US3451476A - Multiple stage cementing - Google Patents

Multiple stage cementing Download PDF

Info

Publication number
US3451476A
US3451476A US680511A US3451476DA US3451476A US 3451476 A US3451476 A US 3451476A US 680511 A US680511 A US 680511A US 3451476D A US3451476D A US 3451476DA US 3451476 A US3451476 A US 3451476A
Authority
US
United States
Prior art keywords
valve
sleeve
casing
cementing
multiple stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US680511A
Inventor
Charles A Pitts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Application granted granted Critical
Publication of US3451476A publication Critical patent/US3451476A/en
Assigned to DOWELL SCHLUMBERGER INCORPORATED, reassignment DOWELL SCHLUMBERGER INCORPORATED, ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: DOWELL SCHLUMBERGER INCORPORATED, 500 GULF FREEWAY, HOUSTON, TEXAS 77001, DOW CHEMICAL COMPANY, THE, 2030 DOW CENTER, ABBOTT ROAD, MIDLAND, MI. 48640
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes
    • E21B33/146Stage cementing, i.e. discharging cement from casing at different levels

Definitions

  • This invention relates to the cementing of oil wells and more particularly to an arrangement for cementing long strings of casing in stages so that the cement which fills the annular space around the casing may be supplied thereto without all of its passing around the bottom of the casing.
  • the multiple stage cementing of wells is now well known to those skilled in the art. Methods and apparatus for accomplishing this are disclosed in the United States patent to C. A. Pitts, No. 2,435,016, granted June 5, 1944.
  • a valve structure In the multiple stage cementing of wells, a valve structure, usually called the multiple stage unit, is made up with the casing. The arrangement is such that, at the proper time, the valve in the unit is opened so that cement can llow around the casing.
  • This Valve may be a sleeve, for example, and the sleeve may be moved downwardly to its open position by means of one of the cementing plugs used in the cementing operation.
  • Another object of this invention is to provide an improved multiple stage cementing unit having sleeve valve means for relieving pressure as a iirst sleeve valve element moves downwardly to uncover the ports used in the second stage of cementing.
  • the apparatus is adapted to be coupled to a string of casing intermediate of the ends of the casing.
  • the apparatus comprises an outer body shell which is coupled to the casing and a pair of sleeve elements which are movable downwardly on the breaking of holding elements after a ball or plug seats across each sleeve element.
  • the upper or second sleeve may be broken away and moved downwardly to mate with the lower sleeve and close off the larger port or ports.
  • Both sleeves are actuated by iluid pressure after a suitable plug or ball device is dispatched dlown the casing to seat against a valve which is part of each sleeve element.
  • FIG. l is a sectional view showing apparatus in accordance with this invention.
  • FIG. 2 is a sectional view of the apparatus showing the lower sleeve valve in its lowered position
  • FIG. 3 is a sectional view showing the apparatus with both the upper and lower sleeve valves in their lowered position
  • FIG. 4 is a sectional view taken along the line 4--4 of FIG. 3.
  • a string of casing comprising an upper section 18 and a lower section 24, joined by multiple stage cementing apparatus, indicated generally by the numeral 10.
  • the apparatus 10 comprises an elongated collar section, indicated generally by the numeral 12, which is internally threaded at its upper end 14 and coupled through bushing 16 to the upper section 18 of the casing.
  • the lower end 20 of the collar 12 contains threads 22 by which it is coupled to the lower section 24 of the well casing.
  • 12 is conveniently made in two pieces.
  • the upper or main part 13 is coupled at its lower end 26 to ya coupling section 29 (which joins the casing section 24 as described above).
  • the coupling section has a thinned section 2S which threadedly engages the main part 13.
  • the internal wall part 31 of the coupling section is slightly counterbored and is adapted to have -part of the lower sleeve valve 37 lit closely but slidably within it.
  • the lower sleeve valve 37 has an upper wall part 33 whose outer diameter lits closely but s'lidably within the part 13 of the collar 12 and a lower part 34 of lesse-r internal diameter (by the thickness of the thinned section 28 of the coupling section 29) which is ⁇ adapted, as mentioned above, to telescope within the internal wall part 31 of the coupling section.
  • the upper end part 40 of the upper wall part 33 is counterbored on its inner diameter, the counterbore terminating at a shoulder 42.
  • a drillable valve seat element 46 is threadedly coupled as at 44 to the inner wall part of the sleeve valve 37.
  • the element 46 contains a seat 48 on its upper side.
  • the sleeve valve 37 is retained in position by shear pins 5l) extending between the collar and the sleeve valve.
  • the collar contains ports 51 through which cement slurry or other pumpable material will tlow in the second stage of the well cementing operation.
  • a small port or bore 32 extends through the wall of the collar section 13 just above the upper end 30 of the coupling section 29.
  • An upper sleeve valve, indicated generally by the numeral 53 is disposed above the sleeve valve 37 within the part 13 of the colla-r 12.
  • the inner wall 59 of the part of the section 13 of the collar which lies above the valve 37 in its pin retained position is slightly counterbored and contains serrations S6 slightly above the upper end of valve 37 (in its pin retained position).
  • the upper part of the sleeve valve 53 has an outer diameter which fits closely but slidably in the counter bored inner wall part 59.
  • the lower part 52 of the sleeve valve 53 is of slightly lesser outer diameter and is adapted to fit closely but slidably against the inner wall of the collar section when the upper valve is moved downwardly after its retaining pin(s) 62 are broken during cementing operations.
  • the lower end 55 of the sleeve valve 53 has a reduced outer diameter part adapted to the telescope into the upper end part 40 of the sleeve valve 37 when the two valves 37, 53 are in their final positions in the cementing operation.
  • a grooved circumferential channel 58 extends around the upper part of the sleeve valve 53 and contains a compressed ring-like locking element 60.
  • a drillable valve seat element I66 engages and is coupled to threads 64 on the inner diameter of the sleeve valve 53 at its upper end part.
  • the element 66 has a seat 68 on its upper side which is adapted to mate with a ball or cementing plug (72 in FIG. 3).
  • the casing and cementing apparatus I10 are filled with fluid or other pumpable material as is well known in the art.
  • a ball or plug 70 (see FIG. 2) is then injected down the casing, seating against the seat 48 of valve seat element 46 of the lower sleeve valve 37.
  • the bore or small port 32 prevents undue expansion of the casing or excessive compression of the iluid below as the valve sleeve 37 moves downwardly after the ball or plug 70 seats; because of the lower pressure in the well annulus and the fact that the Surface 38 is subject to the lower pressure in the ⁇ annulus (via port 32), the sleeve 37 has more pressure exerted on its upper surfaces than on its lower surfaces.
  • the ball or plug 70 uuseats temporarily and permits liquid in the casing below the ball or plug 70 to pass through the valve 46.
  • the port ⁇ 51 is fully opened, the port 32 is covered by the wall of part 34, and the ball or plug 70 settles into place.
  • the ports 51 are open and cement is then force down the casing 18, through the ports 51 and into the well bore annulus as is well known in the well cementing art.
  • valve 53 breaks the shear pin(s) 62 and forces the sleeve valve 53 downwardly to the position shown in FIG. 3.
  • the lower end 55 of the valve 53 bears against the shoulder 42 as the reduced outer diameter part of the end 5S telescopes into the upper end part 40 of the sleeve valve 37.
  • sleeve valves 37, 53 aro provided with O-ring type seal elements 17 at various points in order to assure fluid tight seals as the sleeves move within the collar 12 or telescope within each other.
  • the drillable valve seats may be made of any suitable material, such as aluminum or phenol-formaldehyde plastic, for example.
  • said enclosed flow channel has an upward facing part having ⁇ an area which is at least as large as the area of the end surface of said sleeve valve which lies below said enclosed iiow channel.

