US3458950A - Sound controlled toys having a time delay motor circuit - Google Patents

Sound controlled toys having a time delay motor circuit Download PDF

Info

Publication number
US3458950A
US3458950A US718409A US3458950DA US3458950A US 3458950 A US3458950 A US 3458950A US 718409 A US718409 A US 718409A US 3458950D A US3458950D A US 3458950DA US 3458950 A US3458950 A US 3458950A
Authority
US
United States
Prior art keywords
motor
circuit
sound
toy
scr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US718409A
Inventor
Patrick M Tomaro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Remco Industries Inc
Original Assignee
Remco Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Remco Industries Inc filed Critical Remco Industries Inc
Application granted granted Critical
Publication of US3458950A publication Critical patent/US3458950A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H17/00Toy vehicles, e.g. with self-drive; ; Cranes, winches or the like; Accessories therefor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H30/00Remote-control arrangements specially adapted for toys, e.g. for toy vehicles
    • A63H30/02Electrical arrangements
    • A63H30/04Electrical arrangements using wireless transmission

Definitions

  • Motor actuated toys are provided which are controlled by sound waves.
  • a time-delay circuit prevents responsiveness to sound for a pre-determined period after motor action ceases. This prevents undesired, extrinsic noises, such as those caused by the stopping of the motion of the toy, from actuating the sound responsive circuit.
  • the sound responsive means used in them can either by a microphone, a microphone tuned to receive only a particular frequency, or a sound box responsive to only selected frequencies.
  • the circuitry associated with the sound receiving means is adapted to control a motor and so start the operation of the toy car, if so wired, stop the operation of the toy.
  • a toy such as a toy truck
  • a control circuit for the motor.
  • the control circuit responds to sounds which are either picked up by a microphone, a frequency responsive sound box, or some equivalent.
  • the motor is controlled by an amplifier circuit which, in the specific instance shown here, is turned on when a sound wave is received.
  • the toy operates for a pre-determined period determined by the setting of a gear train with a cam actuated switch. At the end of the period, the circuit turns the motor off.
  • The' toy is not thereafter immediately responsive to sounds and further actuation of the motor because of a time delay control built into the motor control circuit. This time relay prevents response to extraneous sounds, such as the sounds of the motor stopping, for a pre-determined period, preferably of approximately onesecond.
  • the time delay control is provided by an SCR controlled circuit with resistance-capacitor combination serving to bias the SCR to its non-conducting cut-oft state for the pre-determined time period. After the expiration of the period, the SCR is then again responsive to opening of the gate circuit therein.
  • FIG. 1 is representative of the type of motorized toys that may be controlled by my invention and shows a perspective view of a small truck.
  • FIG. 1 shows a motorized toy truck 1, the motor itself not being shown.
  • a control box 2 Positioned within the truck is a control box 2 which includes sound responsive means and a control circuit.
  • a sound responsive device such as a microphone 4 receives sound waves.
  • the device 4 may be designed to be responsive to a particular note or frequency or may respond to any noise. If it is responsive to a particular frequency, it may be controlled by the child by blowing a whistle that emits that frequency. If not responsive to a particular frequency, it may be controlled by speaking to the toy, or, for example, the clap of the hands.
  • Control circuit 6 will include the necessary amplification circuitry, a switch controlled by the circuitry to apply to the motor, and the time delay function. In the preferred form the time delay will serve to de-activate the control circuit for a predetermined period after the motor has stopped.
  • Control circuit 6 serves to close the circuit to the motor and allows it to operate. This control is indicated by line 7 leading to the motor 8. Operation of motor 8 also operates a cam switch which determines the length of time or operation of the motor and also actuates the time delay circuitry of control circuit 6, as indicated by lead 9.
  • FIG. 3 contains motor 8, battery 14, microphone 4, an amplification circuit represented by transistor 1, a motor control gating circuit represented by SCR 10 With associated time delay circuit formed by capacitor 16 and series resistor 12 and a cam switch 15 mechanically linked with motor 8 and in series with it.
