US3502239A - Thermally insulated container for transporting low temperature liquids - Google Patents

Thermally insulated container for transporting low temperature liquids Download PDF

Info

Publication number
US3502239A
US3502239A US702039A US3502239DA US3502239A US 3502239 A US3502239 A US 3502239A US 702039 A US702039 A US 702039A US 3502239D A US3502239D A US 3502239DA US 3502239 A US3502239 A US 3502239A
Authority
US
United States
Prior art keywords
layer
foam
thermally insulated
insulated container
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US702039A
Inventor
Robert V Worboys
Joseph Estebanez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Application granted granted Critical
Publication of US3502239A publication Critical patent/US3502239A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • F17C3/06Vessels not under pressure with provision for thermal insulation by insulating layers on the inner surface, i.e. in contact with the stored fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/901Liquified gas content, cryogenic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/902Foam

Definitions

  • a thermally insulated container which is especially suitable for the bulk storage and transportation of low temperature liquid materials comprises a rigid, impactresistant outer shell internally lined with a first layer of a low-density polyurethane foam, a second layer of an impervious resinous material and a third layer of highdensity polyurethane foam being in direct contact with the contained liquid.
  • vaporization loss is an important consideration in the storage and transportation of low-boiling liquids
  • another important consideration relates to the embrittlement of the metallic structural components of the container.
  • ordinary ferrous metals such as low carbon steel exhibit measurable loss of impact resistance or strength when exposed to low temperatures, i.e., to temperatures as low as 50 F. Accordingly, in order to reduce the possibility of brittle failure, it has usually been necessary to either beef-up the structural components of the storage container or to resort to the use of more expensive metals or alloys.
  • Insulating materials which are most commonly employed are balsa Wood and cork; however, these materials, while not expensive themselves, are expensive because of the labor involved in fitting the insulation blocks and segments to the metal container shell walls. Also, because it is generally undesirable to expose these insulating materials directly to the chilled material, it is customary to 3,502,239 Patented Mar. 24, 1970 provide an inner tank shell of a material which retains significant low-temperature impact resistance, such as aluminum or stainless steel.
  • thermally insulated containers for transporting and storing low-temperature liquids. More particularly, an improved thermally insulated container has been developed wherein only an exterior shell and internal insulation is required, thereby signficantly reducing the costs of storing low-temperature liquids.
  • the instant invention provides a thermally insulated container which is especially suitable for the bulk storage and transportation of low temperature materials (liquids) which comprises (1) a rigid, impact-resistant outer shell and (2) an internal lining comprising (a) a first layer of a low-density rigid plastic or resinous material and (b) a second layer of a high-density rigid plastic or resinous material, said second layer being in direct contact with the contained chilled liquid.
  • the improved thermally insulated container comprises (1) a rigid, impact resistant outer shell, preferably of metal, and (2) an internal lining which comprises (a) a first layer of a low density rigid polyurethane foam, i.e., from about 2 to 7 pounds per cubic foot and (b) a second layer of a higher density rigid polyurethane foam than said first layer, i.e., from about 7 to 24 pounds per cubic foot or higher.
  • a plastic or resinous layer which is impervious to the stored liquid may be included between the first and second layers.
  • reinforcing fibers, mats, meshes, screens, etc. of suitable material may also be incorporated into the foam layers during fabrication.
  • both the first and second rigid plastic materials are polyurethane foams.
  • the polyurethane foams are effective as liquid barriers to liquified gases.
  • the first polyurethane foam preferably has a density in the range of 2 to 7 pounds per cubic foot and the second polyurethane has a density in the range of from 5 to 24 pounds per cubic foot.
  • the first polyurethane foam is the main thermal insulator and one function of the second foam is to protect the former from physical damage as the higher density foam can withstand greater mechanical stresses and loads than the first foam.
  • the thickness of the second foam need not be as great as that of the first foam.
  • the thickness of both foams will be determined by consideration of the operational requirements of the container, but the overall thickness will preferabl lie within the limits of two to six inches. If, for example, the overall thickness of both foams is two inches then this can be made up of a first low density polyurethane foam one and a half inches thick covered by a half-inch thickness of a second higher density polyurethane foam.
  • Another function of the higher density foam is to protect the first foam from stenching agents present in liquified petroleum gases.
