US3465346A - Circularly-polarizing spiral antenna having sawtooth conductors - Google Patents

Circularly-polarizing spiral antenna having sawtooth conductors Download PDF

Info

Publication number
US3465346A
US3465346A US775078A US3465346DA US3465346A US 3465346 A US3465346 A US 3465346A US 775078 A US775078 A US 775078A US 3465346D A US3465346D A US 3465346DA US 3465346 A US3465346 A US 3465346A
Authority
US
United States
Prior art keywords
antenna
sawtooth
conductor
conductors
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US775078A
Inventor
William F Patterson
Ernesto T Roland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing North American Inc
Original Assignee
North American Rockwell Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North American Rockwell Corp filed Critical North American Rockwell Corp
Application granted granted Critical
Publication of US3465346A publication Critical patent/US3465346A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas

Definitions

  • the antenna of this invention utilizes surface-mounted electrical-energy conductors such as are typically printed on or otherwise bonded to a dielectric support means.
  • Each conductor is provided with a sawtooth geometrical configuration, in whole or in part, to significantly reduce the dielectric means support area requirement necessary to maintain a given antenna operating bandwith capability or alternately to effect a low-frequency extension of the antenna operating bandwith capability achieved within a specified dielectric means support area.
  • the antenna conductors are typically'electrically energized from a conventional coaxial balun feed. Also, known conductor spacing, perimeter maximizing, end-loading, and dielectric confinement techniques may be utilized in combination with the instant invention, if desired.
  • FIG. 1 is a plan view of a fiat double-wound spiral reference antenna having a conventional straight-line conductor configuration
  • FIG. 2 is a sectional view taken at line 2-2 of FIG. 1;
  • FIG. 3 is a plan view of an antenna embodying the instant invention.
  • FIG. 4 is a plan view of an alternate embodiment of an antenna incorporating the instant invention.
  • FIG. 5 is an enlarged plan view showing the conductor configuration of the antenna of FIG. 4 in greater detail
  • FIG. 6 is a table identifying different wave propagation velocity constants that are obtained with conductors having various illustrated sawtooth conductor configurations.
  • FIG. 7 graphically illustrates antenna operating performance advantages that have been obtained by the practice of this invention.
  • FIG. 1 illustrates a reference conventional circularlypolarizing antenna 10 basically comprised of doublewound spiral conductors 11 and 12 secured to flat dielectric board 13.
  • Conductors 11 and 12 are typically con- Patented Sept. 2, 1969 'ice nected at their center terminals 14 to a conventional coaxial feed (not shown).
  • the outer terminals 15 of conductors 11 and 12 frequently are coupled to resistanceloading circuits to improve antenna low frequency operating characteristics in a conventional manner but generally with reduced antenna gain.
  • the reference antenna 10 utilizes conductors 11 and 12 having a conventional straight-line configuration for each leg of the several illus trated turns.
  • Antenna embodiment 16 of FIG. 3 utilizes a doublewound spiral conductor arrangement wherein the conductors 11 and 12 each have a uniform sawtooth configuration such as 20 (FIG. 6) throughout. Corner details 18 for each conductor are provided to maintain uniform spacing between adjacent conductor turns at the antenna corner regions. Antenna 16, having the conductor spacing and number of conductor turns of antenna 10', develops a significant extension to the low-frequency end of the antenna operating bandwidth. (See FIG. 7). The FIG. 3 embodiment, however, does not have the high-frequency operating capability associated either with reference antenna 10 or antenna embodiment 17.
  • FIG. 4 illustrates the relative support area requirement of a flat double-wound spiral antenna 17 in accordance with the invention and having the same acceptable circularly-polarized field and specified operating bandwidth characteristics as antenna 10.
  • the antenna embodiment of FIG. 4 requires only from one-third to one-fourth the corresponding conductor support area as antenna 10 for the same number of double-wound conductor turns.
  • the innermost conductor turns of conductors 11 and 12 are provided with a straight-line configuration 28 in a conventional manner.
  • the outermost two legs of the outermost turn of each of conductors 11 and 12 may be provided with a sawtooth geometrical configuration such as 20 of FIG. 6.
  • the intermediate legs of the ditferent conductor turns have the different sawtooth configurations 21 through 27 with successively decreasing wave propagation velocity constants as indicated by the reference numerals of FIG. 5 and by the corresponding configurations of FIG. 6.
  • Such intermediate legs in eifect provide for a gradual transition in waveform propagation velocity in the conductor region from straight-line configuration 28 through sawtooth geometrical configuration 20.