  • SCR 10 is in parallel with cam switch 15, the gate of SCR 10 being controlled by transistor 11 and is connected to the collector of that transistor by lead 26.
  • Transistor 11 receives its power from battery 14.
  • the collector of transistor 11 is connected to variable resistor 30 and series resistor 31 to lead 22 and thence to the positive side of battery 14.
  • the emitter transistor 11 is connected by lead 32 to lead 23 and thence to the negative side of battery 14.
  • One side of microphone 4 is connected to the positive side of battery 14 by lead 22; the other, by lead 35 to the base of transistor 11.
  • the output of microphone 4 is amplified through transistor 11 and the output thereof passes through lead 26 to the gate of SCR 10.
  • SCR 10 is across cam switch 15.
  • the cathode of SCR 10 is connected to lead 24; and the anode, to lead 25.
  • the anode is also connected through lead 37 to the time delay control capacitor 16, in series with resistance 12, and thence to the base of transistor 11.
  • the gate of SCR 10, in addition to being connected through lead 26 to the collector of transistor 11, is also connected to capacitor 38 and thence to the negative side of battery 11. This latter capacitor serves to prevent any spikes produced by the stopping of the motor from reaching the gate of SCR 10.
  • a pulse depressing resistance 40 is also connected in parallel with motor 8.
  • Cam switch 15, operatively connected to motor 8, is in the open position, opening the circuit between leads 24, and 25, when motor 8 is stopped. As soon as motor 8 is started, as will be described below, cam switch 15 closes, thus completing the circuit between the motor and battery 14, until the cam completes a rotation and the switch again opens.
  • switch 21 To operate the toy of my invention, switch 21 is closed. This connects the positive slide of battery 14 with motor 8. The negative side of battery 14 is not yet connected to the motor, however, since cam switch 15 is open and SCR 10 is non-conducting.
  • microphone 4 receives a sound of sufiicient magnitude, this sound is amplified through transistor 11 and applied to the gate of SCR 10, causing it to conduct and so closing the circuit through SCR 10 between the negative side of battery 14 and motor 8. Motor 8 thus starts to operate and so operates the toy.
  • Motor 8 will continue to operate until cam switch 15 again opens.
  • the period of operation can be set for Whatever pre-determined interval is desirable.
  • cam switch 15 also serves to apply a negative voltage through leads 24 and 25 to the anode of SCR 10, making it again non-conductive. This same negative voltage is also applied to capacitor 16, giving it a negative charge.
  • cam switch 15 opens. Since SCR is now non-conducting, motor 8 will stop. In addition, the negative charge on capacitor 16 will be applied to the anode of SCR 10 and so hold SCR 10 non-conducting. This Will be so even if additional sounds are now received by microphone 4, sounds which would ordinarily serve to open the gate of SCR 10, as described above, and cause the motor to operate.
  • resistor 30 is a variable resistor allowing for adjustment of sensitivity of the unit to the magnitude of the sound received.
  • a toy which is motor-operated and controlled by sound, but in which sounds received by the microphone, or other sound responsive device cannot again turn the motor on for a short period after the motor has ceased operating. This will prevent undesired sounds, such as occurring from the cessation of operation from the motor, from feeding back into the system and again causing it to operate.
  • a motor-actuated toy capable of being controlled by sound waves, including (a) an animated toy having a motor therein;
  • control circuit wired to control operation of said toy in response to sound waves received by said sound responsive means, said circuit including a delay circuit preventing operation of said motor for a predetermined period after each cessation of operation of said motor, whereby unwanted sounds do not control said motor during said pre-determined delay period.
  • said sound responsive means is a sound box with a resonant frequency.
  • said delay circuit includes an SCR and an R-C circuit, said R-C circuit biasing said SCR to cut-off during said pre-determined delay period.
  • a toy as set forth in claim 3 including a switch operated by said motor, said switch by-passing said SCR during operation of said motor and inter-connecting said RC circuit, whereby said R-C circuit may be biased to said SCR cut-off voltage.
  • a motor-actuated toy adapted to be controlled by sound waves other than those created by actions of the toy itself, said toy including (a) a motor and power supply therefor;
  • a motor-actuated toy adapted to be controlled by sound waves other than those created by actions of the toy itself, said toy including:

