US3437776A - Dielectric heating device and rf control coils therefor - Google Patents

Dielectric heating device and rf control coils therefor Download PDF

Info

Publication number
US3437776A
US3437776A US3437776DA US3437776A US 3437776 A US3437776 A US 3437776A US 3437776D A US3437776D A US 3437776DA US 3437776 A US3437776 A US 3437776A
Authority
US
United States
Prior art keywords
electrode
electrodes
inductors
voltage
embossing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Marvin G Schaeffer
William A Hays
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Application granted granted Critical
Publication of US3437776A publication Critical patent/US3437776A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/04Dielectric heating, e.g. high-frequency welding, i.e. radio frequency welding of plastic materials having dielectric properties, e.g. PVC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8161General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps said pressing elements being supported or backed-up by springs or by resilient material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/843Machines for making separate joints at the same time in different planes; Machines for making separate joints at the same time mounted in parallel or in series

Definitions

  • This invention relates to dielectric heating apparatus and particularly to impedance modifying means for minimizing uneven voltage distribution along the high voltage electrode.
  • a large embossing press contains a plurality of embossing dies so that several separate trim items may be processed simultaneously.
  • the trim material typically comprises a sandwich of a backing sheet, a polyvinyl chloride facing sheet, and intermediate filler material.
  • Such trim materials require very accurate control of the heat applied thereto since if the temperature becomes too high, blistering of the polyvinyl chloride will occur and if the temperature is too low, satisfactory adhesion between the several layers of material is not obtained.
  • the temperature generated in any specific portion of the press is a function of the voltage at that point, the temperatures will vary by as much as 35 F.
  • the trim material has a permissable heating range of only 12 /2 F., which means that the voltage range across the embossing dies must be held within a 4% variation from maximum.
  • Yet another object of this invention is to provide an inductor suitable to be placed across the electrodes of the dielectric embossing press and remote from the electrode edges.
  • the invention is carried out by providing inductors across the electrodes of the dielectric embossing press, the inductors being judiciously located between the dies to minimize voltage variations.
  • the invention is further carried out by providing means to alter the localized load impedance between the electrodes and accordingly to alter the pattern of voltage distribution on the high voltage electrode.
  • the means comprises coil springs secured to one electrode remote from the edges thereof and biased toward the other electrode. The springs serve as inductors.
  • the invention is also carried out by providing inductors suitable for connecting across electrodes of a dielectric embossing press comprising coil springs coated with a highly conductive metal and including means for releasa-bly contacting an electrode surface.
  • FIGURE 1 is a cross-sectional schematic view of a dielectric embossing apparatus with tuning inductors according to the invention
  • FIGURE 2 is a detailed drawing of the tuning inductor according to the invention.
  • FIGURE 3 is a plan view of the lower electrode including the embossing dies of the apparatus in FIGURE 1;
  • FIGURE 4 is a plan view of the lower electrode of an embossing press according to the invention, which press has a different die arrangement than that of FIGURE 1.
  • FIGURE 1 illustrates a dielectric embossing press including a high frequency oscillator 10 connected between ground and an upper electrode 12.
  • a lower electrode 14 is electrically grounded and is mounted on a fluid motor 16 so as to be vertically movable between open and closed position.
  • the electrode 14 includes a lower platen 17.
  • a loading tray 18 rests on platen 17 and forms a part of the lower electrode 14 and four separate embossing dies 20 are secured to the loading tray 18 and also form a part of the lower electrode.
  • Sandwiches of trim material 22 are supported by the embossing dies so that when the fluid motor 16 places the press in closed position, the trim sandwiches 22 are squeezed against the lower or inner surface of electrode 12.
  • a plurality of coil springs or inductors 24 are secured to the loading tray 18 and are located in the spaces between the dies 20 and remote from the electrode edges. The upper portion of the inductors 24 contact the lower surface of electrode 12 when the press is in closed position and are disengaged from electrode 12 when the press is open so that the load tray 18 may be withdrawn for removing the embossed trim sandwiches and loading new trim material.
  • the inductors 24 are best shown in FIGURE 2 wherein it is seen that the inductors comprise a coil spring having several central turns of uniform diameter and on each end, two turns of progressively smaller diameters, the terminal turn on each end being small enough to form an eyelet for receiving a threaded fastener.
  • the lower end of inductor 24 is secured to the loading tray 18 by a bolt 26 while the upper end has a contact button 28 secured thereto, which button releasably makes contact with the upper electrode 12.
  • FIGURE 3 A plan view of the lower electrode 14 is illustrated in FIGURE 3 wherein the relationship between the dies 20 and the inductors 24 is apparent, the inductors being remotely located from the periphery of the electrode 14 and being located in the spaces between the dies 20.
