Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3509899 A
Tipo de publicaciónConcesión
Fecha de publicación5 May 1970
Fecha de presentación7 Ago 1967
Fecha de prioridad1 May 1963
También publicado comoDE1491745A1, US3351052
Número de publicaciónUS 3509899 A, US 3509899A, US-A-3509899, US3509899 A, US3509899A
InventoresCarl E Hewson
Cesionario originalCarl E Hewson
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Heart and lung resuscitator
US 3509899 A
Imágenes(3)
Previous page
Next page
Descripción  (El texto procesado por OCR puede contener errores)

May 5, 1970 c. HEWSON HEART AND LUNG RESUSCII'ATOR 3 Sheets-Sheet 1 Original Filed Oct. 18, 1965 A 77' OR/VEYS May 5, 1970 c E. HEWSON 3,

HEART AND LUNG RESUSCITATOR Original Filed Oct. 18, 1965 3 Sheets-Sheet 2 FIG?) l VALVE & COUNTER 2 E/NVE/VTOR ATTORNEYS y 1970 c. E. HEWSON 3,

HEART AND LUNG RESUSCITATOR Original Filed Oct. 18, 1965 5 SheetsShet s FIGQ6 FIG. 8

ATTORNEYS United States Patent 3,509,899 HEART AND LUNG RESUSCITATOR Carl E. Hewson, 90 Myrtle St., Marshfield, Mass. 02171 Application Oct. 18, 1965, Ser. No. 497,211, now Patent No. 3,351,052, which is a continuation-in-part of application Ser. No. 277,169, May 1, 1963. Divided and this application Aug. 7, 1967, Ser. No. 668,732

Int. Cl. A61h 31/00 US. Cl. 137-87 8 Claims ABSTRACT OF THE DISCLOSURE A pneumatic pulse circuit having an oxygen inlet and outlet connected through a pneumatically operated valve which opens and closes sequentially to cause the outlet to discharge intermittently.

This application is a division of my earlier application Ser. No. 497,211 filed Oct. 18, 1965, now patent No. 3,351,052. That application in turn is a continuation in part of my earlier application Ser. No. 277,169 filed May 1, 1963 which matured into Patent No. 3,307,541 and reissued under patent No. Re:26,511 on Dec. 31, 1968.

This invention comprises a new and improved heart and lung resuscitator. In that earlier application Serial No. 277,169 a portable unit is disclosed, and in accordance with the present invention the pneumatic circuits of the unit are improved, the unit is rendered more easily portable, and an improved valve is incorporated into one of the pneumatic circuits for directing ventilating gas to the lungs in a prescribed manner.

The unit shown in the earlier application includes a shoulder lift and a separate control case in which the pneumatic circuits are housed. While the unit is portable, there is some inconvenience involved in moving a patient from one location to another while he receives treatment from the unit because of the several different parts which make up the assembly. The pneumatic circuit disclosed in the earlier application is very basic and does not, for example, precisely control the rate at which the pressure increases as the lungs are ventilated. Further, the means for producing a pneumatic pulse to control cardiac compression is not refined to a point where the intervals between pulses are precisely the same. These and other parts of the unit shown in the earlier application have been the subject of continued research, and several improvements have matured from this research, which are the subject matter of the present application.

One important object of this invention is to provide a pneumatic control circuit for the assembly which may be mounted wholly within the shoulder lift so as to eliminate one large component of the system as disclosed in the earlier application.

Another important object of this invention is to provide a pulse circuit as part of the pneumatic system which has a high degree of dependability, is relatively inexpensive to manufacture, and which may be very precisely controlled Another important object of this invention is to provide a valve in the lung ventilating system of a resuscitation unit, which precisely controls the rate of increase of 3,509,899 Patented May 5, 1970 volume of the ventilating gas as it is introduced into the lungs.

To accomplish these and other objects, the rescue unit of this invention includes a piston and cylinder for ap plying cardiac compression, a fixture for introducing ventilating gas into the lungs, and a pneumatic control circuit connected to both the piston and cylinder and the fixture so as to coordinate the cardiac compression with the lung ventilation. The control circuit is mounted within a shoulder lift ordinarily placed beneath the shoulders and upper back of a patient. A pulse circuit, forming part of the pneumatic control circuit, at very precise intervals actuates the piston and cylinder so as to apply cardiac compression of a selected pressure for a prescribed duration at regular intervals. A valve forming part of the pneumatic control circuit in the shoulder lift gradually increases the volume of the ventilating gas introduced into the lungs rather than allow a very sudden and rapid increase of volume to occur.