Description

C. A. PITTS June 24, 1969 MULT IPLE STAG E CEMENTING Filed Nov. 5, 1967 Sheet of y INVENTR.
Fir/9i C50/46514. P/'ff BY @MW .lune 24, 1969 I c. A. PITTS 3,451,476
4MULIT IPLE STAGE CEMENT ING Filed Nov. 5, 1967 Sheet Z of 2 United States Patent Office 3,451,476 Patented June 24, 1969 3,451,476 MULTIPLE STAGE CEMENTING Charles A. Pitts, Tulsa, Okla., assignor to The Dow Chemical Company, Midland, Mich., a corporation of Delaware Filed Nov. 3, 1967, Ser. No. 680,511 Int. Cl. E21b 33/13 U.S. Cl. 166--224 4 Claims ABSTRACT OF THE DISCLOSURE This invention relates to multiple stage well cementing apparatus in which sleeve valves are operated by dilerential pressure across the apparatus. Means are provided for relieving pressure caused by moving the first sleeve valve downward to uncover side ports.
This invention relates to the cementing of oil wells and more particularly to an arrangement for cementing long strings of casing in stages so that the cement which fills the annular space around the casing may be supplied thereto without all of its passing around the bottom of the casing. The multiple stage cementing of wells is now well known to those skilled in the art. Methods and apparatus for accomplishing this are disclosed in the United States patent to C. A. Pitts, No. 2,435,016, granted June 5, 1944.
In the multiple stage cementing of wells, a valve structure, usually called the multiple stage unit, is made up with the casing. The arrangement is such that, at the proper time, the valve in the unit is opened so that cement can llow around the casing. This Valve may be a sleeve, for example, and the sleeve may be moved downwardly to its open position by means of one of the cementing plugs used in the cementing operation.
It is very important in carrying on multiple stage cementing operations to provide some means for sealing the ports in the multiple stage unit after the cement is discharged therethrough. One type of valve, spring actuated, is disclosed in the patent to Owsley et al., No. 2,201,299, granted May 21, 1940. The use of springs for actuating poppet valves or other valves on the outside of the multiple stage unit is not entirely satisfactory. There is danger that the springs may be broken or the valves damaged as the casing is lowered into the well, and there is danger that some obstruction may lodge in the ports and prevent the valves seating properly. It the valves do not seat properly, after the well is completed water may seep along the cement and enter the casing through the ports of the multiple stage unit. Some operators prefer to pump the cement around the entire string of casing rather than use the multiple stage cementing process because of the dangers mentioned above.
It is an object of the present invention to provide an improved multiple stage cementing unit in which sleeve valves are provided both for opening and for closing the ports through which the cement is discharged and in which the sleeves are positively actuated by the cementing plugs used in carrying out the multiple stage cementing operation.
Another object of this invention is to provide an improved multiple stage cementing unit having sleeve valve means for relieving pressure as a iirst sleeve valve element moves downwardly to uncover the ports used in the second stage of cementing.
In accordance with this invention there is provided apparatus especially useful in multiple stage well cementing operations. The apparatus is adapted to be coupled to a string of casing intermediate of the ends of the casing. The apparatus comprises an outer body shell which is coupled to the casing and a pair of sleeve elements which are movable downwardly on the breaking of holding elements after a ball or plug seats across each sleeve element.
The downward movement of the rst or lower sleeve forces liquid out through the ball and seat (or plug and seat) because a port adjacent to the sleeve in the wall of the device causes a pressure reduction on the lower end of the sleeve.
The upper or second sleeve may be broken away and moved downwardly to mate with the lower sleeve and close off the larger port or ports.
Both sleeves are actuated by iluid pressure after a suitable plug or ball device is dispatched dlown the casing to seat against a valve which is part of each sleeve element.
The invention, as well as additional objects and advantages thereof, will best be understood when the following detailed description is read in connection with the accompanying drawings, in which:
FIG. l is a sectional view showing apparatus in accordance with this invention;
FIG. 2 is a sectional view of the apparatus showing the lower sleeve valve in its lowered position;