  • the purpose of the inductors is to minimize the voltage variations on the upper electrode 12. Without the inductors the high frequency electrical energy applied to the upper electrode forms a standing wave along the surface of the upper electrode 12 and considering only the inner surface of the electrode 12, which faces the embossing dies, the standing wave produces a node of maximum voltage at the geometrical center of the electrode under ideal conditions and the voltage decreases toward the electrode periphery.
  • the equal potential lines surrounding the node are generally dog bone shaped, extending longitudinally along the major axis of the electrode.
  • the voltage at locations corresponding to the extreme outer corners of the outer dies 20 approach values of 9% below the maximum voltage at the die area, which is more than double the amount of variation permissible to achieve acceptable dielectric embossing results.
  • the voltage variation in the die area of the electrode be no more than 4%. When the voltage variation exceeds this amount, poor bonding occurs in the low voltage areas or blistering occurs in the high voltage areas, or both.
  • the voltage pattern is modified by placing localized inductive loads across the inner surface of the electrodes.
  • inductive loads have the effect of lowering the voltage in their general vicinity.
  • the already low voltages along the periphery will be lowered even further thereby aggravating the problem.
  • FIGURE 4 A specific example of a dielectric embossing structure according to this invention is illustrated in FIGURE 4 which discloses an electrode 14 and a single pair of dies 20 symmetrically located about the center.
  • Five inductors are located along the transverse central axis of the electrode midway between the dies 20 and symmetrically located with respect to the center of electrode 14.
  • the electrode 14 was by 80 inches and the dies were 18 by 29 inches spaced 4 /2 inches apart.
  • the central inductor. was placed at the center of the electrode and the other inductors were placed 3 inches apart on centers.
  • the inductors comprise coil springs as illustrated in FIGURE 2 comprising ten turns and have a diameter of 2. inches and a length of 2.25 inches when not compressed.
  • the coil is comprised of 0.1285 diameter stainless steel stock plated with 0.0005 inch of silver and a silver contact button 28 was used.
  • the coil has a Q of 344 at 20 megacycles and an inductance of 1.187 microhenries.
  • the oscillator frequency was 20 megacycles which is not a resonant frequency for the dielectric embossing press, resonant frequencies being considered undesirable because of instability problems and consequent difficulty in controlling the operating parameters. With this arrangement, the voltage variation in the die area does not exceed the critical value of 4% below the maximum voltage.
  • this invention provides a means for controlling the temperature variations in dielectric heating devices and more particularly in dielectric embossing presses where the very critical temperature range is essential to satisfactory performance and that the invention will further provide a specific inductor suitable for releasably interconnecting the inner surface of dielectric heating electrodes.
  • the specific form of the coil spring which forms the inductor 24 requires that the two turns on each end he of progressively smaller diameter than the central turns providing openings at the top and bottom of the inductor to permit the escape of the magnetic field thereby reducing the amount of inductive heating which would occur in a cylindrical coil.
  • dielectric embossing apparatus comprising a pair of electrodes; a high frequency electrical source connected across the electrodes; one of the electrodes comprising, in part, a plurality of embossing dies each for embossing a separate article; and a plurality of inductors connected across the electrodes and located" between the dies.
  • dielectric embossing apparatus as described in claim 1 wherein the electrodes are movable apart and the inductors are secured to one electrode and resiliently biased toward the other electrode to releasably contact said other electrode.
  • dielectric heating apparatus for treating a plurality of separate articles, the combination comprising a pair of electrodes spaced to receive the plurality of articles therebetween, a high frequency power supply connected to one of the electrodes, the other electrode being grounded, and a plurality of inductors across the electrodes and disposd between the articles.
  • a pair of spaced electrodes a high frequency electrical energy source connected to the outer surface of one of the electrodes for normally creating a standing wave over the electrode surface having maximum voltage near the center of the inside surface of the one electrode and substantially lower voltages at other points on the said inside surface, the other electrode being grounded, and means for mitigating the uneven voltage distribution comprising a plurality of reactive elements across the electrodes and remote from the electrode edges.
  • dielectric heating apparatus comprising a pair of spaced electrodes, a high frequency electrical power supply connected across the electrodes, means for displacing the electrodes toward and away from each other for moving them to closed and open position respectively, a plurality of laterally spaced dies incorporated in an electrode and at least one inductor secured to one electrode between a pair of adjacent dies and resiliently engaging the other electrode in closed position and disengaged from the other electrode in open position.