These and other objects and features of this invention along with its incident advantages will be better understood and appreciated from the following detailed description of several embodiments thereof, selected for purposes of illustration and shown in the accompanying drawing, in which:

FIG. 1 is a perspective view of a heart-lung resuscitator constructed in accordance with this invention;

FIG. 2 shows the unit of FIG. 1 in use on a patient;

FIG. 3 is a diagrammatic view of the pneumatic control circuit mounted in the shoulder lift shown in FIG. 1;

FIG. 4 is a diagrammatic view of a pulse circuit forming one component of the pneumatic control circuit shown in FIG. 3;

FIG. 5 is a diagrammatic view of a pneumatically controlled valve forming part of a pneumatic control circuit shown in FIG. 3;

FIG. 6 is a graph illustrating the time relationship between pressure applied to the chest of a patient through the ventilator and the cardiac compressor; and

FIGS. 711 are diagrammatic views of other embodiments of a pulse circuit.

The resuscitator unit shown in FIG. ,1 includes a shoulder lift 10, a cardiac compressor unit 12, a lung ventilating unit 14 and straps 16 for retaining the compressor unit 12 in proper position on the chest of a patient. In FIG. 2, the assembly is shown in use on a patient with the units 12 and 14 in place, and an oxygen tank 18 is shown connected to the case 22 ofthe shoulder lift by hose 19. The case 22 is shown 'in FIG. 1 to carry a pair of oxygen connectors 24 and 26, one on each side, a lung volume gage 28, a control knob 30 for varying the volume of ventilating gas directed to the lungs, a gage 32 for measuring the thrust of the cardiac compressor unit 12, a control knob 34 for varying the thrust, and an on-off switch 36. A handle 38 for carrying the case 22 is provided with a shallow recess 40 in its upper face that forms a comfortable head rest for the patient.

The pneumatic circuit shown in FIG. 3 is mounted within the case 22 of the shoulder lift 10. The circuit shown includes the inlets 24 and 26 which are combined at a double check-valve 42. Ordinarily one of the inlets is connected to the oxygen tank, and when the tank gets low a second tank may be connected to the other inlet. As oxygen is ordinarily used, the specification will refer to it as the gas in the system, but it is to be understood that other gases may be used. From the check valve oxygen in the circuit passes through a filter 44, and an on-ofi valve 46, and then divides into a pair of lines 48 and 50. A pressure regulating valve 52 is disposed in the line 48 and produces a constant pressure at its outlet.

A pneumatically controlled valve 54 is connected to the end of the line 48 and serves to distribute the compressed oxygen to a pulse circuit 56, a tank 58 and the pilot side of a pneumatically controlled ventilation valve 60. The pulse circuit 56 in turn has its output connected to the pilot of another pneumatically controlled valve 62 and valve and counter 64. The valve and counter 64 lies in a pilot line 66 which controls the operation of the first pneumatically controlled vave 54.

The line 50 beyond the on-ofi? valve 46 directs oxygen through the pneumatically controlled valve 62 whose pilot line 68 is connected to the outlet 78 of the pulse circuit 56. In FIG. 3 the mask 14 and the cardiac compressor 12 are shown connected to the outputs of the pneumatically controlled ventilating valve 60 and the pneumatically controlled valve 62, respectively. As shown in FIG. 1, these parts lie outside the case 22 and are connected to the case by hoses 69 and 70.

Before describing in detail the control circuit shown in FIG. 3, the relationship between the operation of the lung ventilating unit and the cardiac compressing unit will be described. The most effective rate for ext rnal cardiac compression to maintain a high average blood pressure has been determined to be approximately 60 compressions per minute; the most eflfective rate of lung ventilation has been determined to be approximately 12 ventilations per minute. A heart-lung resuscitator to be effective should duplicate this relationship. Therefore, pressure is applied to the chest by the compressor unit 12 five times for each time the lungs are ventilated by directing oxygen into them through the unit 14. It is also important that the oxygen be directed into the lungs between the applications of pressure on the chest exerted by the unit 12. That is, the pressure applied externally to the chest should not be directly opposed by oxygen under pressure within the lungs. These relationships are shown in the graph of FIG. 6 Where time is plotted against pressure exerted by the resuscitator. In the graph the peaks T represent four thrusts exerted against the chest by the unit 12. The peak V represents the volume of oxygen introduced into the lungs through the ventilator unit 14. It will be noted in the graph that on the down side of the peak V, that is, when the volume of oxygen in the lungs is being relieved, the thrust T is exerted. Thus, while the lungs are expelling the oxygen, the fifth thrust T is applied to. the chest, and the height of the peak T represents the cumulative pressure of the thrust exerted by the unit 12 and the residual pressure in the lungs following the peak of ventilation.