  • the outermost turn of each of conductors 11 and 12 in antenna 17 has a total length corresponding to the perimeter length of the corresponding outermost straight-line conductor turns 11 and 12 in the FIG. 1 antenna. Normally, it is preferred that uniform spacing between conductors *be maintained throughout.
  • FIG. 6 Details regarding different sawtooth geometrical configurations for conductors 11 and 12 are provided in FIG. 6.
  • the different sawtooth configurations 20 through 27 vary in slope as to each sawtooth leg. The slope varies from a ratio of 4:2 for configuration 20 to a ratio of :2 for configuration 28 in abscissa increments of one-half.
  • Configuration 28 is a straight-line configuration of Zero slope.
  • Additional configurations 29 through 31 for the antenna conductors have the basic characteristics of a sawtooth configuration. However, small radii are utilized to join the different sawtooth leg increments. Velocity constant values computed from actual standing wave field measurements made with respect to configurations through 31 correspond closly to the calculated values of the table.
  • FIG. 7 provides a graphical illustration of the performance capability that may be obtained with an antenna incorporating this invention in comparison to an antenna such as conventional antenna 10.
  • FIG. 7 plots on-axis axial ratio measurements taken for antennas having the conductor configurations of antennas 10 and 16 and having equal support area dimensions of approximately 3% square. Measurements relating to a base frequency 1 were taken over a frequency range extending to approximately 3.5 f. An axial ratio of ten decibels or less for the circularly-polarized radiated field was established as acceptable antenna performance.
  • curve 32 for the antenna 10 conductor configuration, cutoff for a desired axial ratio of less than ten decibels occurs approximately midway between 2.5 f and 3.0 f, such cutoff frequency essentially begin correlated to a wavelength determined by the spiral conductor perimeter turn diameter.
  • Curve 33 illustrates the actual performance of an antenna 16 of similar dimensions to the antenna of curve 32 but with a conductor sawtooth geometric configuration throughout. The cut-off frequency has been reduced to approximately 2 f by the invention with a reduced axial ratio in comparison to curve 32 throughout the remainder of the operating bandwith of interest.
  • the instant invention is illustrated as applied to a flat circularly-polarizing antenna having double-wound spiral conductors of uniform spacing from the point of feed to antenna perimeter.
  • the instant invention is also considered to have application to other conductor arrangements including equiangular, conical, Archimedean spiral, and scimitar configurations.
  • Conventional techniques such as perimeter squaring, lumped or distributed resistance end loading, and conductor dielectric imbedment may be utilized with the invention to further antenna operating performance for a specified operating bandwidth and axial ratio.
  • a pair of interlaced multiple-turn spiral conductor elements secured to said dielectric support means support surface area throughout each current conducting path from said pair of feed terminals to said pair of perimeter terminals and having (1) a first section comprised of adjacent spiral conductor element turns respectively coupled at one extreme to said pair of feed terminals and provided with geometric configurations that propagate traveling waves from said electrical currents at frequency f along said first section spiral conductor element turns at a velocity approximately 1.0 times a reference traveling wave propagation velocity along a conductor of straight-line geometric configuration, (2) a second section comprised of adjacent spiral conductor element turns respectively coupled at one extreme to said pair of perimeter terminals and provided with sawtooth geometric configurations that propagate traveling waves from said electrical currents at frequency f along said second section conductor element turns at a velocity substantially less than said reference traveling wave propagation velocity along a conductor of straight-line geometric configuration, and (3) a transition section comprised of adjacent spiral conductor element turns respectively coupled at opposite extremes to the other extremes of said first and second section conductor element turns and provided with sawtooth
  • transition section is comprised of successively different conductor element turns of different sawtooth geometric configurations that propagate traveling waves from said electrical currents at successively different frequencies intermediate said frequency and said frequency f along said transition section conductor element turns at corresponding successively different velocities proportionally intermediate said traveling wave propagation velocities along said first and second section conductor elements turns.
  • transition section is comprised of successively different conductor element turns of different sawtooth geometric configurations that propagate traveling waves from said electrical currents at successively different frequencies intermediate said frequency f and said frequency f along said transition section conductor element turns at corresponding successively different velocities of approximately 0.97, 0.89, 0.80, 0.71, 0.62, 0.55, and 0.50 proportionally intermediate said traveling wave propagation velocities along said first and second section conductor element turns.