FIG. 3 is a sectional view showing the apparatus with both the upper and lower sleeve valves in their lowered position; and
FIG. 4 is a sectional view taken along the line 4--4 of FIG. 3.
Referring to the drawing, there is shown, in a Well bore 8, a string of casing comprising an upper section 18 and a lower section 24, joined by multiple stage cementing apparatus, indicated generally by the numeral 10.
The apparatus 10 comprises an elongated collar section, indicated generally by the numeral 12, which is internally threaded at its upper end 14 and coupled through bushing 16 to the upper section 18 of the casing. The lower end 20 of the collar 12 contains threads 22 by which it is coupled to the lower section 24 of the well casing.
The collar |12 is conveniently made in two pieces. The upper or main part 13 is coupled at its lower end 26 to ya coupling section 29 (which joins the casing section 24 as described above). The coupling section has a thinned section 2S which threadedly engages the main part 13.
The internal wall part 31 of the coupling section is slightly counterbored and is adapted to have -part of the lower sleeve valve 37 lit closely but slidably within it.
The lower sleeve valve 37 has an upper wall part 33 whose outer diameter lits closely but s'lidably within the part 13 of the collar 12 and a lower part 34 of lesse-r internal diameter (by the thickness of the thinned section 28 of the coupling section 29) which is` adapted, as mentioned above, to telescope within the internal wall part 31 of the coupling section.
The upper end part 40 of the upper wall part 33 is counterbored on its inner diameter, the counterbore terminating at a shoulder 42.
A drillable valve seat element 46 is threadedly coupled as at 44 to the inner wall part of the sleeve valve 37. The element 46 contains a seat 48 on its upper side.
The sleeve valve 37 is retained in position by shear pins 5l) extending between the collar and the sleeve valve.
The collar contains ports 51 through which cement slurry or other pumpable material will tlow in the second stage of the well cementing operation.
When the sleeve valve 31 is retained in position by the pins 50, the ports 51 are covered and closed olf by the upper wall part 33 of the valve 37.
A small port or bore 32 extends through the wall of the collar section 13 just above the upper end 30 of the coupling section 29.
An upper sleeve valve, indicated generally by the numeral 53 is disposed above the sleeve valve 37 within the part 13 of the colla-r 12.
The inner wall 59 of the part of the section 13 of the collar which lies above the valve 37 in its pin retained position is slightly counterbored and contains serrations S6 slightly above the upper end of valve 37 (in its pin retained position).
The upper part of the sleeve valve 53 has an outer diameter which fits closely but slidably in the counter bored inner wall part 59. The lower part 52 of the sleeve valve 53 is of slightly lesser outer diameter and is adapted to fit closely but slidably against the inner wall of the collar section when the upper valve is moved downwardly after its retaining pin(s) 62 are broken during cementing operations.
The lower end 55 of the sleeve valve 53 has a reduced outer diameter part adapted to the telescope into the upper end part 40 of the sleeve valve 37 when the two valves 37, 53 are in their final positions in the cementing operation.
A grooved circumferential channel 58 extends around the upper part of the sleeve valve 53 and contains a compressed ring-like locking element 60.
A drillable valve seat element I66 engages and is coupled to threads 64 on the inner diameter of the sleeve valve 53 at its upper end part. The element 66 has a seat 68 on its upper side which is adapted to mate with a ball or cementing plug (72 in FIG. 3).
In operation, as shown in FIG. l, the casing and cementing apparatus I10 are filled with fluid or other pumpable material as is well known in the art. A ball or plug 70 (see FIG. 2) is then injected down the casing, seating against the seat 48 of valve seat element 46 of the lower sleeve valve 37.
Pressure exerted from the surface through the casing 18 forces the sleeve valve 37 downwardly and shears the pins 50.
The bore or small port 32, prevents undue expansion of the casing or excessive compression of the iluid below as the valve sleeve 37 moves downwardly after the ball or plug 70 seats; because of the lower pressure in the well annulus and the fact that the Surface 38 is subject to the lower pressure in the `annulus (via port 32), the sleeve 37 has more pressure exerted on its upper surfaces than on its lower surfaces. Thus, as the sleeve 37 moves downwardly, the ball or plug 70 uuseats temporarily and permits liquid in the casing below the ball or plug 70 to pass through the valve 46. As the sleeve reaches its lowered position the port `51 is fully opened, the port 32 is covered by the wall of part 34, and the ball or plug 70 settles into place.