Description

I 5, 1969 I I I P. M. TOMARO 3,458,950
SOUND CONTROLLED TOYS' HAVING A TIME DELAY MOTOR CIRCUIT Filed April 5. 1968 mam/wows NT/m Mo TOR CIRCUIT mvsmon Paine/r Tamara 25 I BY W 2/ Wlb v [rm/wa s United States Patent 3,458,950 SOUND CONTROLLED TOYS HAVING A TIME DELAY MOTOR CIRCUIT Patrick M. Tomaro, Maplewood, N.J., assignor to Remco Industries, Inc., Harrison, N.J., a corporation of New Jersey Filed Apr. 3, 1968, Ser. No. 718,409 Int. Cl. A63h 33/26 US. Cl. 46-243 7 Claims ABSTRACT OF THE DISCLOSURE Motor actuated toys are provided which are controlled by sound waves. A time-delay circuit prevents responsiveness to sound for a pre-determined period after motor action ceases. This prevents undesired, extrinsic noises, such as those caused by the stopping of the motion of the toy, from actuating the sound responsive circuit.
Background of the invention Various toys have been made in the past which are controlled by sound waves. These devices include toy vehicles, toy animals, and the like. The sound responsive means used in them can either by a microphone, a microphone tuned to receive only a particular frequency, or a sound box responsive to only selected frequencies. The circuitry associated with the sound receiving means is adapted to control a motor and so start the operation of the toy car, if so wired, stop the operation of the toy.
These devices have sometimes had problems because the operation of the toy, or the cessation of operation of the top, has in itself created noises which would feed back into the sound receiving device and cause further, but undesired, actuation.
This is obviated by use of the present invention.
Summary of the invention In the practice of my invention, a toy, such as a toy truck, is provided with a motor and with a control circuit for the motor. The control circuit responds to sounds which are either picked up by a microphone, a frequency responsive sound box, or some equivalent. The motor is controlled by an amplifier circuit which, in the specific instance shown here, is turned on when a sound wave is received.
The toy operates for a pre-determined period determined by the setting of a gear train with a cam actuated switch. At the end of the period, the circuit turns the motor off. The' toy is not thereafter immediately responsive to sounds and further actuation of the motor because of a time delay control built into the motor control circuit. This time relay prevents response to extraneous sounds, such as the sounds of the motor stopping, for a pre-determined period, preferably of approximately onesecond.
The time delay control is provided by an SCR controlled circuit with resistance-capacitor combination serving to bias the SCR to its non-conducting cut-oft state for the pre-determined time period. After the expiration of the period, the SCR is then again responsive to opening of the gate circuit therein.
The drawings As shown in the attached drawings FIG. 1 is representative of the type of motorized toys that may be controlled by my invention and shows a perspective view of a small truck.
3,458,950 Patented Aug. 5, 1969 Detailed description of the invention FIG. 1 shows a motorized toy truck 1, the motor itself not being shown. Positioned within the truck is a control box 2 which includes sound responsive means and a control circuit. Preferably there is an opening 3 in truck 1 so that sound may enter the system more easily.
The general operation of my invention is shown in FIG. 2. A sound responsive device, such as a microphone 4, receives sound waves. The device 4 may be designed to be responsive to a particular note or frequency or may respond to any noise. If it is responsive to a particular frequency, it may be controlled by the child by blowing a whistle that emits that frequency. If not responsive to a particular frequency, it may be controlled by speaking to the toy, or, for example, the clap of the hands.
Regardless, the output from the microphone is fed through lead 5 to the control circuit dipicted generally by the numeral 6. Control circuit 6 will include the necessary amplification circuitry, a switch controlled by the circuitry to apply to the motor, and the time delay function. In the preferred form the time delay will serve to de-activate the control circuit for a predetermined period after the motor has stopped.
Control circuit 6 serves to close the circuit to the motor and allows it to operate. This control is indicated by line 7 leading to the motor 8. Operation of motor 8 also operates a cam switch which determines the length of time or operation of the motor and also actuates the time delay circuitry of control circuit 6, as indicated by lead 9.
Circuit details are shown in FIG. 3. In essence, FIG. 3 contains motor 8, battery 14, microphone 4, an amplification circuit represented by transistor 1, a motor control gating circuit represented by SCR 10 With associated time delay circuit formed by capacitor 16 and series resistor 12 and a cam switch 15 mechanically linked with motor 8 and in series with it.
Reviewing the circuit in more detail we find that the positive side of battery 14 is connected through lead 20 to on-oif switch 21, and thence through lead 22 to one side of motor 8. The negative side of battery 14 is connected through lead 23 and series lead 24 to cam switch 15, and then through lead 25 to the other side of motor 10.
SCR 10 is in parallel with cam switch 15, the gate of SCR 10 being controlled by transistor 11 and is connected to the collector of that transistor by lead 26.
Transistor 11 receives its power from battery 14. The collector of transistor 11 is connected to variable resistor 30 and series resistor 31 to lead 22 and thence to the positive side of battery 14. The emitter transistor 11 is connected by lead 32 to lead 23 and thence to the negative side of battery 14. One side of microphone 4 is connected to the positive side of battery 14 by lead 22; the other, by lead 35 to the base of transistor 11. Thus, the output of microphone 4 is amplified through transistor 11 and the output thereof passes through lead 26 to the gate of SCR 10.
Proper biasing for transistor 11 is achieved with resistors 30 and 31, previously described, and with series resistors 12, 13 and 31 connecting the base of transistor 11 3 to the positive side of battery 14 by leads 20 and 22 in series with switch 21.
SCR 10, as stated above, is across cam switch 15. The cathode of SCR 10 is connected to lead 24; and the anode, to lead 25. The anode is also connected through lead 37 to the time delay control capacitor 16, in series with resistance 12, and thence to the base of transistor 11. The gate of SCR 10, in addition to being connected through lead 26 to the collector of transistor 11, is also connected to capacitor 38 and thence to the negative side of battery 11. This latter capacitor serves to prevent any spikes produced by the stopping of the motor from reaching the gate of SCR 10.
A pulse depressing resistance 40 is also connected in parallel with motor 8.