Description

Sept. 2, 1969 W. F. PATTERSON ET AL CIRCULARLYPOLARIZING SPIRAL ANTENNA HAVING SAWTOOTH CONDUCTORS Original Filed May 5, 1967 W l I I 2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\W VELOCITY TYPE CONFIGURATION CONSTANT v 3V2 2| M 0.50
2'/ so 23 M 0.62
Elfilfi 2 3 (AS FIG.I) 24 M -----sAw TOOTH "5 SPIRAL 25 B 5 32 (AS FIG. 3) 26 0.89 9. I 27 0.97 P- I & o I I I 28 L00 i 5 2: 29 M o as 5 x Q 7' 33 0 I l W 2 Q l f 2 2 2 W Q49 FIG 7 FREQUENCY United States Patent 3,465,346 CIRCULARLY-POLARIZING SPIRAL ANTENNA HAVING SAWTOOTH CONDUCTORS William F. Patterson, Reynoldsburg, Ohio, and Ernesto T. Roland, Silver Spring, Md., assignors to North American Rockwell Corporation Original application May 5, 1967, Ser. No. 636,422. Divided and this application Nov. 12, 1968, Ser. No. 775,078
Int. Cl. H01q N36 US. Cl. 343-895 4 Claims ABSTRACT OF THE DISCLOSURE Cross-references This is a divisional application of application for United States patent Ser. No. 636,422, filed May 5, 1967.
Summary of the invention The antenna of this invention utilizes surface-mounted electrical-energy conductors such as are typically printed on or otherwise bonded to a dielectric support means. Each conductor is provided with a sawtooth geometrical configuration, in whole or in part, to significantly reduce the dielectric means support area requirement necessary to maintain a given antenna operating bandwith capability or alternately to effect a low-frequency extension of the antenna operating bandwith capability achieved within a specified dielectric means support area. The antenna conductors are typically'electrically energized from a conventional coaxial balun feed. Also, known conductor spacing, perimeter maximizing, end-loading, and dielectric confinement techniques may be utilized in combination with the instant invention, if desired.
Summary of the drawings FIG. 1 is a plan view of a fiat double-wound spiral reference antenna having a conventional straight-line conductor configuration;
FIG. 2 is a sectional view taken at line 2-2 of FIG. 1;
FIG. 3 is a plan view of an antenna embodying the instant invention;
FIG. 4 is a plan view of an alternate embodiment of an antenna incorporating the instant invention;
FIG. 5 is an enlarged plan view showing the conductor configuration of the antenna of FIG. 4 in greater detail;
FIG. 6 is a table identifying different wave propagation velocity constants that are obtained with conductors having various illustrated sawtooth conductor configurations; and
FIG. 7 graphically illustrates antenna operating performance advantages that have been obtained by the practice of this invention.
Detailed description FIG. 1 illustrates a reference conventional circularlypolarizing antenna 10 basically comprised of doublewound spiral conductors 11 and 12 secured to flat dielectric board 13. Conductors 11 and 12 are typically con- Patented Sept. 2, 1969 'ice nected at their center terminals 14 to a conventional coaxial feed (not shown). The outer terminals 15 of conductors 11 and 12 frequently are coupled to resistanceloading circuits to improve antenna low frequency operating characteristics in a conventional manner but generally with reduced antenna gain. The reference antenna 10 utilizes conductors 11 and 12 having a conventional straight-line configuration for each leg of the several illus trated turns.
We have discovered that by providing a circularlypolarizing antenna with conductors having, in Whole or in part, a sawtooth geometrical configuration rather than just a straight-line or a uniformly-curved configuration, the operating bandwidth capability of the antenna below cut-oif may be significantly extended for an available conductor support area. Alternately, the support area requirements for a specific antenna operating bandwidth capability below a given cut-oif value can be significantly reduced if the antenna conductors are provided, in whole or in part, with a sawtooth geometrical configuration rather than with just a conventional straight-line or uniformly-curved geometrical configuration. Antenna embodiments 16 and 17 of the drawings involve applications of the instant invention. Details regarding several different sawtooth geometrical configurations 20 through 27 and 29 through 31 having application to the practice of the invention are provided in FIG. 6 and also elsewhere in this description.