It may also be noted in FIG. 6 that the volume of ventilating gas does not increase on a straight line but rather the increase is gradual, particularly in the beginning of the ventilation. Oxygen is initially introduced at a low rate into the lungs and then the volume increases at a faster rate until maximum volume is achieved. This characteristic is represented 'by the curved section of the graph circled in FIG. 6. This gradual introduction of oxygen into the lungs is achieved by the special ventilating valve 60.

Returning now to the circuit shown in FIG. 3 it is apparent that an oxygen tank can be connected to either one of the inlets 24 or 26, and the double check valve 42 directs the oxygen through the filter 44. The on-ofi valve 46 controlled by the button 36 on the case 22 is used to shut off or turn on the system. The outlet of valve 46 directed into line 48 is controlled by pressure regulating valve 52 which causes a pressure reduction in the system in all lines which receive oxygen from that point. Typically, the oxygen tank through which the system is supplied is regulated at 90 p.s.i., and the pressure regulating valve 52 may reduce the pressure in the line 48 to 50 p.s.i. Thus, in the line 48 and the system controlled by it, the pressure does not exceed the 50 p.s.i., while in the line 50 the pressure is at 90 p.s.i.

The pneumatically controlled distributing valve 54 ultimately connects the line 48 to either one of the two lines 70 and 72. Under normal conditions, that is, in the biased position, the valve 54 connects the line 48- With the line 70, and only when the pilot line 66 is pressurized does the condition of valve 54 change to connect the line 48 to the line 72. The lines 70 and 72 when not connected to the line 48 are connected to the atmosphere through bleeds 74 and 76, respectively.

When the line 70 is connected to the 50 p.s.i. source through the distributing valve 54, the pulse circuit 56 is energized and emits at its outlet 78 sixty pulses per minute or some other selected approved rate. (The pulse circuit, shown in FIG. 4, is described in detail below.) At the same time the pulse circuit 56 is energized, the tank 58 which lies within the case 22 is filled through the line and pressure regulator 82. The valve 82 may be manually set by the knob 30 shown in FIG. 1 to control the volume of oxygen stored in the tank 58.

The ventilating valve 60' which is normally closed, prevents the oxygen in the tank 58 from discharging to the ventilating unit 14. However, the ventilating valve 60 which is also described in detail below in connection with FIG. 5, opens when the line 72 (which serves as a pilot for that valve) receives oxygen from the distributing valve 54; that is, when the distributing valve 54 changes its condition so that the line 48 is connected to the pilot line 72, the tank 58 no longer receives oxygen from the line, but the contents of the tank 58 are discharged through the valve 60 to the ventilating unit 14. The condition of valve 54 is controlled by the pilot line 66 which is connected in turn to the outlet 78 of the pulse circuit 56. The counter and valve 64 which per se forms no part of this invention, counts each of the pulses emitted by the pulse circuit 56, and when a given number of pulses are recorded, the valve of counter 64 allows a pulse to pass through the pilot line 66 to change the condition of the valve 54. The pulse through the line 66, as stated above, changes the condition of the valve 54 so that it no longer connects the lines 48 and 70 but rather connects the lines .48 and 72.

The outlet 78 of the pulse circuit 56 is also connected through pilot line 68 to the pneumatic valve 62. Each pulse emitted by the circuit 56 opens the pneumatic valve 62 and allows the line 50 to direct oxygen under pressure to the cardiac compressor unit 12. A pressure regulator 82 in the line 50 is controlled by the control knob 34 on the case 22 so that the thrust exerted by the piston and cylinder unit of the cardiac compressor may be varied.

The counter 64 will be recognized from the foregoing description to establish the basic frequency relationship between the lung ventilator 14 and the cardiac compressor 12. While the pulse circuit 56 opens the valve 62 with each pulse of the circuit 56, the counter 64 in the pilot circuit 66 allows the distributing valve 54 to change its condition but once every five pulses of the circuit 56.