Cam switch 15, operatively connected to motor 8, is in the open position, opening the circuit between leads 24, and 25, when motor 8 is stopped. As soon as motor 8 is started, as will be described below, cam switch 15 closes, thus completing the circuit between the motor and battery 14, until the cam completes a rotation and the switch again opens.
To operate the toy of my invention, switch 21 is closed. This connects the positive slide of battery 14 with motor 8. The negative side of battery 14 is not yet connected to the motor, however, since cam switch 15 is open and SCR 10 is non-conducting. When microphone 4 receives a sound of sufiicient magnitude, this sound is amplified through transistor 11 and applied to the gate of SCR 10, causing it to conduct and so closing the circuit through SCR 10 between the negative side of battery 14 and motor 8. Motor 8 thus starts to operate and so operates the toy.
As soon as motor 8 starts to rotate, the interconnection between the motor and cam switch 15 causes switch 15 to close, by-passing SCR 10. This permits the operation of motor 8 to continue irrespective of the continued cnductivity of SCR 10.
Motor 8 will continue to operate until cam switch 15 again opens. The period of operation can be set for Whatever pre-determined interval is desirable.
The closing of cam switch 15, however, also serves to apply a negative voltage through leads 24 and 25 to the anode of SCR 10, making it again non-conductive. This same negative voltage is also applied to capacitor 16, giving it a negative charge.
Upon completion of the full, pre-determined cycle of operation of the toy, cam switch 15 opens. Since SCR is now non-conducting, motor 8 will stop. In addition, the negative charge on capacitor 16 will be applied to the anode of SCR 10 and so hold SCR 10 non-conducting. This Will be so even if additional sounds are now received by microphone 4, sounds which would ordinarily serve to open the gate of SCR 10, as described above, and cause the motor to operate.
Once switch is open, however, the negative bias is removed from capacitor 16, and so the capacitor may discharge. In my preferred circuit, discharge takes place in approximately 0.9 second. Once the discharge is completed, sounds coming through microphone 4 may serve again to actuate SCR 10 and the cycle can be repeated.
If desired of course, various adjustments for time or sensitivity may be incorporated in the circuit. By way of an example, it may be seen that resistor 30 is a variable resistor allowing for adjustment of sensitivity of the unit to the magnitude of the sound received.
Thus, it can be seen that a toy has been provided which is motor-operated and controlled by sound, but in which sounds received by the microphone, or other sound responsive device cannot again turn the motor on for a short period after the motor has ceased operating. This will prevent undesired sounds, such as occurring from the cessation of operation from the motor, from feeding back into the system and again causing it to operate.
In the circuit herein described, it has been found that 4 satisfactory operation, with the acceptable time delay of 0.9 of a second can be achieved when the circuit parameters are as follows:
Battery 14-32 Capacitance 16l5 mf. Resistance 1247K Capacitance 38-0.1 mf.
It will be readily observed that the same kind of arrangement may be used for other types of motor control without departing from the spirit of my invention. For example, it may be that it is desirable to have a sound actuated motor control that both turns the motor on and turns it off. In this instance, time delay may be desired to delay the unit from turning itself off just after it has been turned on.
What is claimed:
1. A motor-actuated toy capable of being controlled by sound waves, including (a) an animated toy having a motor therein;
(b) sound responsive means associated with said toy;
(c) a control circuit wired to control operation of said toy in response to sound waves received by said sound responsive means, said circuit including a delay circuit preventing operation of said motor for a predetermined period after each cessation of operation of said motor, whereby unwanted sounds do not control said motor during said pre-determined delay period.
2. A toy as set forth in claim 1 in which said sound responsive means is a sound box with a resonant frequency.
3. A toy as set forth in claim 1 in which said delay circuit includes an SCR and an R-C circuit, said R-C circuit biasing said SCR to cut-off during said pre-determined delay period.
4. A toy as set forth in claim 3 including a switch operated by said motor, said switch by-passing said SCR during operation of said motor and inter-connecting said RC circuit, whereby said R-C circuit may be biased to said SCR cut-off voltage.
5. A motor-actuated toy adapted to be controlled by sound waves other than those created by actions of the toy itself, said toy including (a) a motor and power supply therefor;
(b) a normally open switch operated by said motor;
(c) an SCR in series with said motor and said power supply and in parallel with said switch;
(d) sound-responsive means adapted to trigger the gate of said SCR and thereby connect said power supply and said motor; and
(e) means to bias said SCR to cut-off during operation of said motor, said means maintaining said bias for a pre-determined period after said motor stops operation. I
6. A motor-actuated toy adapted to be controlled by sound waves other than those created by actions of the toy itself, said toy including:
(a) a motor and power supply therefor, said motor being operatively associated with said toy to actuate same,
(b) a control circuit for said motor,
(c) sound responsive means operatively associated with said control circuit to actuate same upon receipt of a sound wave,
((1) means associated with said control circuit for maintaining the operation of said motor for a predetermined period of time after action, and
(e) a delay circuit associated with said control circuit to prevent operation of said motor for a second predetermined period after the cessation of operation of said motor at the end of said first predetermined period whereby unwanted sounds do not actuate said control circuit to turnv on said motor during said second predetermined delay period.
5 6 7. A motor-actuated toy as set forth in claim 6 in which 3,142,132 7/ 1-964 Johnson 46244 said delay circuit prevents actuation of said motor con- 3,146,390 8/1964 Wolff 318--266 trolled circuit upon the receipt of sound by biasing said ,192,460 6/1965 Wolff et a]. 318300 control circuit to a non-responsive state. ,364,410 /1968 Foreman 318443 5 FOREIGN PATENTS References Cited UNITED STATES PATENTS 9 77 5 19 1 Marks 313 46() LOUIS G. MANCENE, Primary Examiner 2,995,866 8/1961 Johnson 46-- 44 ROBERT F. CUTTING, Assistant Examiner 998,830 9/1951 France.
US718409A 1968-04-03 1968-04-03 Sound controlled toys having a time delay motor circuit Expired - Lifetime US3458950A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71840968A 1968-04-03 1968-04-03