  • Stcnch for example, ethyl mercaptan, which is present in liquified petroleum gases as a detector may penetrate into the first lowdensity polyurethane foam and soften the latter so reducing its effective thermal insulating properties.
  • ethyl mercaptan which is present in liquified petroleum gases as a detector may penetrate into the first lowdensity polyurethane foam and soften the latter so reducing its effective thermal insulating properties.
  • the stench has a negligible effect on a high-density foam and cannot penetrate through this foam to contact the lowdensity polyurethane foam.
  • a layer of an epoxy resin can be applied to the first foam prior to the application of the second foam so that the resin will be sandwiched between the two foams.
  • the resin is impermeable to the stench and forms an additional effective barrier isolating the first polyurethane foam from contact with the stench in the liquified petroleum gases.
  • the invention is described with particular reference to a marine tanker it will readily be appreciated that it is equally applicable to road or rail tanker vehicles and to land storage vessels. Similarly the invention is not limited to use with liquified petroleum gases but can be used for the thermal insulation of other liquified gases, such as liquified natural gases.
  • the invention as it relates particularly to the production of thermally insulated bulk storage and transport of liquified petroleum gases in marine tankers, is described in greater detail and the best mode presently contemplated in carrying out the present invention is illustrated in the attached drawing which represents a cross-sectional view of a marine tanker taken through a thermally insulated cargo compartment.
  • thermally insulated container construction is particularly suitable for the bulk transport of chilled liquids, especially liquified petroleum gases, in the bulls of marine tankers; however, the instant containers may be equally suitable as stationary storage tanks.
  • the present invention will be particularly described with reference to marine tanker transport uses.
  • FIG. 1 represents a simplified cross-sectional view through the thermally insulated cargo compartment of a marine tanker wherein the marine tanker has an outer hull 1 and an inner hull 2.
  • hulls l and 2 are interconnected by means of keel plates, bulkheads, and the like; however, since this construction forms no part of the present invention, it has been omitted from the drawing in the interest of simplicity.
  • the spaces so formed between the two hulls can form compartments for water ballast if desired. Ballast may be necessary not only when the tanker has been discharged, but also when the tanker is fully loaded due to the low density of liquified petroleum gas cargo.
  • the interior of the inner hull 2 may first be shotblasted to provide a clean surface to receive a first foam layer 3 having a density in the range of from 2 to about 7 pounds per cubic foot.
  • This first foam layer 3 may be applied by any suitable means, but is preferably sprayed onto the inner hull 2, layer by layer until a desired thickness of foam has built up. In general, foam layer 3 may range from about one to about six inches in thickness although a greater or lesser thickness may be employed under various circumstances.
  • the first foam layer 3 is then encased within a second foam 4 having a density greater than that of the first foam layer 3.
  • the density of foam layer 4 may range from about 7 to 24 pounds per cubic foot or higher and preferably about 15 pounds per cubic foot.
  • foam layer 4 having a density greater than foam layer 3.
  • Foam layer 4 likewise is built up layer by layer by spraying to a desired thickness, preferably between about one-half inch and six inches As shown in the drawing, the top of the tanker is closed by a deck 5, the lower surface of which is coated with the first foam layer 3 which is then encased within the second foam layer 4.
  • reinforcing material 6 such as mats of Hessian or other mesh material may be optionally incorporated into foams 3 and 4 during application to confer increased strength
  • a resinous or plastic layer 7 may be preferably included between rigid foam layers 3 and 4. Such a layer is impermeable to stench and will act, therefore, as an additional barrier to prevent contamination of and damage to the foam plastics layer.
  • Suitable such barrier layers include the plastic sheet films such as polyethylene, polypropylene, polyvinyl chloride and the like.
  • Suitable epoxy resins are the polyepoxides possessing more than one vicinal epoxy groups, i.e., more than one group.
  • Such polyepoxides may be saturated or unsaturated, aliphatic, cycloaliphatic, aromatic or heterocyclic and may be substituted with substituents, such as chlorine, hydroxyl groups, alkoxy groups and the like. They may be monomeric or polymeric.
  • Suitable polyepoxides are given in US. 2,633,458, particularly those described as Polyether A, Polyether B, etc.
  • Suitable curing agents, such as acids, anhydrides, amines, etc. are also described in US. 2,633,458 and in a multitude of subsequent patents, books and trade brochures.
  • the thickness of the resin layer is preferably in the order of from about 0.005 to 0.05 inch with about 0.01 inch being generally suitable.