As shown in FIG. 2 in its lowered position the shoulder 38 of the valve 37 seats against top 30 of the coupling section and the outer diameter of the thinned section 34 fits closely but slidably against the walls of the part 28 of the coupling section 29.
The ports 51 are open and cement is then force down the casing 18, through the ports 51 and into the well bore annulus as is well known in the well cementing art.
When the appropriate amount of cement has been injected into the casing 18, a second ball or plug 72 is inserted and forced down the casing 18, seating against the seat 68 of seat element 66 in the upper sleeve valve 53.
The pressure exerted above the valve 53 breaks the shear pin(s) 62 and forces the sleeve valve 53 downwardly to the position shown in FIG. 3. As may be seen in FIGS. 3 and 4, the lower end 55 of the valve 53 bears against the shoulder 42 as the reduced outer diameter part of the end 5S telescopes into the upper end part 40 of the sleeve valve 37.
In this position the locking element in the channel 58 in valve 53 is caught in the serrations 56 in the inner wall of the section 13 of the collar 12, holding the valve 53 in its downward position.
In its downward position, the walls of the sleeve valve 53 seal off the ports 51.
It should be noted that the sleeve valves 37, 53 aro provided with O-ring type seal elements 17 at various points in order to assure fluid tight seals as the sleeves move within the collar 12 or telescope within each other.
The drillable valve seats may be made of any suitable material, such as aluminum or phenol-formaldehyde plastic, for example.
What is claimed is:
1. In multiple stage cementing apparatus wherein a pair of sleeve valves each having an internal valve seat are disposed one above the other in a collar assembly adapted to -be coupled intermediate the ends of a string of casing, said sleeve valves being retained in predetermined position by shear type holding means until a first sleeve valve is lowered following the seating of a valve element in said valve seat to expose liquid flow ports in said collar assembly and seat with respect to said collar assembly, and later the second sleeve valve is lowered following the seating of a valve element in its valve seat to seal off said iiuid exit ports in said collar, the improvement comprising a means for communicating lpressure existing in the interior of the collar assemlbly to substantially all of one end surface area of said first sleeve valve and a means for communicating the pressure existing exterior of the collar assembly to substantially less than all of the other end surface area of said first sleeve valve whereby a difference in the interior and exterior pressure exerts a longitudinal force on said sleeve.
2. An apparatus in accordance with claim 1l wherein the end surface of said first sleeve valve is disposed in the interior of the collar assembly whereby such end surface is in communication with pressure existing in said interior and an enclosed ow channel between said collar assembly and a substantial part of the other end surface of said first sleeve and including a bore extending through the collar assembly disposed substantially where said first sleeve valve seats with respect to said collar assembly whereby such other end surface is in communication with the exterior of said collar assembly until said first sleeve valve is at least almost in its lower position.
3. Apparatus in accordance with claim 1, wherein the side walls of said enclosed flow channel are a thinned wall part of said first sleeve valve and a wall part of said collar, with the end parts of said enclosed iiow channel being a shoulder surface of said first sleeve valve and a shoulder surface of said collar assembly.
4. Apparatus in accordance with claim 1, wherein said enclosed flow channel has an upward facing part having `an area which is at least as large as the area of the end surface of said sleeve valve which lies below said enclosed iiow channel.
References Cited UNITED STATES PATENTS 2,435,016 1/1948 Pitts 166-224 X 2,998,075 8/1961 Clark 166--224 3,066,735 12/1962 Zingg 166-224 X 3,094,307 `6/1963 Alley 166-224 X 3,151,681 10/1964 Cochran 166-224 3,228,473 1/1966 Baker 166-224 X 3,338,311 8/1967 Conrad 166-224 X STEPHEN I. NOVOSAD, Primary Examiner.
US680511A 1967-11-03 1967-11-03 Multiple stage cementing Expired - Lifetime US3451476A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US68051167A 1967-11-03 1967-11-03