Antenna embodiment 16 of FIG. 3 utilizes a doublewound spiral conductor arrangement wherein the conductors 11 and 12 each have a uniform sawtooth configuration such as 20 (FIG. 6) throughout. Corner details 18 for each conductor are provided to maintain uniform spacing between adjacent conductor turns at the antenna corner regions. Antenna 16, having the conductor spacing and number of conductor turns of antenna 10', develops a significant extension to the low-frequency end of the antenna operating bandwidth. (See FIG. 7). The FIG. 3 embodiment, however, does not have the high-frequency operating capability associated either with reference antenna 10 or antenna embodiment 17.
FIG. 4 illustrates the relative support area requirement of a flat double-wound spiral antenna 17 in accordance with the invention and having the same acceptable circularly-polarized field and specified operating bandwidth characteristics as antenna 10. The antenna embodiment of FIG. 4 requires only from one-third to one-fourth the corresponding conductor support area as antenna 10 for the same number of double-wound conductor turns. In order to obtain a high-frequency performance capability similar to that of antenna 10, the innermost conductor turns of conductors 11 and 12 are provided with a straight-line configuration 28 in a conventional manner. The outermost two legs of the outermost turn of each of conductors 11 and 12 may be provided with a sawtooth geometrical configuration such as 20 of FIG. 6. The intermediate legs of the ditferent conductor turns have the different sawtooth configurations 21 through 27 with successively decreasing wave propagation velocity constants as indicated by the reference numerals of FIG. 5 and by the corresponding configurations of FIG. 6. Such intermediate legs in eifect provide for a gradual transition in waveform propagation velocity in the conductor region from straight-line configuration 28 through sawtooth geometrical configuration 20. Basically, the outermost turn of each of conductors 11 and 12 in antenna 17 has a total length corresponding to the perimeter length of the corresponding outermost straight-line conductor turns 11 and 12 in the FIG. 1 antenna. Normally, it is preferred that uniform spacing between conductors *be maintained throughout.
Details regarding different sawtooth geometrical configurations for conductors 11 and 12 are provided in FIG. 6. The different sawtooth configurations 20 through 27 vary in slope as to each sawtooth leg. The slope varies from a ratio of 4:2 for configuration 20 to a ratio of :2 for configuration 28 in abscissa increments of one-half. Configuration 28 is a straight-line configuration of Zero slope. Additional configurations 29 through 31 for the antenna conductors have the basic characteristics of a sawtooth configuration. However, small radii are utilized to join the different sawtooth leg increments. Velocity constant values computed from actual standing wave field measurements made with respect to configurations through 31 correspond closly to the calculated values of the table.
FIG. 7 provides a graphical illustration of the performance capability that may be obtained with an antenna incorporating this invention in comparison to an antenna such as conventional antenna 10. FIG. 7 plots on-axis axial ratio measurements taken for antennas having the conductor configurations of antennas 10 and 16 and having equal support area dimensions of approximately 3% square. Measurements relating to a base frequency 1 were taken over a frequency range extending to approximately 3.5 f. An axial ratio of ten decibels or less for the circularly-polarized radiated field was established as acceptable antenna performance. As shown by curve 32 for the antenna 10 conductor configuration, cutoff for a desired axial ratio of less than ten decibels occurs approximately midway between 2.5 f and 3.0 f, such cutoff frequency essentially begin correlated to a wavelength determined by the spiral conductor perimeter turn diameter. Curve 33 illustrates the actual performance of an antenna 16 of similar dimensions to the antenna of curve 32 but with a conductor sawtooth geometric configuration throughout. The cut-off frequency has been reduced to approximately 2 f by the invention with a reduced axial ratio in comparison to curve 32 throughout the remainder of the operating bandwith of interest.
The instant invention is illustrated as applied to a flat circularly-polarizing antenna having double-wound spiral conductors of uniform spacing from the point of feed to antenna perimeter. The instant invention is also considered to have application to other conductor arrangements including equiangular, conical, Archimedean spiral, and scimitar configurations. Conventional techniques such as perimeter squaring, lumped or distributed resistance end loading, and conductor dielectric imbedment may be utilized with the invention to further antenna operating performance for a specified operating bandwidth and axial ratio.