  • any other foamed resins and/or plastic compositions may be empolyed, including, but not limited to, foamed polyepoxides, polyesters, polyethers, polycarbonates, polystyrene, polyolefins, and the like, as well as mixtures thereof. All these polymer compositions are well-known in the art and suitable foamed formulations can be readily obtained from text books, journal articles and patents. Preferred however, are the polyurethane foams.
  • polyurethane foams are prepared by reacting an organic polyisocyanate or polyisothiocyanate with an organic compound containing in the molecule a plurality of active hydrogen atoms (as determined by the Zerewitinoff method, J.A.C.S., vol. 49, page 3181, 1929), such as, for example, an organic polyhydroxy compound.
  • Suitable polyisocyanates and polyisothiocyanates have the general formula R(NCX),, wherein R represents an organic radical, X represents an oxygen atom or a sulfur atom and n is a positive integer.
  • Suitable polyisocyanates are those compounds which have on the average more than one isocyanato group per molecule, such as those polyisocyanates which can be obtained by the reaction of polyamines with phosgene, such as, for example, toluene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate, metaphenylene diisocyanate, diphenyl diisocyanate, diphenyl ether diisocyanate, dianisidine diisocyanate, ethylene diisocyanate and diethyl ether diisocyanate.
  • phosgene such as, for example, toluene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate
  • Polyisocyanates of these types may be applied separately or as mixtures, as for example, mixtures of isomers, such as the mixtures of the isomers 2,4-toluene diisocyanate and 2,6-toluene diisocyanate.
  • non-volatile polyisocyanates which have been obtained by reaction of polyhydric alcohols, such as ethylene glycol, glycerol and 1,2,6-hexane triol, with an excess of polyisocyanates of the abovementioned type.
  • polyhydric alcohols such as ethylene glycol, glycerol and 1,2,6-hexane triol
  • An example of such a non-volatile polyisocyanate is the addition product of 1 mole of trimethylolpropane with 3 moles of toluene diisocyanate.
  • Preferred organic compounds containing active hydrogen atoms include the organic compounds containing terminal hydroxyl groups such as, for example, the polyoxyalkylene polyols prepared from one or more alkylene oxides, i.e., ethylene oxide, propylene oxide, epichlorohydrin.
  • a useful polyoxyalkylene polyol is an alkylene oxide/alkylene polyol adduct that has been reacted with an alkylene oxide as, for example, described in copending United States Patent No. 3,336,242, issued Aug. 15, 1967; for example a propylene oxide/glycerol adduct that has been reacted with less than by weight of ethylene oxide, preferably 3 to 8% by weight of ethylene oxide.
  • polyoxyalkylene polyols are preferably produced according to the processes disclosed in British Patents Nos. 785,229, 785,053, 793,065, and 799,955, among others.
  • Suitable polyoxyalkylene polyols have an average molecular weight between 300 to 6,000; for example, about 500 to about 3,000.
  • Additives such as light and heat stabilizers, catalysts, fillers, pigments, cell-size regulators, foaming agents, solvents, viscosity controllers, surface-active agents (silicone oils) and the like may be used as desired.
  • the usual additives are described in the above-mentioned patents.
  • Suitable polyurethane foams may be prepared by either the one-shot" or pre-polymer” methods.
  • the reactants are usually mixed in a so-called mixing head fitted with a stirrer capable of rotation at speeds of the order to 2000 to 5000 rpm.
  • the action of the stirrer also aids foam formation.
  • the polyurethane foams are preferably produced in a single stage by direct reaction between one or more polyols and a diisocyanate.
  • the ratio of total isocyanato groups to total hydroxyl groups present in the reaction mixture is substantially equal to 1:1, although 1020% excess of either reactant may be employed as desired.
  • EXAMPLE I The following formulation (mixtures A and B) was mixed in a conventional mixing head and applied to the interior surface of the inner hull of a marine tanker at the rate of 150 pounds per minute.
  • the resulting polyurethane foam layer (first layer) was 4 inches thick and had a density of 3.1 pounds per cubic foot, a tensile strength of 16.4 p.s.i., an elongaiton of 102% cgmpression strength of 0.87 p.s.i., and a hysteresis of To the interior surface of this first layer, a resinous layer comprising a glycidyl polyether of 2,2-bis(4-hydroxy phenyl) propane having an average molecular weight of 380 and an epoxide equivalent weight of about of approximately 0.01 inch thick was applied.
  • the above formulation was applied to the resinous layer in a manner so that the resulting inner layer was approximately one inch thick and had an average density of about 15 pounds per cubic foot.
  • the resulting insulated compartment exhibited a heat flux loss of less than 0.05 B.t.u./hr. ft. F. when LPG was stored therein at 50 F.
  • a thermally insulated container for the bulk storage and transportation of low temperature liquids comprising (1) a rigid, impact-resistant outer shell member and (2) an internal lining comprising (a) a first layer of rigid polyurethane foam having a density of from 2 to 7 pounds per cubic foot and being in substantially continuous contact with the inner surface of said shell member,
  • a third layer of rigid polyurethane foam having a density of from 7 to 24 pounds per cubic foot and being in direct contact with the contained chilled liquid, said first and third layers having a woven mesh reinforcing material incorporated therein.