The pulse circuit 56 is shown in detail in FIG. 4. It will be noted that the extent of the pulse circuit shown in FIG. 4 is limited by the line 70 (pulse inlet) and the outlet of the pulse circuit 78. For purposes of this description it will be assumed that the line 70 is constantly connected to a pressurized oxygen source. A distributing valve 86 which is pneumatically controlled by pilot line 88 is biased to a condition wherein its inlet 90 is connected to the pulse outlet 78. That is, unless the condition of distributing valve 86 is changed, the line 70 would be continuously connected to the pulse outlet 78 through valve 86.

The pilot line 88 is controlled by a pneumatic valve 92. The normally closed pneumatic valve 92 when opened allows compressed air to flow through the pilot line 88 so as to change the condition of the distributing valve 86 so as to connect in turn the inlet 90 to the line 94 and interrupt the connection between the inlet 90 and the pulse outlet 78. A delay in the form of a resistance 96 is provided in the pilot line 88 to delay the change in condition of the distributing valve 86 after the valve 92 opens. In the absence of the resistance 96, immediately upon opening valve 92 the valve 86 would open. The need for this delay will become apparent upon completion of the description of the pulse circuit.

A second flow resistance 98 is provided in the circuit in the pilot line 100 which connects the line 70 to the pilot of the normally closed pneumatic valve 92. Therefore, the pressure in the line 70 does not instantaneously open the valve 92, but rather, there is a delay in the opening of the valve 92 after the line 100 receives pressurized oxygen from the line 70. The pressure buildup in the line 100 to open the valve 92 is in turn controlled by a pneumatic valve 102 which, when opened, opens the bleed 104 to allow the pressure within the line 100 to bleed through the valve to the exhaust 106. When the valve 102 is closed, the bleed 104 is closed and the pres sure in the line 100 builds up to open the valve 92. The pneumatic valve 102 is in turn controlled by a pilot line 108 which contains a flow resistance 110. The function of the resistance 110 will be apparent from the following description of the operation of the pulse circuit.

When the line 70 is connected to a pressure source, such as an oxygen tank, oxygen flows from the line 70 through the line 87 to the inlet 90 of the distributing valve 86 and exhausts through the pulse outlet 78. Simultaneously the pressure builds up in the pilot line 100 and after a delay period the pneumatic valve 92 opens. When the valve 92 in the'pilot line 88 opens, after a delay, the condition of valve 86 changes so that the pulse outlet 78 is shut off and the distributing valve 86 directs oxygen through the pilot 108. The valve 92, however, remains open until the line 108 fills and applies a pressure of a specific magnitude to the second pneumatic valve 102. The resistance 110 and the volume as determined by the length of the line 108 control the length of the time delay between the opening of distributing valve 86 to line 94 and the opening of the valve 102. When the valve 102 opens, the pressure in the pilot 100 immediately is relieved through the bleed 104, and the pneumatic valve 92 closes. The closing of valve 92 immediately changes the condition of distributing vtlve 86 to place once again the inlet line 70 in communication with the pulse outlet 78 through the line 87, inlet 90 and the distributing valve. The cycle is then repeated continuously until the line 70 is disconnected from the pressure source.

It will be noted in FIG, 4 that a check valve 107 forms a bypass about the resistance 110 in a direction from line 108 toward the distributing valve 86. The check valve 107 allows the pressure in line 108 to instantaneously dissipate so as to allow the valve 102 to close. In the absence of the check valve, a delay would occur in the recycling of valve 92 because the resistance 110 would retard the depressurization of the line 108 to permit the bleed valve 102 to close.

The volume of the line 108 and the magnitude of the restriction or resistance 110 directly effects the ratio of on and off time of the pulses. If the magnitude of the resistance 110 increases, and/or the volume of the pilot line 108 increases, a longer period will be required to open the normally closed valve 102 to cause the valve 92 to close. In this manner, the ratio of on and off pulse time may be varied. The restriction 98 and the length of line 100 also control the ratio between the on and off periods of each cycle. If the resistance 98 and the volume of line 100 increase, the length of time required to open the valve 92 increases, which in turn lengthens the period during which a pulse is emitted from the distributing valve 86. These parts also indirectly effect the frequency of the pulses but more directly control the ratio between the on and oil periods. To directly change the frequency of the pulses the duct 109 may be changed. If that duct is replaced with a duct of greater capacity, the time required for the distributing valve 86 to change conditions will be increased so as to directly enlarge the time required for each cycle.

The very simple pulse circuit shown in FIG. 4' serves to control the opening of valve 62 which in turn controls the cardiac compression unit 12 and also serves to operate the valve and counter 64 which, with the pilot line 66, controls the condition of distributing valve 54. It will also be recognized from the foregoing that when the line 72 is connected to the line 48 through the distributing valve 54, so that oxygen is directed to the ventilating unit 14, the pulse circuit 56 is temporarily inactive.