Description

April '8, 1969 DIELECTRIC HEATING DEVICE AND RF CONTROL COILS THEREFOR MIG. SCHAEFFER ET Filed April 13, 1967 OSCILLATOR I JMIIIII V l @QQQQ INVENTORS ATTORNEY United States Patent US. Cl. 219-1053 6 Claims ABSTRACT OF THE DISCLOSURE In a dielectric embossing apparatus containing several embossing dies, RF tuning coils between the dies are relcasably connected across the electrodes to minimize an uneven voltage distribution.
This invention relates to dielectric heating apparatus and particularly to impedance modifying means for minimizing uneven voltage distribution along the high voltage electrode.
In certain applications of dielectric embossing, for example, the embossing of automobile trim material, a large embossing press, say 40 by 80 inches, contains a plurality of embossing dies so that several separate trim items may be processed simultaneously. The trim material typically comprises a sandwich of a backing sheet, a polyvinyl chloride facing sheet, and intermediate filler material. Such trim materials require very accurate control of the heat applied thereto since if the temperature becomes too high, blistering of the polyvinyl chloride will occur and if the temperature is too low, satisfactory adhesion between the several layers of material is not obtained. It has been found that in such large dielectric embossing presses, it is common for both conditions to obtain at the same time, i.e., blistering will occur in one portion of the press and poor adhesion will occur in another portion. This is attributed to an uneven heating of the trim sandwich. In presses of this type, radio frequency electrical energy is applied across the electrodes and the frequency is such that the size of the electrode is approximately one-eighth wave length, thereby creating a standing wave on the high voltage electrode, with the maximum voltage theoretically occurring at the center of the electrode, although in practice, due to imperfect loading of the press, the high voltage node may shift from the center somewhat. In any event. the edges and particularly, the corners of the electrode have a voltage substantially less than the maximum, typically 16 to 22% less. Since the temperature generated in any specific portion of the press is a function of the voltage at that point, the temperatures will vary by as much as 35 F. However, the trim material has a permissable heating range of only 12 /2 F., which means that the voltage range across the embossing dies must be held within a 4% variation from maximum.
It has been suggested in the prior art that for applications requiring relatively coarse temperature control, e.g., laminating wood, uneven voltages may be held to within 5 or 6% variation by inductors or tuning stubs across the electrodes along the edges thereof, each inductor to tune a portion of the electrodes into resonance with the power source. There, however, the prior art was dealing with electrodes 13 feet long and 6 inches wide where several 3,437,776 Patented Apr. 8, 1969 ICC standing waves with incident voltage variations were occurring along the length with only minor variations occurring across the narrow conductor width. In applying that teaching, however, to electrodes of large width, this expedient of placing inductors along the electrode edges would aggravate the uneven voltage distribution rather than ameliorate it.
It is therefore an object of this invention to provide improved dielectric heating apparatus and more particularly dielectric embossing apparatus.
It is a further object of this invention to provide dielectric heating apparatus with means for controlling the range of heating occurring therein.
It is another object of this invention to provide dielectric heating apparatus with means for controlling the voltage variations across the electrodes.
It is a further object of the invention to provide an impedance adjusting means across the electrodes of the dielectric heating apparatus.
Yet another object of this invention is to provide an inductor suitable to be placed across the electrodes of the dielectric embossing press and remote from the electrode edges.
The invention is carried out by providing inductors across the electrodes of the dielectric embossing press, the inductors being judiciously located between the dies to minimize voltage variations.
The invention is further carried out by providing means to alter the localized load impedance between the electrodes and accordingly to alter the pattern of voltage distribution on the high voltage electrode. More specifically, the means comprises coil springs secured to one electrode remote from the edges thereof and biased toward the other electrode. The springs serve as inductors.
The invention is also carried out by providing inductors suitable for connecting across electrodes of a dielectric embossing press comprising coil springs coated with a highly conductive metal and including means for releasa-bly contacting an electrode surface.