We claim:
1. In an antenna capable of radiating a circularlypolarized electromagnetic-energy field at different frequencies in an operating bandwidth extending from minimum frequency to maximum frequency f in combination:
(a) Dielectric support means having a support surface area,
(b) A pair of feed terminals for receiving two equalamplitude electrical currents continuously 180 out of phase with respect to each other at each of the different frequencies in said operating bandwidth,
(c) A pair of perimeter terminals, and
(d) A pair of interlaced multiple-turn spiral conductor elements secured to said dielectric support means support surface area throughout each current conducting path from said pair of feed terminals to said pair of perimeter terminals and having (1) a first section comprised of adjacent spiral conductor element turns respectively coupled at one extreme to said pair of feed terminals and provided with geometric configurations that propagate traveling waves from said electrical currents at frequency f along said first section spiral conductor element turns at a velocity approximately 1.0 times a reference traveling wave propagation velocity along a conductor of straight-line geometric configuration, (2) a second section comprised of adjacent spiral conductor element turns respectively coupled at one extreme to said pair of perimeter terminals and provided with sawtooth geometric configurations that propagate traveling waves from said electrical currents at frequency f along said second section conductor element turns at a velocity substantially less than said reference traveling wave propagation velocity along a conductor of straight-line geometric configuration, and (3) a transition section comprised of adjacent spiral conductor element turns respectively coupled at opposite extremes to the other extremes of said first and second section conductor element turns and provided with sawtooth geometric configurations that propagate traveling waves from said electrical currents at a frequency intermediate said frequency f and said frequency f along said transition section conductor element turns at a velocity proportionally intermediate said traveling wave propagation velocities along said first and second section conductor element turns.
2. The invention defined by claim 1, wherein said second section conductor element turns are provided with sawtooth geometric configurations that propagate traveling waves from said electrical currents at frequency f along said second section conductor element turns at a velocity approximately from 0.45 to 0.55 said reference traveling wave propagation velocity along a conductor of straight-line geometric configuration.
3. The invention defined by claim 1, wherein said transition section is comprised of successively different conductor element turns of different sawtooth geometric configurations that propagate traveling waves from said electrical currents at successively different frequencies intermediate said frequency and said frequency f along said transition section conductor element turns at corresponding successively different velocities proportionally intermediate said traveling wave propagation velocities along said first and second section conductor elements turns.
4. The invention defined by claim 1, wherein said transition section is comprised of successively different conductor element turns of different sawtooth geometric configurations that propagate traveling waves from said electrical currents at successively different frequencies intermediate said frequency f and said frequency f along said transition section conductor element turns at corresponding successively different velocities of approximately 0.97, 0.89, 0.80, 0.71, 0.62, 0.55, and 0.50 proportionally intermediate said traveling wave propagation velocities along said first and second section conductor element turns.
References Cited UNITED STATES PATENTS 1,718,255 6/1929 Ranzini 343-895 2,277,826 3/1942 Giroux 343-908 3,039,099 6/1962 Chait et a1. 343895 ELI LIEBERMAN, Primary Examiner
US775078A 1967-05-05 1968-11-12 Circularly-polarizing spiral antenna having sawtooth conductors Expired - Lifetime US3465346A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63642267A 1967-05-05 1967-05-05
US77507868A 1968-11-12 1968-11-12