In FIG. 3 yet another pneumatically controlled valve 111 is shown disposed in the pilot line 66, and the pilot line 113 which controls the condition of pneumatic valve 111 is connected to the tank 58. The pneumatic valve 111 is normally maintained in the open condition as the pressure in the tank 58 serves as pilot pressure to fill the pilot line 113. However, when the pressure in the tank 58 is relieved, as when its contents are discharged through ventilating valve 60, the pressure in the line 113 diminishes and the valve 111 is closed. Therefore, when the line 72 is connected to the oxygen source and opens the ventilating valve 60 and the contents of tank 58 are discharged, the valve 111 in the pilot 66 closes to again change the condition of the distributing valve 54 so that the lines 48 and 70 are in communication with one another and pilot line 72 bleeds through exhaust 76. In this manner the cycle of distributing valve 54 is completed.

The ventilating valve 60 in FIG. 5 as indicated above, controls the rate at which volume is discharged to the ventilating unit 14 and specifically produces the curve in the graph of FIG. 6 circled at the beginning of the yentilating pulse. The valve includes an inlet duct 112 connected in FIG. 3 to the line 114 which directs a volume of oxygen from the tank 58 to the valve. The duct 112 empties into a cylindrical chamber 116 within the valve housing, and a spool 118 is movable back and forth within the chamber 116. In the position shown, the spool 118 interrupts the connection between the inlet duct 112 and the passage 120 which in turn in connected through a subvalve assembly 122 to the discharge duct 124. I

The position of the spool 118 in the chamber 116 is controlled by a pilot duct 126 formed in the housing (not shown) and which is adapted to be connected to the pilot line 72 shown in FIG. '3. The pilot duct 126 through passage 128 is connected to the right side chamber 117, and the pilot through a second duct 130 to the subvalve assembly 122. Pilot pressure introduced into the chamber to the right of the spool 118 from the line 126 moves the spool to the left. This motion of the spool 118 in the chamber 116 is retarded, however, by the exhaust passage 132 connected between the left end of the chamber 116 and the inlet duct 112, and which contains resistance 134. The restricted orifice or resistance 134 in the exhaust duct 132 limits the speed with which the spool 118 may move to the left under the influence of the pilot pressure in the line 128. As the spool 118 moves to the left, a first small circular groove 136 in the spool 118 aligns itself with the inlet duct 112 and the passage 120 and serves to place the two in communication with one another. Thus, a limited flow occurs from the duct 112 to the passage 120. Further movement of the spool to the left places the larger groove 138 in alignment with the duct 112 and passage 120 to allow a greater volume of oxygen to pass between them so as to increase the volume of oxygen flowing into the passage 120. Because the pressure in the tank 58 which is a function of its volume, was set at 15 psi. and diminishes as the tank empties whereas the pressure in the pilot line 126 (connected to line 72) is normally 50 p.s.i., the spool 118 will move to the left.

However, when the pilot pressure in line 72 is vented through the bleed 76 in the distributing valve 54, pressure builds up in the tank 58 and consequently increases in the chamber 116 through the passage 132 and restriction 134 so as to return the spool to the position shown in FIG. 5.

The discharge from the passage 120 is controlled by the subvalve assembly 122. The pilot pressure in the line 126 which moves the spool 118 to the left as viewed in FIG. also serves to open the subvalve assembly 122 to connect the passage 120 with the discharge duct 124.

In FIG. 5 yet another valve 125 is shown connected between the passage 120 and mask 14. The valve 125 allows spontaneous breathing through the mask. The valve 125 normally connects the mask 14 to the atmosphere through its passage (not shown). However, when the pilot line 127 parallel to lines 128 and 130 is pressurized, the valve 125 temporarily connects the passage 124 to the mask so that the volume of oxygen in the tank 58 may be introduced into the lungs.

It will also be appreciated that the rate at which the volumetric flow increases may be changed by making changes in the configuration of the spool 118. By changes in the configuration of the spool the unit may be made to produce any wave form representing the volume of ventilating gas desired.

