary nail system and method for fixation of a fractured bone
US20090254129A1 (en) * 2007-04-30 2009-10-08 Kishore Tipirneni Bone screw system and method for the fixation of bone fractures
US20100179551A1 (en) * 2007-05-25 2010-07-15 Zimmer, Gmbh Reinforced intramedullary nail
US9597129B2 (en) 2007-05-25 2017-03-21 Zimmer Gmbh Reinforced intramedullary nail
US8157803B1 (en) 2007-08-21 2012-04-17 Surgical Implant Generation Network Bone fixation using an intramedullary nail interlocked with a buttress member
US8771283B2 (en) 2007-12-17 2014-07-08 Wright Medical Technology, Inc. Guide assembly for intramedullary fixation and method of using the same
US9662153B2 (en) 2007-12-17 2017-05-30 Wright Medical Technology, Inc. Guide assembly for intramedullary fixation and method of using the same
US20090157077A1 (en) * 2007-12-17 2009-06-18 Wright Medical Technology, Inc. Guide assembly for intramedullary fixation and method of using the same
US20100174284A1 (en) * 2008-10-15 2010-07-08 Zimmer, Gmbh Intramedullary nail
US9474557B2 (en) 2008-10-15 2016-10-25 Zimmer Gmbh Intramedullary nail
US8668695B2 (en) 2008-10-15 2014-03-11 Zimmer Gmbh Intramedullary nail
JP5291719B2 (en) * 2008-10-31 2013-09-18 株式会社ロバート・リード商会 Bone fixation member and femoral fixation system
US8808292B2 (en) 2008-11-11 2014-08-19 Zimmer Gmbh Orthopedic screw
US20100121327A1 (en) * 2008-11-11 2010-05-13 Zimmer, Gmbh Orthopedic screw
US20120265202A1 (en) * 2009-10-13 2012-10-18 Zimmer Gmbh Orthopedic nail and an orthopedic nail system
US9532818B2 (en) * 2009-10-13 2017-01-03 Zimmer Gmbh Orthopedic nail and an orthopedic nail system
US9308037B2 (en) 2009-12-11 2016-04-12 Stryker European Holdings I, Llc Ankle fusion device, instrumentation and methods
US8562606B2 (en) * 2009-12-11 2013-10-22 Small Bone Innovations, Inc. Ankle fusion device, instrumentation and methods
US20110282397A1 (en) * 2009-12-11 2011-11-17 Small Bone Innovations, Inc. Ankle Fusion Device, Instrumentation and Methods
US10405899B2 (en) * 2010-11-17 2019-09-10 Hyprevention Sas Devices, methods and systems for remedying or preventing fractures
US20120123415A1 (en) * 2010-11-17 2012-05-17 Vienney Cecile Devices, Methods and Systems for Remedying or Preventing Fractures
EP2672909B1 (en) * 2011-02-08 2015-10-21 Stryker Trauma GmbH Implant system for bone fixation
US9782206B2 (en) 2011-02-08 2017-10-10 Stryker European Holdings I, Llc Implant system for bone fixation
US10034696B2 (en) 2011-02-08 2018-07-31 Stryker European Holdings I, Llc Implant system for bone fixation
US10117686B2 (en) 2012-02-07 2018-11-06 The Vertical Group, Inc. Method and apparatus for treating a bone fracture
US9277945B2 (en) 2012-02-07 2016-03-08 Mnr Device Corporation Method and apparatus for treating a bone fracture
US20140094802A1 (en) * 2012-10-01 2014-04-03 Stryker Trauma Gmbh Intramedullary nail and implant system comprising the nail
US9358049B2 (en) 2012-10-01 2016-06-07 Stryker European Holdings I, Llc Intramedullary nail and implant system comprising the nail
US9072552B2 (en) * 2012-10-01 2015-07-07 Stryker Trauma Gmbh Intramedullary nail and implant system comprising the nail
US10575883B2 (en) 2014-12-15 2020-03-03 Smith & Nephew, Inc. Active fracture compression implants
WO2018192970A1 (en) 2017-04-20 2018-10-25 Stöckli Group Ag Longitudinal bone implant
EP3391841A1 (en) 2017-04-20 2018-10-24 Stöckli Group AG Longitudinal bone implant
CN110520071A (en) * 2017-04-20 2019-11-29 圣厄克利集团公司 Longitudinal bone implant
CN110520071B (en) * 2017-04-20 2023-02-17 圣厄克利集团公司 Longitudinal bone implant
US11426220B2 (en) 2017-10-11 2022-08-30 Howmedica Osteonics Corp. Humeral fixation plate guides
US11857228B2 (en) 2020-03-06 2024-01-02 Stryker European Operations Limited Set screw for femoral nail

Similar Documents

Publication Publication Date Title
US3433220A (en) Intramedullary rod and cross-nail assembly for treating femur fractures
CA1322307C (en) Medullary nail for the tibia
JP4126091B2 (en) Bone fixation device
US5035697A (en) Orthopedic medullary nail
US4590930A (en) Fixation device and process for an intramedullary nail
US5562666A (en) Method for treating intertrochanteric fracture utilizing a femoral fracture device
EP0134514B1 (en) Surgical guide pin - sleeve combination
US6524314B1 (en) Interlocking intramedullary nail
ES2624580T3 (en) Bone fixation implant system
EP0192840B1 (en) Appliance for fixing fractures of the femur
EP2133034B1 (en) Intramedullary nail to be inserted into a fractured long bone
US3977398A (en) Fluted sub-trochanteric nail system
US6123708A (en) Intramedullary bone fixation rod
US5167663A (en) Femoral fracture device
US4827917A (en) Fermoral fracture device
US4913137A (en) Intramedullary rod system
JP4468814B2 (en) Fixation system consisting of nails and screws to improve the fixation of proximal fractures of the humerus
US20010053912A1 (en) Medullary nail for the surgical treatment of forearm fractures
MXPA02011712A (en) Humeral spiral blade.
US4212294A (en) Orthopedic fracture fixation device
EP0551588A1 (en) Intramedullary nail for treating fractures of the proximal femur
CN111281510A (en) Combined anatomical intramedullary fixation device for proximal femur fracture
US20080125818A1 (en) Interlocking nail geometry and method of use
JP4611614B2 (en) Osteosynthesis device
WO2007125497A1 (en) Intremedullary nail for fixation of long bone fractures