Description

March 24, 1970 R, v. WORBOYS ETAL 3,502,239
THERMALLY INSULATED CONTAINER FOR TRANSPORTING LOW TEMPERATURE LIQUIDS Filed Jan 31 1968 gjauul INVENTORS:
ROBERT V. WORBOYS JOSEPH ESTEBAPEZ THHR ATTORNEY United States Patent THERMALLY INSULATED CONTAINER FOR 'I'RANSPORTING LOW TEMPERATURE LIQUIDS Robert V. Worboys, Cheshire, and Joseph Estehanez, Glamorgan, England, assignors to Shell Oil Company,
New York, N.Y., a corporation of Delaware Filed Jan. 31, 1968, Ser. No. 702,039 Int. Cl. B65d 25/18 US. Cl. 2209 3 Claims ABSTRACT OF THE DISCLOSURE A thermally insulated container which is especially suitable for the bulk storage and transportation of low temperature liquid materials comprises a rigid, impactresistant outer shell internally lined with a first layer of a low-density polyurethane foam, a second layer of an impervious resinous material and a third layer of highdensity polyurethane foam being in direct contact with the contained liquid.
Background of the invention There is wide current interest in the storage and transportation of relatively low-boiling materials such the lower molecular weight saturated and unsaturtaed hydrocarbons, such as, for example, butane, butene, propane, butadiene and isoprene, in the liquid state, and preferably at or near atmospheric pressure. Under these conditions, the cold hydrocarbons are stored in thermally insulated containers and allowed to vaporize as heat is absorbed by the cold liquid. These vapors may be vented directly to the atmosphere, utilized as fuel or condensed and returned as a liquid to the insulated container. Accordingly, in order to increase the efliciency and economy of such storage techniques, it is desirable to increase the effectiveness of the thermal insulation applied to the liquid container.
While vaporization loss is an important consideration in the storage and transportation of low-boiling liquids, another important consideration relates to the embrittlement of the metallic structural components of the container. It is known that ordinary ferrous metals such as low carbon steel exhibit measurable loss of impact resistance or strength when exposed to low temperatures, i.e., to temperatures as low as 50 F. Accordingly, in order to reduce the possibility of brittle failure, it has usually been necessary to either beef-up the structural components of the storage container or to resort to the use of more expensive metals or alloys.
In order to reduce the possibility of physical failure of a container holding cold liquid hydrocarbons in bulk, it has been suggested that such containers be constructed so that internal insulation can be utilized. It will be appreciated that by placing the insulation on the interior wall of a container shell instead of on the customary exterior surface, the shell material will remain substantially throughout its entire thickness at a temperature Which approximates the ambient exterior temperature rather than at the much colder interior temperature of the chilled liquid hydrocarbon. When such internal insulation is employed, low-carbon, low-cost steels may be utilized in the tank structure in lieu of the more costly alloy steels or other expensive materials which exhibit high impact resistance properties at low temperatures.
Insulating materials which are most commonly employed are balsa Wood and cork; however, these materials, while not expensive themselves, are expensive because of the labor involved in fitting the insulation blocks and segments to the metal container shell walls. Also, because it is generally undesirable to expose these insulating materials directly to the chilled material, it is customary to 3,502,239 Patented Mar. 24, 1970 provide an inner tank shell of a material which retains significant low-temperature impact resistance, such as aluminum or stainless steel.
A method has now been discovered for manufacturing thermally insulated containers for transporting and storing low-temperature liquids. More particularly, an improved thermally insulated container has been developed wherein only an exterior shell and internal insulation is required, thereby signficantly reducing the costs of storing low-temperature liquids.
Summary of the invention The instant invention provides a thermally insulated container which is especially suitable for the bulk storage and transportation of low temperature materials (liquids) which comprises (1) a rigid, impact-resistant outer shell and (2) an internal lining comprising (a) a first layer of a low-density rigid plastic or resinous material and (b) a second layer of a high-density rigid plastic or resinous material, said second layer being in direct contact with the contained chilled liquid.
Preferably, the improved thermally insulated container comprises (1) a rigid, impact resistant outer shell, preferably of metal, and (2) an internal lining which comprises (a) a first layer of a low density rigid polyurethane foam, i.e., from about 2 to 7 pounds per cubic foot and (b) a second layer of a higher density rigid polyurethane foam than said first layer, i.e., from about 7 to 24 pounds per cubic foot or higher. If desired, a plastic or resinous layer which is impervious to the stored liquid may be included between the first and second layers. For increased strength, reinforcing fibers, mats, meshes, screens, etc. of suitable material may also be incorporated into the foam layers during fabrication.
As noted hereinbefore, both the first and second rigid plastic materials are polyurethane foams. In addition to being efficient thermal insulators, the polyurethane foams are effective as liquid barriers to liquified gases. The first polyurethane foam preferably has a density in the range of 2 to 7 pounds per cubic foot and the second polyurethane has a density in the range of from 5 to 24 pounds per cubic foot.
The first polyurethane foam is the main thermal insulator and one function of the second foam is to protect the former from physical damage as the higher density foam can withstand greater mechanical stresses and loads than the first foam. The thickness of the second foam need not be as great as that of the first foam. The thickness of both foams will be determined by consideration of the operational requirements of the container, but the overall thickness will preferabl lie within the limits of two to six inches. If, for example, the overall thickness of both foams is two inches then this can be made up of a first low density polyurethane foam one and a half inches thick covered by a half-inch thickness of a second higher density polyurethane foam.