The above and other advantages will be made more apparent from the following specification taken in conjunction with the accompanying drawings wherein like reference numerals refer to like parts and wherein:
FIGURE 1 is a cross-sectional schematic view of a dielectric embossing apparatus with tuning inductors according to the invention;
FIGURE 2 is a detailed drawing of the tuning inductor according to the invention;
FIGURE 3 is a plan view of the lower electrode including the embossing dies of the apparatus in FIGURE 1; and
FIGURE 4 is a plan view of the lower electrode of an embossing press according to the invention, which press has a different die arrangement than that of FIGURE 1.
FIGURE 1 illustrates a dielectric embossing press including a high frequency oscillator 10 connected between ground and an upper electrode 12. A lower electrode 14 is electrically grounded and is mounted on a fluid motor 16 so as to be vertically movable between open and closed position. The electrode 14 includes a lower platen 17. A loading tray 18 rests on platen 17 and forms a part of the lower electrode 14 and four separate embossing dies 20 are secured to the loading tray 18 and also form a part of the lower electrode. Sandwiches of trim material 22 are supported by the embossing dies so that when the fluid motor 16 places the press in closed position, the trim sandwiches 22 are squeezed against the lower or inner surface of electrode 12. A plurality of coil springs or inductors 24 are secured to the loading tray 18 and are located in the spaces between the dies 20 and remote from the electrode edges. The upper portion of the inductors 24 contact the lower surface of electrode 12 when the press is in closed position and are disengaged from electrode 12 when the press is open so that the load tray 18 may be withdrawn for removing the embossed trim sandwiches and loading new trim material.
The inductors 24 are best shown in FIGURE 2 wherein it is seen that the inductors comprise a coil spring having several central turns of uniform diameter and on each end, two turns of progressively smaller diameters, the terminal turn on each end being small enough to form an eyelet for receiving a threaded fastener. The lower end of inductor 24 is secured to the loading tray 18 by a bolt 26 while the upper end has a contact button 28 secured thereto, which button releasably makes contact with the upper electrode 12.
A plan view of the lower electrode 14 is illustrated in FIGURE 3 wherein the relationship between the dies 20 and the inductors 24 is apparent, the inductors being remotely located from the periphery of the electrode 14 and being located in the spaces between the dies 20.
As stated above, the purpose of the inductors is to minimize the voltage variations on the upper electrode 12. Without the inductors the high frequency electrical energy applied to the upper electrode forms a standing wave along the surface of the upper electrode 12 and considering only the inner surface of the electrode 12, which faces the embossing dies, the standing wave produces a node of maximum voltage at the geometrical center of the electrode under ideal conditions and the voltage decreases toward the electrode periphery. The equal potential lines surrounding the node are generally dog bone shaped, extending longitudinally along the major axis of the electrode. Without the inductors, the voltage at locations corresponding to the extreme outer corners of the outer dies 20 approach values of 9% below the maximum voltage at the die area, which is more than double the amount of variation permissible to achieve acceptable dielectric embossing results. To obtain a satisfactory bond between the layers of the trim sandwich, it is essential that the voltage variation in the die area of the electrode be no more than 4%. When the voltage variation exceeds this amount, poor bonding occurs in the low voltage areas or blistering occurs in the high voltage areas, or both.
According to this invention, the voltage pattern is modified by placing localized inductive loads across the inner surface of the electrodes. Such inductive loads have the effect of lowering the voltage in their general vicinity. Thus, if inductors were placed near the electrode periphery as has been suggested by the prior art, the already low voltages along the periphery will be lowered even further thereby aggravating the problem. Rather, it is necessary to place the inductors at locations remote from the electrode periphery in the ranges of normally high voltage. Then the high voltages will be reduced to lessen the amount of voltage variation.