Publications (1)

Publication Number Publication Date
US3458950A true US3458950A (en) 1969-08-05

Family

ID=24885998

Family Applications (1)

Application Number Title Priority Date Filing Date
US718409A Expired - Lifetime US3458950A (en) 1968-04-03 1968-04-03 Sound controlled toys having a time delay motor circuit

Country Status (5)

Country Link
US (1) US3458950A (en)
DE (1) DE1812431A1 (en)
ES (1) ES357914A1 (en)
FR (1) FR1585481A (en)
GB (1) GB1245117A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770981A (en) * 1971-04-29 1973-11-06 T Nelsen Voice controlled target release system
US4086724A (en) * 1976-01-16 1978-05-02 Mccaslin Robert E Motorized toy vehicle having improved control means
US4221927A (en) * 1978-08-08 1980-09-09 Scott Dankman Voice responsive "talking" toy
US4230317A (en) * 1978-02-10 1980-10-28 Marvin Glass & Associates Sound actuated competitive game apparatus
US4462080A (en) * 1981-11-27 1984-07-24 Kearney & Trecker Corporation Voice actuated machine control
US4690242A (en) * 1986-11-19 1987-09-01 Mark David S Sound actuated switch
US5003714A (en) * 1989-05-11 1991-04-02 Takara Co., Ltd. Figure moving article
US5032099A (en) * 1989-10-02 1991-07-16 Blue Box Toy Factory Toy musical box
US5134796A (en) * 1989-06-30 1992-08-04 Takara Co., Ltd. Simulated novelty container capable of movement
US5221224A (en) * 1991-02-08 1993-06-22 Takara Co., Ltd. Movable article having expanding-contracting and revolving motion
US5944574A (en) * 1996-07-17 1999-08-31 Shoot The Moon Products, Inc. Interactive audio-visual toy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR998830A (en) * 1949-10-17 1952-01-23 Improvements to remote control electronic toys
US2989677A (en) * 1959-03-17 1961-06-20 Admiral Corp Control systems
US2995866A (en) * 1955-01-24 1961-08-15 Thomas M Johnson Sound actuated toy
US3142132A (en) * 1955-01-24 1964-07-28 Thomas M Johnson Sound actuated toy
US3146390A (en) * 1961-01-26 1964-08-25 Admiral Corp Remote control system
US3192460A (en) * 1961-04-25 1965-06-29 Admiral Corp Reversible d.c. motor with axially shiftable rotor
US3364410A (en) * 1965-01-07 1968-01-16 Motorola Inc Windshield wiper