Another function of the higher density foam is to protect the first foam from stenching agents present in liquified petroleum gases. Stcnch, for example, ethyl mercaptan, which is present in liquified petroleum gases as a detector may penetrate into the first lowdensity polyurethane foam and soften the latter so reducing its effective thermal insulating properties. On the other hand it has been found that the stench has a negligible effect on a high-density foam and cannot penetrate through this foam to contact the lowdensity polyurethane foam.
By so thermally insulating the cargo compartments on marine tankers it has been found that liquified petroleum gases can be transported over large distances without substantial losses due to evaporation in the volume of cargo.
A layer of an epoxy resin can be applied to the first foam prior to the application of the second foam so that the resin will be sandwiched between the two foams. The resin is impermeable to the stench and forms an additional effective barrier isolating the first polyurethane foam from contact with the stench in the liquified petroleum gases.
Although the invention is described with particular reference to a marine tanker it will readily be appreciated that it is equally applicable to road or rail tanker vehicles and to land storage vessels. Similarly the invention is not limited to use with liquified petroleum gases but can be used for the thermal insulation of other liquified gases, such as liquified natural gases.
Brief description of the drawing The invention, as it relates particularly to the production of thermally insulated bulk storage and transport of liquified petroleum gases in marine tankers, is described in greater detail and the best mode presently contemplated in carrying out the present invention is illustrated in the attached drawing which represents a cross-sectional view of a marine tanker taken through a thermally insulated cargo compartment.
Description of the preferred embodiments The present thermally insulated container construction is particularly suitable for the bulk transport of chilled liquids, especially liquified petroleum gases, in the bulls of marine tankers; however, the instant containers may be equally suitable as stationary storage tanks.
The present invention will be particularly described with reference to marine tanker transport uses.
Accordingly, reference is made to the drawing which represents a simplified cross-sectional view through the thermally insulated cargo compartment of a marine tanker wherein the marine tanker has an outer hull 1 and an inner hull 2. it will be appreciated that hulls l and 2 are interconnected by means of keel plates, bulkheads, and the like; however, since this construction forms no part of the present invention, it has been omitted from the drawing in the interest of simplicity. The spaces so formed between the two hulls can form compartments for water ballast if desired. Ballast may be necessary not only when the tanker has been discharged, but also when the tanker is fully loaded due to the low density of liquified petroleum gas cargo.
The interior of the inner hull 2 may first be shotblasted to provide a clean surface to receive a first foam layer 3 having a density in the range of from 2 to about 7 pounds per cubic foot. This first foam layer 3 may be applied by any suitable means, but is preferably sprayed onto the inner hull 2, layer by layer until a desired thickness of foam has built up. In general, foam layer 3 may range from about one to about six inches in thickness although a greater or lesser thickness may be employed under various circumstances. The first foam layer 3 is then encased within a second foam 4 having a density greater than that of the first foam layer 3. The density of foam layer 4 may range from about 7 to 24 pounds per cubic foot or higher and preferably about 15 pounds per cubic foot. The important consideration is that foam layer 4 having a density greater than foam layer 3. Foam layer 4 likewise is built up layer by layer by spraying to a desired thickness, preferably between about one-half inch and six inches As shown in the drawing, the top of the tanker is closed by a deck 5, the lower surface of which is coated with the first foam layer 3 which is then encased within the second foam layer 4.
If desired, reinforcing material 6 such as mats of Hessian or other mesh material may be optionally incorporated into foams 3 and 4 during application to confer increased strength,
A resinous or plastic layer 7 may be preferably included between rigid foam layers 3 and 4. Such a layer is impermeable to stench and will act, therefore, as an additional barrier to prevent contamination of and damage to the foam plastics layer. Suitable such barrier layers include the plastic sheet films such as polyethylene, polypropylene, polyvinyl chloride and the like. Preferred, however, are the resinous materials, especially the epoxy resins. Suitable epoxy resins are the polyepoxides possessing more than one vicinal epoxy groups, i.e., more than one group. Such polyepoxides may be saturated or unsaturated, aliphatic, cycloaliphatic, aromatic or heterocyclic and may be substituted with substituents, such as chlorine, hydroxyl groups, alkoxy groups and the like. They may be monomeric or polymeric.
Various examples of suitable polyepoxides are given in US. 2,633,458, particularly those described as Polyether A, Polyether B, etc. Suitable curing agents, such as acids, anhydrides, amines, etc. are also described in US. 2,633,458 and in a multitude of subsequent patents, books and trade brochures. The thickness of the resin layer is preferably in the order of from about 0.005 to 0.05 inch with about 0.01 inch being generally suitable.
Although the present thermally insulated containers comprise two layers of foamed polyurethanes, any other foamed resins and/or plastic compositions may be empolyed, including, but not limited to, foamed polyepoxides, polyesters, polyethers, polycarbonates, polystyrene, polyolefins, and the like, as well as mixtures thereof. All these polymer compositions are well-known in the art and suitable foamed formulations can be readily obtained from text books, journal articles and patents. Preferred however, are the polyurethane foams.
In general, polyurethane foams are prepared by reacting an organic polyisocyanate or polyisothiocyanate with an organic compound containing in the molecule a plurality of active hydrogen atoms (as determined by the Zerewitinoff method, J.A.C.S., vol. 49, page 3181, 1929), such as, for example, an organic polyhydroxy compound.
Suitable polyisocyanates and polyisothiocyanates have the general formula R(NCX),, wherein R represents an organic radical, X represents an oxygen atom or a sulfur atom and n is a positive integer.