A specific example of a dielectric embossing structure according to this invention is illustrated in FIGURE 4 which discloses an electrode 14 and a single pair of dies 20 symmetrically located about the center. Five inductors are located along the transverse central axis of the electrode midway between the dies 20 and symmetrically located with respect to the center of electrode 14. For a specific installation, the electrode 14 was by 80 inches and the dies were 18 by 29 inches spaced 4 /2 inches apart. The central inductor. was placed at the center of the electrode and the other inductors were placed 3 inches apart on centers. The inductors comprise coil springs as illustrated in FIGURE 2 comprising ten turns and have a diameter of 2. inches and a length of 2.25 inches when not compressed. The coil is comprised of 0.1285 diameter stainless steel stock plated with 0.0005 inch of silver and a silver contact button 28 was used. The coil has a Q of 344 at 20 megacycles and an inductance of 1.187 microhenries. The oscillator frequency was 20 megacycles which is not a resonant frequency for the dielectric embossing press, resonant frequencies being considered undesirable because of instability problems and consequent difficulty in controlling the operating parameters. With this arrangement, the voltage variation in the die area does not exceed the critical value of 4% below the maximum voltage.
It will thus be seen that this invention provides a means for controlling the temperature variations in dielectric heating devices and more particularly in dielectric embossing presses where the very critical temperature range is essential to satisfactory performance and that the invention will further provide a specific inductor suitable for releasably interconnecting the inner surface of dielectric heating electrodes. The specific form of the coil spring which forms the inductor 24 requires that the two turns on each end he of progressively smaller diameter than the central turns providing openings at the top and bottom of the inductor to permit the escape of the magnetic field thereby reducing the amount of inductive heating which would occur in a cylindrical coil.
The preferred embodiment of the invention described herein is for purposes of illustration and the scope of the invention is intended to be limited only by the following claims:
It is claimed:
1. In dielectric embossing apparatus, the combination comprising a pair of electrodes; a high frequency electrical source connected across the electrodes; one of the electrodes comprising, in part, a plurality of embossing dies each for embossing a separate article; and a plurality of inductors connected across the electrodes and located" between the dies.
2. In dielectric embossing apparatus as described in claim 1 wherein the electrodes are movable apart and the inductors are secured to one electrode and resiliently biased toward the other electrode to releasably contact said other electrode.
3. In dielectric heating apparatus for treating a plurality of separate articles, the combination comprising a pair of electrodes spaced to receive the plurality of articles therebetween, a high frequency power supply connected to one of the electrodes, the other electrode being grounded, and a plurality of inductors across the electrodes and disposd between the articles.
4. In heating apparatus, in combination, a pair of spaced electrodes, a high frequency electrical energy source connected to the outer surface of one of the electrodes for normally creating a standing wave over the electrode surface having maximum voltage near the center of the inside surface of the one electrode and substantially lower voltages at other points on the said inside surface, the other electrode being grounded, and means for mitigating the uneven voltage distribution comprising a plurality of reactive elements across the electrodes and remote from the electrode edges.
5. In dielectric heating apparatus, the combination comprising a pair of spaced electrodes, a high frequency electrical power supply connected across the electrodes, means for displacing the electrodes toward and away from each other for moving them to closed and open position respectively, a plurality of laterally spaced dies incorporated in an electrode and at least one inductor secured to one electrode between a pair of adjacent dies and resiliently engaging the other electrode in closed position and disengaged from the other electrode in open position.
6. In dielectric heating apparatus as described in claim References Cited UNITED STATES PATENTS Gifford 336-231 X Romp 174126.2 X Kammerer 174126.2
6 2,948,929 8/1960 Stallard 2191().53 X 3,053,960 9/1962 Spieles 21910.53
FOREIGN PATENTS 1,151,084 8/1957 France.
CHARD M. WOOD, Primary Examiner.
L. H. BENDER, Assistant Examiner.
US. Cl. X.R.
Gard et a1. 219-10.75 X 10 156273, 380; 21910.81
US3437776D 1967-04-13 1967-04-13 Dielectric heating device and rf control coils therefor Expired - Lifetime US3437776A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US63072367A 1967-04-13 1967-04-13