From the foregoing description it will be recognized that when the pilot line 72 in the control circuit of FIG. 3 is connected to the pilot duct 126 of the ventilating valve, the pressure in the line 72 causes the spool 118 to move to the left as viewed in the drawing so that first a small quantity of oxygen flows from the duct 112 to passage 120 across the groove 136 and through the subassembly valves 122 and 125 to the line 129. Continued movement of the spool 118 causes the deeper annular groove 138 in the spool to align itself with the passage 120 and duct 112, and consequently a greater volume of air is permitted to flow through the valves from the line 112 to the outlet 129. When the contents of the tank 58 are discharged or when the pressure in the tank 58 falls below a set value, the pneumatic valve 111 in the pilot line 66 closes so as to alter the condition of distributing valve 54. The change in condition of the valve 54 relieves the pressure in the pilot line 72, and the spool 118 in the ventilating valve returns to the position shown in the drawing as the pressure again builds up in the tank.

From the foregoing description those skilled in the art will appreciate that modifications may be made of the invention without departing from its spirit. For example, in FIGS. 7-11 five alternative pulse circuits are shown which may be suitable for use in the control circuit of FIG. 3.

In FIG. 7 a pulse circuit 150 is shown having an inlet 152, an outlet 154, and two pneumatically controlled valves 156 and 158. Pneumatically controlled valve 156 is normally open so that inlet 152 and outlet 154 are in communication with one another. The pilot line 160 controlling valve 156 includes a restriction 162 and a bleed 164, and the bleed 164 is controlled by the second pneumatic valve 158. The valves 158 is normally open to open the bleed 164, but pressure in the pilot line 166 for controlling the valve 158 changes the condition of that valve.

In operation the pulse circuit of FIG. 7 functions as follows: initially when the inlet 152 is connected to a pressure source, a pulse is emitted at the outlet 154, for the valve 156 is open. At the same time, pilot line 160 is pressurized through its restriction 162. However, that pressure cannot be applied to the valve 156 to change its condition because the bleed 164 is open. When pressure builds up in the line 166 through the restriction 168, the valve 158 is closed to shut off the bleed 164. Consequently, pressure builds up in the bleed 160 and ultimately the condition of valve 156 changes and it closes. When the valve 156 is closed, the pressure in the pilot line 166 is relieved which causes the valve 158 to open and connect the bleed 164 to the atmosphere. This condition in turn causes the pressure in the pilot line 168 to be relieved, and the valve 156 again opens. The capacity of the pilot lines and 166 control the ratio of the on and oflf portions of the cycle and control the frequency of the cycle. The larger the capacity of pilot line 166, the longer the time required to change the condition of valve 156, and consequently the frequency is lessened. The capacity of line 160 directly affects the relationship between the on and off period and indirectly affects the frequency of the pulses.

A very basic pulse circuit 170 is shown in FIG. 8. The pulse circuit 170 shown includes an inlet 172, an outlet 174 and a normally open pneumatically controlled valve 176. A pilot line 178 which includes a restriction controls the condition of pneumatic valve 176. When the line 172 is connected to a pressure source, the normally open pneumatic valve 176 causes a pulse to be emitted from the outlet 174. This same pulse charges the pilot line 178 which ultimately causes valve 176 to close. When the valve 176 closes the pressure is relieved in the pilot 178, and the valve 176 once again opens. The capacity of the pilot line 178 particularly between the valve 176 and the restriction 180 determines the frequency of the pulses. The greater the capacity of thepilot line 178, the lower the frequency of change.

The pulse circuit 192 shown in FIG. 9 includes an inlet 193, an outlet 194, a pneumatic valve 196 which is normally closed, a second pneumatic valve 198 which is normally open, and two pilot lines 200 and 202. The valve 196 is normally closed so as to interrupt communication between the inlet and the outlet. The pneumatic valve 198 is normally open to allow the pilot line 202 on each side of valve 198 to charge and therefore change the condition of the pneumatic valve 196. The restrictions 204 and 206 in the pilots perform the same delay functions as the restrictions in the other pulse circuits.

In operation, when the line 193 is connected to a pressure source, initially no oxygen is emitted at the outlet 194. However, the pilot line 202 charges, and when the capacity of the line is reached, the valve 196 opens so as to emit a pulse at the outlet. Simultaneously, the pilot line 200 is charged, and When the pressure builds up in that line a selected amount, the condition of valve 198 changes, and it closes. When the valve 198 closes, pressure in the pilot line 202 is no longer applied to valve 196, which causes the main pneumatic control valve 196 to again close. When it closes the pulse at the outlet ceases and the pilot line 200 is relieved so as to again open the valve 198.

The pulse circuit 208 shown in FIG. 10 employs two normally closed pneumatic valves 210 and 212. The circuit also includes an inlet 214, an outlet 216 and a pair of pilot lines 218 and 220. The pilot line 220 is relieved through bleed 222.