Suitable polyisocyanates are those compounds which have on the average more than one isocyanato group per molecule, such as those polyisocyanates which can be obtained by the reaction of polyamines with phosgene, such as, for example, toluene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate, metaphenylene diisocyanate, diphenyl diisocyanate, diphenyl ether diisocyanate, dianisidine diisocyanate, ethylene diisocyanate and diethyl ether diisocyanate. Polyisocyanates of these types may be applied separately or as mixtures, as for example, mixtures of isomers, such as the mixtures of the isomers 2,4-toluene diisocyanate and 2,6-toluene diisocyanate.
Use can also be made of non-volatile polyisocyanates which have been obtained by reaction of polyhydric alcohols, such as ethylene glycol, glycerol and 1,2,6-hexane triol, with an excess of polyisocyanates of the abovementioned type. An example of such a non-volatile polyisocyanate is the addition product of 1 mole of trimethylolpropane with 3 moles of toluene diisocyanate.
Preferred organic compounds containing active hydrogen atoms include the organic compounds containing terminal hydroxyl groups such as, for example, the polyoxyalkylene polyols prepared from one or more alkylene oxides, i.e., ethylene oxide, propylene oxide, epichlorohydrin. A useful polyoxyalkylene polyol is an alkylene oxide/alkylene polyol adduct that has been reacted with an alkylene oxide as, for example, described in copending United States Patent No. 3,336,242, issued Aug. 15, 1967; for example a propylene oxide/glycerol adduct that has been reacted with less than by weight of ethylene oxide, preferably 3 to 8% by weight of ethylene oxide. The polyoxyalkylene polyols are preferably produced according to the processes disclosed in British Patents Nos. 785,229, 785,053, 793,065, and 799,955, among others. Suitable polyoxyalkylene polyols have an average molecular weight between 300 to 6,000; for example, about 500 to about 3,000.
Other suitable polyisocyanates and organic compounds containing active hydrogen atoms are described in US. 3,222,303, US. 3,238,273, and US. 3,244,673. Suitable foaming processes are also described in these patents.
Additives, such as light and heat stabilizers, catalysts, fillers, pigments, cell-size regulators, foaming agents, solvents, viscosity controllers, surface-active agents (silicone oils) and the like may be used as desired. The usual additives are described in the above-mentioned patents.
Suitable polyurethane foams may be prepared by either the one-shot" or pre-polymer" methods. In the case of the one-shot method, the reactants are usually mixed in a so-called mixing head fitted with a stirrer capable of rotation at speeds of the order to 2000 to 5000 rpm. In addition to promoting rapid and thorough mixing of the reactants, the action of the stirrer also aids foam formation.
The polyurethane foams are preferably produced in a single stage by direct reaction between one or more polyols and a diisocyanate. Generally, the ratio of total isocyanato groups to total hydroxyl groups present in the reaction mixture is substantially equal to 1:1, although 1020% excess of either reactant may be employed as desired.
The invention is illustrated by the following example. The reactants, and their proportions, and other specific ingredients of the foam formulations are presented as being typical and various modifications can be made in view of the foregoing disclosure and discussion, without departing from the spirit or scope of the disclosure or of the claims. Unless otherwise specified parts and percentages disclosed in the example are by weight.
EXAMPLE I The following formulation (mixtures A and B) was mixed in a conventional mixing head and applied to the interior surface of the inner hull of a marine tanker at the rate of 150 pounds per minute.
748) 1.0 Component, mixture B:
Toluene-2,4-diisocyanate and toluene 2,6-di1'socyanate (4:1 mixture) 43.3 Water 3.0 1,4-diaza-bicyclo (2,2,2) octane 0.02 Stannous 2-ethyl hexoate 0.2
The resulting polyurethane foam layer (first layer) was 4 inches thick and had a density of 3.1 pounds per cubic foot, a tensile strength of 16.4 p.s.i., an elongaiton of 102% cgmpression strength of 0.87 p.s.i., and a hysteresis of To the interior surface of this first layer, a resinous layer comprising a glycidyl polyether of 2,2-bis(4-hydroxy phenyl) propane having an average molecular weight of 380 and an epoxide equivalent weight of about of approximately 0.01 inch thick was applied.
Then the above formulation was applied to the resinous layer in a manner so that the resulting inner layer was approximately one inch thick and had an average density of about 15 pounds per cubic foot.
The resulting insulated compartment exhibited a heat flux loss of less than 0.05 B.t.u./hr. ft. F. when LPG was stored therein at 50 F.
We claim as our invention:
1. A thermally insulated container for the bulk storage and transportation of low temperature liquids comprising (1) a rigid, impact-resistant outer shell member and (2) an internal lining comprising (a) a first layer of rigid polyurethane foam having a density of from 2 to 7 pounds per cubic foot and being in substantially continuous contact with the inner surface of said shell member,
(b) a second, impervious, resinous polyepoxide layer having a thickness of from 0.005 to 0.05 inch, and
(c) a third layer of rigid polyurethane foam having a density of from 7 to 24 pounds per cubic foot and being in direct contact with the contained chilled liquid, said first and third layers having a woven mesh reinforcing material incorporated therein.
2. A thermally insulated container as in claim 1 wherein said internal lining has a total thickness of from 2 to 6 inches.
3. A thermally insulated container as in claim 1 wherein the polyepoxide resin is a glycidyl polyether of 2,2-bis(4-hydroxyphenyl)propane.
References Cited UNITED STATES PATENTS 2,952,987 9/1960 Clauson.
3,027,040 3/1962 Iodell et al. 2209 3,070,817 1/1963 Kohrn et al. 2209 3,101,861 8/1963 Mearns et al. 11474 X 3,120,319 2/ 1964 Buddrus.
3,158,383 11/1964 Anderson et a1 2209 X 3,163,434 12/1964 Krueger 2209 X 3,174,642 3/1965 Loewenthal et al. 2209 3,294,462 12/1966 Kesling 2209 X 3,332,386 7/1967 Massac 114--74 3,400,849 9/1968 Pottier et al. 2209 FOREIGN PATENTS 1,383,795 9/1965 France.
OTHER REFERENCES Modern Plastics, vol. 42, No. 4, December 1964, page 7.
JOSEPH R. LECLAIR, Primary Examiner J. R. GARRETT, Assistant Examiner US. Cl. X.R. 114--74
US702039A 1966-11-02 1968-01-31 Thermally insulated container for transporting low temperature liquids Expired - Lifetime US3502239A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB49150/66A GB1173424A (en) 1966-11-02 1966-11-02 Improvements in or relating to Thermally Insulated Containers
US70203968A 1968-01-31 1968-01-31