Publications (1)

Publication Number Publication Date
US3437776A true US3437776A (en) 1969-04-08

Family

ID=24528346

Family Applications (1)

Application Number Title Priority Date Filing Date
US3437776D Expired - Lifetime US3437776A (en) 1967-04-13 1967-04-13 Dielectric heating device and rf control coils therefor

Country Status (2)

Country Link
US (1) US3437776A (en)
GB (1) GB1163247A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518396A (en) * 1968-05-27 1970-06-30 Chemetron Corp Dielectric heating apparatus
US3532848A (en) * 1968-04-26 1970-10-06 Varian Associates Resonant r.f. energy applicator for treating wide regions of material
US4476364A (en) * 1981-10-06 1984-10-09 The Continental Group, Inc. Radio frequency heating system for heating thermoplastic material preforms
WO1985003902A1 (en) * 1984-03-01 1985-09-12 Terracopia, Inc. Method of making double walled, tubular, thermal protective cove rings
US4657609A (en) * 1984-09-13 1987-04-14 Koflach Sportgerate Gesellschaft Process for producing cushionings for ski boots, in particular for the production of inner boots of ski boots
US4941936A (en) * 1988-04-28 1990-07-17 The Budd Company Method for bonding FRP members via dielectric heating
US4941937A (en) * 1988-04-28 1990-07-17 The Budd Company Method for bonding reinforcement members to FRP panels
US5554252A (en) * 1995-01-27 1996-09-10 The Budd Company Hot and cool air bonding apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571201B1 (en) * 1984-10-02 1987-01-02 Valeo METHOD FOR HEATING IN THE MASS OF A SUBSTANCE FOR EXAMPLE FOR VULCANIZATION OR POLYMERIZATION