Publications (1)

Publication Number Publication Date
US3451476A true US3451476A (en) 1969-06-24

Family

ID=24731409

Family Applications (1)

Application Number Title Priority Date Filing Date
US680511A Expired - Lifetime US3451476A (en) 1967-11-03 1967-11-03 Multiple stage cementing

Country Status (1)

Country Link
US (1) US3451476A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789926A (en) * 1972-10-19 1974-02-05 R Henley Two stage cementing collar
US4487263A (en) * 1982-12-27 1984-12-11 William Jani Cement staging apparatus for wells and including well casing and a process therefor
EP0376431A1 (en) * 1988-10-17 1990-07-04 Texaco Development Corporation Annular port-closing tool and method for well cementing
US20080164029A1 (en) * 2007-01-09 2008-07-10 Halliburton Energy Services, Inc. Apparatus and method for forming multiple plugs in a wellbore
WO2022132183A1 (en) * 2020-12-17 2022-06-23 Halliburton Energy Services, Inc. Single sleeve, multi-stage cementer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2435016A (en) * 1944-06-05 1948-01-27 Halliburton Oil Well Cementing Multiple stage cementing
US2998075A (en) * 1957-07-29 1961-08-29 Baker Oil Tools Inc Subsurface well apparatus
US3066735A (en) * 1960-05-25 1962-12-04 Dow Chemical Co Hydraulic jetting tool
US3094307A (en) * 1960-01-15 1963-06-18 Thomas R Alley Circulating valve
US3151681A (en) * 1960-08-08 1964-10-06 Cicero C Brown Sleeve valve for well pipes
US3228473A (en) * 1962-11-28 1966-01-11 Halliburton Co Cementing collar and means for actuating same
US3338311A (en) * 1964-12-14 1967-08-29 Martin B Conrad Stage cementing collar