In operation, whenthe inlet 214 is connected to a pressure source, the closed valve 210 prevents a pulse from being discharged at the outlet 216. However, pressure in the pilot line 220 builds up as the bleed 222 is closed by the valve 212. When the pressure in line 220 reaches a selected value, the valve 210 opens, and the circuit emits a pulse. Simultaneously, the pilot line 218 is charged to change the condition of valve 212. When the valve 212 opens, the bleed 222 is opened to the atmosphere, and the pilot line 220 is relieved to cause the valve 210 to close. In this manner the pulse ceases. The restrictions 224 and 226 in the pilot lines 218 and 220 cause the same time delay produced by the similar restrictions in the other pulse circuits, and the capacity of each of the pilot lines 218 and 220 controls the frequency of the pulses and the relative on and off periods of each cycle.

The pulse circuit 228 shown in FIG. 11 includes an inlet 230, an outlet 232, a four-Way pneumatic valve 234 and a normally closed pneumatic valve 236. The four-way valve 234 is controlled by pilot line 238, and the valve 236 is controlled by pilot line 240.

The pneumatic valve 234 is normally in a condition wherein the inlet 230 and outlet 232 are connected together. Consequently, when the input 230 is connected to a pressure source, a pulse is emitted at the outlet 232. Simultaneously, pressure builds up in the pilot line 238 as its bleed 242 is closed by the valve 236. Therefore, after a period of time determined by the capacity of the line 238 and the restriction 244, the valve 234 changes its condition to discontinue communication with the outlet 232, and places the input 230 in communication with the pilot 240. After a period determined by the capacity of the pilot 240 and the restriction 246, the normally closed valve 236 changes its condition to place the bleed 242 in communication with the atmosphere. This relieves the pressure in the pilot 238, and the valve 234 again moves to the biased condition, wherein the inlet 230 and outlet 232 are in communication with one another.

In selecting pneumatic valves in the system, it is important that the operating pressure of each valve be independent of and not effect the pressure of the medium flowing through that valve. In the circuit of FIG. 3 it will be noted that the control pressure of the pneumatic valves 62 and 111 is appreciably less than the pressure of the medium flowing through those valves. Because the flow through the lines in many cases is required to be essentially constant, and because marked changes in pressure could lead to most serious consequences, the flow through the valves should be independent of the controlling pressure.

What is claimed is:

1. A pneumatic pulse circuit comprising,

a source of compressed gas under pressure,

a pneumatically controlled valve having an inlet connected to the source of compressed gas and having a pulse and second outlet,

said pneumatically controlled valve having a normal first condition wherein the inlet is connected to the pulse outlet to allow the compressed gas to discharge through said pulse outlet,

a pilot line connected from the source to the pneumatically controlled valve and when open placing the pneumatically controlled valve in a second condition wherein the inlet is connected to the second outlet and is disconnected from the pulse outlet,

21 second pneumatic valve in the pilot line for opening and closing that line,

a second pilot line for the second pneumatic valve and connected between said second valve and the source,

an additional line connected to the second pilot line for diverting flow in that line from the second pneumatic valve,

and means in the additional line operatively connected to the second outlet of the first pneumatic valve for opening the additional line when the second outlet is connected to the inlet.

2. A pneumatic pulse circuit as defined in claim 1 further characterized by,

the second pneumatic valve being normally closed and opened by the second pilot line in response to the closing of the additional line.

3. A pneumatic pulse circuit as defined in claim 2 wherein said means in the additional line comprises a third pneumatic valve,

and a third pilot line connected between the second outlet and the third pneumatic valve for directing pressurized gas to the third pneumatic valve for opening it to open the additional line.

4. A pneumatic pulse circuit as defined in claim 3 further characterized by restrictions disposed in each of the three pilot lines for delaying operation of each of the three pneumatic valves.

5. A pneumatic pulse circuit as defined in claim 1 further characterized by restrictions disposed in each of the pilot lines for delaying operation of each of the pneumatic valves controlled by them.

6. A pneumatic pulse circuit comprising,

a source of compressed gas under pressure,

, a pneumatically controlled valve having an inlet connected to the source of compressed gas and having a pulse and second outlet,

said valve having a normal first condition wherein the inlet is connected to the pulse outlet to allow the compressed gas to discharge through said pulse outlet,

a pilot line connected from the source to the pneumatic valve and when open placing the valve in a second condition wherein the inlet is connected to the second outlet and is disconnected from the pulse outlet,

a second valve in the pilot line and biased to a closed condition,

pneumatic control means including a time delay connected to the second valve for opening said second valve and the pilot line after a selected period of time,

and means connected to the control means for disabling said control means.