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1231875A (en) * 1916-06-10 1917-07-03 Hiram H Gifford Magnetic choking device.
US1810499A (en) * 1928-12-04 1931-06-16 Rca Corp Transformer winding wire
US1904241A (en) * 1926-12-31 1933-04-18 Kammerer Erwin Compound metal stock
FR1151084A (en) * 1956-05-30 1958-01-23 Acec Electrode system for dielectric loss heating
US2892915A (en) * 1957-06-19 1959-06-30 Armstrong Cork Co Dielectric heater electrode systems
US2948929A (en) * 1957-10-07 1960-08-16 Gen Motors Corp Dielectric embossing
US3053960A (en) * 1958-11-26 1962-09-11 Gen Motors Corp Dielectric process and apparatus for forming materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1231875A (en) * 1916-06-10 1917-07-03 Hiram H Gifford Magnetic choking device.
US1904241A (en) * 1926-12-31 1933-04-18 Kammerer Erwin Compound metal stock
US1810499A (en) * 1928-12-04 1931-06-16 Rca Corp Transformer winding wire
FR1151084A (en) * 1956-05-30 1958-01-23 Acec Electrode system for dielectric loss heating
US2892915A (en) * 1957-06-19 1959-06-30 Armstrong Cork Co Dielectric heater electrode systems
US2948929A (en) * 1957-10-07 1960-08-16 Gen Motors Corp Dielectric embossing
US3053960A (en) * 1958-11-26 1962-09-11 Gen Motors Corp Dielectric process and apparatus for forming materials

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532848A (en) * 1968-04-26 1970-10-06 Varian Associates Resonant r.f. energy applicator for treating wide regions of material
US3518396A (en) * 1968-05-27 1970-06-30 Chemetron Corp Dielectric heating apparatus
US4476364A (en) * 1981-10-06 1984-10-09 The Continental Group, Inc. Radio frequency heating system for heating thermoplastic material preforms
WO1985003902A1 (en) * 1984-03-01 1985-09-12 Terracopia, Inc. Method of making double walled, tubular, thermal protective cove rings
US4657609A (en) * 1984-09-13 1987-04-14 Koflach Sportgerate Gesellschaft Process for producing cushionings for ski boots, in particular for the production of inner boots of ski boots
US4941936A (en) * 1988-04-28 1990-07-17 The Budd Company Method for bonding FRP members via dielectric heating
US4941937A (en) * 1988-04-28 1990-07-17 The Budd Company Method for bonding reinforcement members to FRP panels
US5554252A (en) * 1995-01-27 1996-09-10 The Budd Company Hot and cool air bonding apparatus

Also Published As

Publication number Publication date
GB1163247A (en) 1969-09-04

Similar Documents

Publication Publication Date Title
US3437776A (en) Dielectric heating device and rf control coils therefor
US2993204A (en) Two-band helical antenna
US3329796A (en) Radio frequency apparatus
DE2317565A1 (en) ARRANGEMENT FOR HEATING AN ELECTRICALLY CONDUCTIVE COOKING APPLIANCE BY MAGNETIC INDUCTION
US20060169676A1 (en) RF welding device
EP0295099A2 (en) Power source device
US3221132A (en) Non-resonant oven cavity and resonant antenna system for microwave heating oven
US3532848A (en) Resonant r.f. energy applicator for treating wide regions of material
EP3524889A1 (en) Cooking device with a base station for wireless charging of a mobile device
WO1990007851A1 (en) Cook top
DE3818491A1 (en) Capacitive high-frequency defrosting (thawing) device for a domestic appliance
US2783344A (en) Dielectric heating systems and applicators
DE1540993A1 (en) Oven for heating by means of ultra-high frequency oscillations
US2414280A (en) Variometer
US3422240A (en) Microwave oven
US2390559A (en) Apparatus for selective heat treatment of metal
US8502121B2 (en) Radiofrequency welding apparatus
US2783348A (en) High-frequency heating applicators
EP3651552B1 (en) Microwave processing device
US4362918A (en) Radiation absorbing apparatus
US3109080A (en) Continuous di-electric heating of electrically non-conductive material
EP2127574B1 (en) Assembly for inductive heating of dishes placed on plates
JPH0737685A (en) Applying device for resonance high frequency or microwave for heat treatment of continuously transferred flat material
US2824940A (en) High-frequency heating device
US3518396A (en) Dielectric heating apparatus