Publications (1)

Publication Number Publication Date
US3502239A true US3502239A (en) 1970-03-24

Family

ID=27444938

Family Applications (1)

Application Number Title Priority Date Filing Date
US702039A Expired - Lifetime US3502239A (en) 1966-11-02 1968-01-31 Thermally insulated container for transporting low temperature liquids

Country Status (5)

Country Link
US (1) US3502239A (en)
DE (1) DE1551623A1 (en)
FR (1) FR1543630A (en)
GB (1) GB1173424A (en)
NL (1) NL6714755A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595424A (en) * 1969-02-24 1971-07-27 Conch Int Methane Ltd Containers for liquefied gases
DE2316859A1 (en) * 1972-04-03 1973-10-04 Mc Donnell Douglas Corp CRYOGENIC STORAGE CONTAINER
FR2235330A1 (en) * 1973-06-27 1975-01-24 Mitsubishi Chem Ind
DE2507424A1 (en) * 1974-02-27 1975-08-28 Wp System Ab DEVICE FOR STORAGE OF GAS, IN PARTICULAR NATURAL GAS
US3931424A (en) * 1973-12-13 1976-01-06 Rockwell International Corporation Prefabricated thermal insulation structure and method
US3941272A (en) * 1974-03-27 1976-03-02 Kaiser Aluminum & Chemical Corporation Cryogenic transport
US3951362A (en) * 1974-05-13 1976-04-20 The Boeing Company Cryogenic tank and aircraft structural interface
US3968764A (en) * 1974-10-31 1976-07-13 Moss Rosenberg Verft A/S Ships for transport of liquefied gases
US3984359A (en) * 1974-01-28 1976-10-05 Shell Oil Company Polyurethane foam useful for insulated containers
US4050607A (en) * 1972-04-07 1977-09-27 The Dow Chemical Company Insulation of vessels having curved surfaces
US4120418A (en) * 1975-09-30 1978-10-17 Shell Internationale Research Maatschappij B.V. Method of producing a barrier in a thermally insulated container
US4556008A (en) * 1981-06-22 1985-12-03 Adragem Limited Semi-submersible marine platform
WO2000073134A1 (en) * 1999-05-26 2000-12-07 Keehan Donald J Maritime chemical tanker having composite tanks
US20110036736A1 (en) * 2009-08-14 2011-02-17 David Knowlton Composite for packaging a medical device and method of forming the same
US20130101767A1 (en) * 2011-10-25 2013-04-25 Kraton Polymers U.S. Llc Method for melt processing sulfonated block copolymers and articles comprising optionally amine modified sulfonated block copolymers
US20180209586A1 (en) * 2015-07-13 2018-07-26 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied gas storage tank having insulation parts and method for arranging insulation parts

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311688B2 (en) * 1971-11-01 1978-04-24
DE2423381B2 (en) * 1974-05-14 1980-03-27 Finsterwalder, Ulrich, Dr.-Ing. E.H. Dr.-Ing., 8000 Muenchen Floats for storing or transporting liquefied gases

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2952987A (en) * 1956-10-09 1960-09-20 Texaco Inc Apparatus for the maintenance of liquefied petroleum products and method of manufacture thereof
US3027040A (en) * 1955-07-20 1962-03-27 Electrolux Ab Multi-density expanded plastic-body
US3070817A (en) * 1958-03-20 1963-01-01 Us Rubber Co Laminated boat construction material
US3101861A (en) * 1960-08-17 1963-08-27 Exxon Research Engineering Co Vessel for transporting low temperature liquids
US3120319A (en) * 1962-07-09 1964-02-04 David J Buddrus Protective container
US3158383A (en) * 1961-12-15 1964-11-24 Haveg Industries Inc Chassisless tank truck
US3163434A (en) * 1961-03-14 1964-12-29 Dairy Equipment Co Truck tank
FR1383795A (en) * 1963-08-30 1965-01-04 Gaz De France Liquefied gas storage tank and its construction method
US3174642A (en) * 1962-11-15 1965-03-23 Gen Electric Refrigerator cabinet construction
US3294462A (en) * 1965-03-26 1966-12-27 Gen Motors Corp Refrigerating apparatus
US3332386A (en) * 1965-10-28 1967-07-25 Technigaz Tanker
US3400849A (en) * 1965-04-02 1968-09-10 Service Nat Dit Gaz De France Tanks for the storage and transport of cryogenic fluids

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3027040A (en) * 1955-07-20 1962-03-27 Electrolux Ab Multi-density expanded plastic-body
US2952987A (en) * 1956-10-09 1960-09-20 Texaco Inc Apparatus for the maintenance of liquefied petroleum products and method of manufacture thereof
US3070817A (en) * 1958-03-20 1963-01-01 Us Rubber Co Laminated boat construction material
US3101861A (en) * 1960-08-17 1963-08-27 Exxon Research Engineering Co Vessel for transporting low temperature liquids
US3163434A (en) * 1961-03-14 1964-12-29 Dairy Equipment Co Truck tank
US3158383A (en) * 1961-12-15 1964-11-24 Haveg Industries Inc Chassisless tank truck
US3120319A (en) * 1962-07-09 1964-02-04 David J Buddrus Protective container
US3174642A (en) * 1962-11-15 1965-03-23 Gen Electric Refrigerator cabinet construction
FR1383795A (en) * 1963-08-30 1965-01-04 Gaz De France Liquefied gas storage tank and its construction method
US3294462A (en) * 1965-03-26 1966-12-27 Gen Motors Corp Refrigerating apparatus
US3400849A (en) * 1965-04-02 1968-09-10 Service Nat Dit Gaz De France Tanks for the storage and transport of cryogenic fluids
US3332386A (en) * 1965-10-28 1967-07-25 Technigaz Tanker