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR998830A (en) * 1949-10-17 1952-01-23 Improvements to remote control electronic toys
US2995866A (en) * 1955-01-24 1961-08-15 Thomas M Johnson Sound actuated toy
US3142132A (en) * 1955-01-24 1964-07-28 Thomas M Johnson Sound actuated toy
US2989677A (en) * 1959-03-17 1961-06-20 Admiral Corp Control systems
US3146390A (en) * 1961-01-26 1964-08-25 Admiral Corp Remote control system
US3192460A (en) * 1961-04-25 1965-06-29 Admiral Corp Reversible d.c. motor with axially shiftable rotor
US3364410A (en) * 1965-01-07 1968-01-16 Motorola Inc Windshield wiper

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770981A (en) * 1971-04-29 1973-11-06 T Nelsen Voice controlled target release system
US4086724A (en) * 1976-01-16 1978-05-02 Mccaslin Robert E Motorized toy vehicle having improved control means
US4230317A (en) * 1978-02-10 1980-10-28 Marvin Glass & Associates Sound actuated competitive game apparatus
US4221927A (en) * 1978-08-08 1980-09-09 Scott Dankman Voice responsive "talking" toy
US4462080A (en) * 1981-11-27 1984-07-24 Kearney & Trecker Corporation Voice actuated machine control
US4690242A (en) * 1986-11-19 1987-09-01 Mark David S Sound actuated switch
US5003714A (en) * 1989-05-11 1991-04-02 Takara Co., Ltd. Figure moving article
US5134796A (en) * 1989-06-30 1992-08-04 Takara Co., Ltd. Simulated novelty container capable of movement
US5303491A (en) * 1989-06-30 1994-04-19 Takara Co., Ltd. Simulated novelty container capable of movement
US5032099A (en) * 1989-10-02 1991-07-16 Blue Box Toy Factory Toy musical box
US5221224A (en) * 1991-02-08 1993-06-22 Takara Co., Ltd. Movable article having expanding-contracting and revolving motion
US5944574A (en) * 1996-07-17 1999-08-31 Shoot The Moon Products, Inc. Interactive audio-visual toy

Also Published As

Publication number Publication date
ES357914A1 (en) 1970-04-01
DE1812431A1 (en) 1969-10-16
GB1245117A (en) 1971-09-08
FR1585481A (en) 1970-01-23

Similar Documents

Publication Publication Date Title
US3458950A (en) Sound controlled toys having a time delay motor circuit
US4659919A (en) Optical sensing circuit for audio activation of toys
US4883749A (en) Children's toilet training device with differentiating means
US4231184A (en) Remote-control doll assembly
US5267318A (en) Model railroad cattle car sound effects
US5189393A (en) Dual technology motion sensor
US6089942A (en) Interactive toys
US4063664A (en) Device for indicating when automatic, periodic operation has emptied an aerosol container
US5032099A (en) Toy musical box
US4637007A (en) Toy having a melody-making mechanism of a sound-detection type
US4675519A (en) Toy having optically actuated sound generator
US4272916A (en) Proximity responsive toy
EP0012155A1 (en) Intruder alarm device
US3559336A (en) Toy having capacitance switch
US4255745A (en) Apparatus for audible altering of enclosure opening
US4701681A (en) Starting device for a toy motor using an ultrasonic wave signal
US9937427B2 (en) Variable sound generator
US1279831A (en) Sound-operated toy or instrument.
US4322718A (en) Sound-activated rotary device
US5535703A (en) Animal amusement device
US4843374A (en) Door annunciator
GB2042230A (en) Personal alarm
US3900798A (en) Radio solid state crescendo volume alarm
JPH0229992Y2 (en)
US3319247A (en) Sound producing mechanism for startling birds