Publications (1)

Publication Number Publication Date
US3465346A true US3465346A (en) 1969-09-02

Family

ID=27092593

Family Applications (2)

Application Number Title Priority Date Filing Date
US636422A Expired - Lifetime US3454951A (en) 1967-05-05 1967-05-05 Spiral antenna with zigzag arms to reduce size
US775078A Expired - Lifetime US3465346A (en) 1967-05-05 1968-11-12 Circularly-polarizing spiral antenna having sawtooth conductors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US636422A Expired - Lifetime US3454951A (en) 1967-05-05 1967-05-05 Spiral antenna with zigzag arms to reduce size

Country Status (1)

Country Link
US (2) US3454951A (en)

Cited By (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243993A (en) * 1979-11-13 1981-01-06 The Boeing Company Broadband center-fed spiral antenna
US4318109A (en) * 1978-05-05 1982-03-02 Paul Weathers Planar antenna with tightly wound folded sections
US4605934A (en) * 1984-08-02 1986-08-12 The Boeing Company Broad band spiral antenna with tapered arm width modulation
US5517206A (en) * 1991-07-30 1996-05-14 Ball Corporation Broad band antenna structure
US6023250A (en) * 1998-06-18 2000-02-08 The United States Of America As Represented By The Secretary Of The Navy Compact, phasable, multioctave, planar, high efficiency, spiral mode antenna
US6160526A (en) * 1997-06-23 2000-12-12 Rohm Co., Ltd. IC module and IC card
WO2002009230A1 (en) * 2000-07-20 2002-01-31 Samsung Electronics, Ltd Antenna
US6362796B1 (en) 2000-09-15 2002-03-26 Bae Systems Aerospace Electronics Inc. Broadband antenna
US20020122009A1 (en) * 2000-10-02 2002-09-05 Mark Winebrand Slot spiral miniaturized antenna
US20030222825A1 (en) * 2002-06-03 2003-12-04 Sparks Kenneth D. Spiral resonator-slot antenna
CN103090775A (en) * 2010-11-22 2013-05-08 通用电气公司 Sensor assembly and microwave emitter for use in a sensor assembly
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9699785B2 (en) 2012-12-05 2017-07-04 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9930668B2 (en) 2013-05-31 2018-03-27 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9948355B2 (en) 2014-10-21 2018-04-17 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10027398B2 (en) 2015-06-11 2018-07-17 At&T Intellectual Property I, Lp Repeater and methods for use therewith
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
USD841629S1 (en) * 2017-03-29 2019-02-26 Megabyte Limited RFID antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10903556B2 (en) 2016-09-21 2021-01-26 Lockheed Martin Corporation Up-down zigzag additive spiral antenna
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681772A (en) * 1970-12-31 1972-08-01 Trw Inc Modulated arm width spiral antenna
US3795005A (en) * 1972-10-12 1974-02-26 Raytheon Co Broad band spiral antenna
US5227807A (en) * 1989-11-29 1993-07-13 Ael Defense Corp. Dual polarized ambidextrous multiple deformed aperture spiral antennas
KR200408694Y1 (en) * 2005-10-04 2006-02-13 주식회사 이엠따블유안테나 Subminiature internal antenna
US7586462B1 (en) 2007-01-29 2009-09-08 Stephen G. Tetorka Physically small spiral antenna
WO2014006594A2 (en) * 2012-07-06 2014-01-09 Pier Rubesa Method and apparatus for the amplification of electrical charges in biological systems or bioactive matter using an inductive disk with a fixed geometric trace
US8922452B1 (en) 2014-03-21 2014-12-30 University Of South Florida Periodic spiral antennas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1718255A (en) * 1925-08-24 1929-06-25 Ranzini Romeo Apparatus for wireless telephony and telegraphy
US2277826A (en) * 1940-10-31 1942-03-31 F W Sickles Company Antenna
US3039099A (en) * 1959-06-25 1962-06-12 Herman N Chait Linearly polarized spiral antenna system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019439A (en) * 1957-09-19 1962-01-30 Martin Marietta Corp Elliptically polarized spiral antenna
US2977594A (en) * 1958-08-14 1961-03-28 Arthur E Marston Spiral doublet antenna
US3106714A (en) * 1960-10-18 1963-10-08 Collins Radio Co Log periodic antenna with accordioned radiators to increase shunt capacitance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1718255A (en) * 1925-08-24 1929-06-25 Ranzini Romeo Apparatus for wireless telephony and telegraphy
US2277826A (en) * 1940-10-31 1942-03-31 F W Sickles Company Antenna
US3039099A (en) * 1959-06-25 1962-06-12 Herman N Chait Linearly polarized spiral antenna system