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595424A (en) * 1969-02-24 1971-07-27 Conch Int Methane Ltd Containers for liquefied gases
DE2316859A1 (en) * 1972-04-03 1973-10-04 Mc Donnell Douglas Corp CRYOGENIC STORAGE CONTAINER
US4050607A (en) * 1972-04-07 1977-09-27 The Dow Chemical Company Insulation of vessels having curved surfaces
FR2235330A1 (en) * 1973-06-27 1975-01-24 Mitsubishi Chem Ind
US3931424A (en) * 1973-12-13 1976-01-06 Rockwell International Corporation Prefabricated thermal insulation structure and method
US3984359A (en) * 1974-01-28 1976-10-05 Shell Oil Company Polyurethane foam useful for insulated containers
DE2507424A1 (en) * 1974-02-27 1975-08-28 Wp System Ab DEVICE FOR STORAGE OF GAS, IN PARTICULAR NATURAL GAS
US3941272A (en) * 1974-03-27 1976-03-02 Kaiser Aluminum & Chemical Corporation Cryogenic transport
US3951362A (en) * 1974-05-13 1976-04-20 The Boeing Company Cryogenic tank and aircraft structural interface
US3968764A (en) * 1974-10-31 1976-07-13 Moss Rosenberg Verft A/S Ships for transport of liquefied gases
US4120418A (en) * 1975-09-30 1978-10-17 Shell Internationale Research Maatschappij B.V. Method of producing a barrier in a thermally insulated container
US4556008A (en) * 1981-06-22 1985-12-03 Adragem Limited Semi-submersible marine platform
WO2000073134A1 (en) * 1999-05-26 2000-12-07 Keehan Donald J Maritime chemical tanker having composite tanks
US6167827B1 (en) * 1999-05-26 2001-01-02 Guaranteed Advanced Tank Technologies International Ltd. Maritime chemical tanker having composite tanks for storing and/or transporting liquid organic and inorganic chemicals and the like
US6267069B1 (en) * 1999-05-26 2001-07-31 Guaranteed Advanced Tank Technologies International Ltd. Composite Tanks for storing and/or transporting liquid organic and inorganic chemicals and the like
US20110036736A1 (en) * 2009-08-14 2011-02-17 David Knowlton Composite for packaging a medical device and method of forming the same
US9144464B2 (en) * 2009-08-14 2015-09-29 Ufp Technologies, Inc. Composite for packaging a medical device and method of forming the same
US20130101767A1 (en) * 2011-10-25 2013-04-25 Kraton Polymers U.S. Llc Method for melt processing sulfonated block copolymers and articles comprising optionally amine modified sulfonated block copolymers
US20180209586A1 (en) * 2015-07-13 2018-07-26 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied gas storage tank having insulation parts and method for arranging insulation parts
US11428369B2 (en) * 2015-07-13 2022-08-30 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied gas storage tank having insulation parts and method for arranging insulation parts

Also Published As

Publication number Publication date
FR1543630A (en) 1968-10-25
GB1173424A (en) 1969-12-10
DE1551623A1 (en) 1969-12-18
NL6714755A (en) 1968-05-03

Similar Documents

Publication Publication Date Title
US3502239A (en) Thermally insulated container for transporting low temperature liquids
US3931908A (en) Insulated tank
US3929247A (en) Cryogenic tank
US4044184A (en) Cryogenic insulating structure
US3031856A (en) Vessel for transporting low temperature liquids
US3335904A (en) Storage containers
US3101861A (en) Vessel for transporting low temperature liquids
US4258140A (en) Storage-stable prepolymers sprayable from a pressure vessel
US3927788A (en) Cryogenic liquid containment system
CN108266636B (en) Vacuum heat-insulating member, and heat-insulating container, house wall, transportation equipment, hydrogen carrier, and LNG carrier using the same
CA1044848A (en) Polyurethane foam
US3875886A (en) Liquified-gas ship
US6267069B1 (en) Composite Tanks for storing and/or transporting liquid organic and inorganic chemicals and the like
CN105601883A (en) Polyurethane hard foam thermal insulation layer for low-temperature thermal insulation pipeline and preparation method of polyurethane hard foam thermal insulation layer
FR2285569A1 (en) THERMAL INSULATION TRIM FOR LOW TEMPERATURE TANKS CONTAINING LIQUEFIED OR SIMILAR GASES
KR102224864B1 (en) foaming composition and insulating material including foam article using the same, liquefied gas storage tank and ship
US3477606A (en) Membrane tank structures
US3305122A (en) Keyed cargo container
US3339515A (en) Atmospheric pressure storage and transportation of volatile liquids
KR102015093B1 (en) Cryogenic Insulation Panel And Method for Manufacturing the Same
KR102224865B1 (en) foaming composition and insulating material including foam article using the same, liquefied gas storage tank and ship
CA1049425A (en) Thermally insulated container for storage or transport of liquefied gases
KR102252902B1 (en) foaming composition and insulating material including foam article using the same, liquefied gas storage tank and ship
NO743733L (en)
KR100710981B1 (en) Heat Insulating Materials of Cargo Tank for Liquefied Natural Gas Carriers