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2435016A (en) * 1944-06-05 1948-01-27 Halliburton Oil Well Cementing Multiple stage cementing
US2998075A (en) * 1957-07-29 1961-08-29 Baker Oil Tools Inc Subsurface well apparatus
US3094307A (en) * 1960-01-15 1963-06-18 Thomas R Alley Circulating valve
US3066735A (en) * 1960-05-25 1962-12-04 Dow Chemical Co Hydraulic jetting tool
US3151681A (en) * 1960-08-08 1964-10-06 Cicero C Brown Sleeve valve for well pipes
US3228473A (en) * 1962-11-28 1966-01-11 Halliburton Co Cementing collar and means for actuating same
US3338311A (en) * 1964-12-14 1967-08-29 Martin B Conrad Stage cementing collar

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789926A (en) * 1972-10-19 1974-02-05 R Henley Two stage cementing collar
US4487263A (en) * 1982-12-27 1984-12-11 William Jani Cement staging apparatus for wells and including well casing and a process therefor
EP0376431A1 (en) * 1988-10-17 1990-07-04 Texaco Development Corporation Annular port-closing tool and method for well cementing
US20080164029A1 (en) * 2007-01-09 2008-07-10 Halliburton Energy Services, Inc. Apparatus and method for forming multiple plugs in a wellbore
US7472752B2 (en) * 2007-01-09 2009-01-06 Halliburton Energy Services, Inc. Apparatus and method for forming multiple plugs in a wellbore
WO2022132183A1 (en) * 2020-12-17 2022-06-23 Halliburton Energy Services, Inc. Single sleeve, multi-stage cementer
US11739611B2 (en) 2020-12-17 2023-08-29 Halliburton Energy Services, Inc. Single sleeve, multi-stage cementer

Similar Documents

Publication Publication Date Title
US9121251B2 (en) Valve for hydraulic fracturing through cement outside casing
US4429747A (en) Well tool
US3811500A (en) Dual sleeve multiple stage cementer and its method of use in cementing oil and gas well casing
US4324293A (en) Circulation valve
US3148731A (en) Cementing tool
US2925865A (en) Full flow packer cementing shoe
US3151681A (en) Sleeve valve for well pipes
US4100969A (en) Tubing tester valve apparatus
US3228473A (en) Cementing collar and means for actuating same
US2785755A (en) Storm choke for oil wells
US9784071B2 (en) Casing annulus cement foundation system and a method for forming a flange collar constituting a cement foundation
US3151839A (en) Two-way flapper-type valve
US3130783A (en) Cementing well pipe in stages
US3193016A (en) Reverse flow tubing valve
US3338311A (en) Stage cementing collar
US5769162A (en) Dual bore annulus access valve
US2741313A (en) Wire line tester
US3451476A (en) Multiple stage cementing
US3519075A (en) Formation tester
US2862562A (en) Drill stem test packer
US2502886A (en) Pressure relieving apparatus
US3105553A (en) Fluid flow control apparatus
US2962099A (en) Blowout control valve
US3130789A (en) Automatic fill-up and cementing devices for well pipes
US3523580A (en) Tubing tester

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOWELL SCHLUMBERGER INCORPORATED, 400 WEST BELT SO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DOW CHEMICAL COMPANY, THE, 2030 DOW CENTER, ABBOTT ROAD, MIDLAND, MI. 48640;DOWELL SCHLUMBERGER INCORPORATED, 500 GULF FREEWAY, HOUSTON, TEXAS 77001;REEL/FRAME:004398/0131;SIGNING DATES FROM 19850410 TO 19850417