Cited By (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318109A (en) * 1978-05-05 1982-03-02 Paul Weathers Planar antenna with tightly wound folded sections
US4243993A (en) * 1979-11-13 1981-01-06 The Boeing Company Broadband center-fed spiral antenna
US4605934A (en) * 1984-08-02 1986-08-12 The Boeing Company Broad band spiral antenna with tapered arm width modulation
US5517206A (en) * 1991-07-30 1996-05-14 Ball Corporation Broad band antenna structure
US6160526A (en) * 1997-06-23 2000-12-12 Rohm Co., Ltd. IC module and IC card
US6023250A (en) * 1998-06-18 2000-02-08 The United States Of America As Represented By The Secretary Of The Navy Compact, phasable, multioctave, planar, high efficiency, spiral mode antenna
WO2002009230A1 (en) * 2000-07-20 2002-01-31 Samsung Electronics, Ltd Antenna
US6362796B1 (en) 2000-09-15 2002-03-26 Bae Systems Aerospace Electronics Inc. Broadband antenna
US20020122009A1 (en) * 2000-10-02 2002-09-05 Mark Winebrand Slot spiral miniaturized antenna
US6791497B2 (en) 2000-10-02 2004-09-14 Israel Aircraft Industries Ltd. Slot spiral miniaturized antenna
US20030222825A1 (en) * 2002-06-03 2003-12-04 Sparks Kenneth D. Spiral resonator-slot antenna
CN103090775A (en) * 2010-11-22 2013-05-08 通用电气公司 Sensor assembly and microwave emitter for use in a sensor assembly
US9699785B2 (en) 2012-12-05 2017-07-04 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9788326B2 (en) 2012-12-05 2017-10-10 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10194437B2 (en) 2012-12-05 2019-01-29 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9930668B2 (en) 2013-05-31 2018-03-27 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10091787B2 (en) 2013-05-31 2018-10-02 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US10096881B2 (en) 2014-08-26 2018-10-09 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9998932B2 (en) 2014-10-02 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9948355B2 (en) 2014-10-21 2018-04-17 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10027398B2 (en) 2015-06-11 2018-07-17 At&T Intellectual Property I, Lp Repeater and methods for use therewith
US10142010B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9882657B2 (en) 2015-06-25 2018-01-30 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10074886B2 (en) 2015-07-23 2018-09-11 At&T Intellectual Property I, L.P. Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10903556B2 (en) 2016-09-21 2021-01-26 Lockheed Martin Corporation Up-down zigzag additive spiral antenna
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10944177B2 (en) 2016-12-07 2021-03-09 At&T Intellectual Property 1, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
USD841629S1 (en) * 2017-03-29 2019-02-26 Megabyte Limited RFID antenna

Also Published As

Publication number Publication date
US3454951A (en) 1969-07-08

Similar Documents

Publication Publication Date Title
US3465346A (en) Circularly-polarizing spiral antenna having sawtooth conductors
US6014107A (en) Dual orthogonal near vertical incidence skywave antenna
US4495505A (en) Printed circuit balun with a dipole antenna
US3587110A (en) Corporate-network printed antenna system
US5790080A (en) Meander line loaded antenna
US4054874A (en) Microstrip-dipole antenna elements and arrays thereof
US3740754A (en) Broadband cup-dipole and cup-turnstile antennas
US4028704A (en) Broadband ferrite transformer-fed whip antenna
US3576578A (en) Dipole antenna in which one radiating element is formed by outer conductors of two distinct transmission lines having different characteristic impedances
US4608574A (en) Backfire bifilar helix antenna
US6034650A (en) Small helical antenna with non-directional radiation pattern
US3732572A (en) Log periodic antenna with foreshortened dipoles
US3031668A (en) Dielectric loaded colinear vertical dipole antenna
JPH0221164B2 (en)
US6034648A (en) Broad band antenna
US3618107A (en) Broadband discone antenna having auxiliary cone
US3348228A (en) Circular dipole antenna array
US3656168A (en) Spiral antenna with overlapping turns
US4649396A (en) Double-tuned blade monopole
US3745585A (en) Broadband plane antenna with log-periodic reflectors
US4631504A (en) Impedance conversion transformer
US3193831A (en) Logarithmic periodic antenna
US5526007A (en) Wire antenna for circularly polarized wave
US4031539A (en) Broadband turnstile antenna
US3543277A (en) Reduced size broadband antenna