7. A pulse circuit comprising a source of compressed a pneumatically controlled valve having an inlet connected to the source and a pulse outlet,

said valve being operative between first and second conditions wherein said outlet is opened and closed, one of said conditions being the normal condition for said valve,

a pilot line connected to the source and the valve and when pressurized changing the condition of the valve from its normal condition to the other condition,

means including another pneumatically controlled valve connected to the pilot line of the valve for opening and closing the pilot line,

the first recited pneumatically controlled valve having a second outlet connected to the inlet when the pulse outlet is closed,

said means including a bleed connected to the pilot line,

and a third pneumatically controlled valve in the bleed and connected to and controlled by the second outlet in the first-recited pneumatically controlled valve, said third pneumatically controlled valve opening and closing the bleed for controlling the second pneumatically controlled valve.

8. A pneumatic pulse circuit comprising,

a source of compressed gas under pressure,

a pneumatically controlled valve having an inlet connected to the source of compressed gas and having a pulse outlet,

said valve having a normal first condition wherein the inlet is connected to the pulse outlet to allow the compressed air to discharge through said pulse outlet,

:1 pilot line connected from the source to the pneumatic valve and when open placing the pneumatic valve in a second condition wherein the connection between the inlet and pulse outlet is interrupted,

a second valve in the pilot line and biased to a closed condition to close the pilot line,

and pneumatic control means including a time delay connected to the second valve for opening said second valve in the pilot line after a selected period so as to open the pilot line to in turn interrupt the connection between the inlet and the pulse outlet of the pneumatically controlled valve.

References Cited UNITED STATES PATENTS 2,026,704 1/1936 Petroe 137505.22 X

(Other references on following page) 1 1 References Cited Gallacher 137624.14 X Busch 137-624.14 X Thomas 137-62414 X Engler 137505.22 X Chabrier et a1. 137624.14 Barkalow 137--624.14 X Ruckstuhl 25129 X King 25128 X 12 FOREIGN PATENTS 458,842 7/1949 Canada.

ALAN COHAN, Primary Examiner 5 D. J. ZOBKIW, Assistant Examiner US. Cl. X.R.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US1767702 *6 May 192924 Jun 1930Swiss Locomotive And Machine WRegulating valve
US2026704 *24 Jul 19347 Ene 1936Mathieson Alkali Works IncValve
US2309848 *5 Jun 19372 Feb 1943King William RDifferential pressure loaded control valve
US2965117 *24 Mar 195820 Dic 1960Gallacher James IIrrigation control system
US3160486 *24 Abr 19628 Dic 1964Gilbert & Barker Mfg CoFluid operated timing apparatus
US3209748 *19 Abr 19635 Oct 1965Westinghouse Electric CorpReciprocating heart resuscitator device having fluid pressure control apparatus
US3270757 *1 Oct 19636 Sep 1966Alfred EnglerDual diaphragm pressure regulator
US3291153 *10 Dic 196313 Dic 1966Electro Chimie MetalFluid-actuated oscillators
US3364924 *9 Nov 196423 Ene 1968Michigan Instr IncPneumatically operated closed chest cardiac compressor
CA458842A *9 Ago 1949Roper Corp Geo DPilot operated relief valve for pumps and the like
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3669137 *14 Ago 197013 Jun 1972Kirk Colin JohnFluid actuated piston valve
US3804082 *26 Abr 197216 Abr 1974Cordis CorpResuscitation support
US3870038 *15 Mar 197411 Mar 1975Dennis ArblasterOne-piece seamless hollow resuscitation plaque
US3923054 *13 May 19742 Dic 1975Bauer Jr George HResuscitation device
US3965893 *21 May 197529 Jun 1976Franz RagaillerArtificial respiration appliance
US3968795 *11 Dic 197413 Jul 1976Westinghouse Electric CorporationUnderwater breathing apparatus
US4491423 *26 Oct 19831 Ene 1985Stanley CohenResuscitation assistive timer
US4664098 *31 May 198412 May 1987Coromed InternationalCardiopulmonary resuscitator
US4702231 *21 Oct 198527 Oct 1987Arpin Pierre PPortable heart massage apparatus
US4915095 *2 May 198810 Abr 1990Newton ChunCardiac CPR mechanism
US5230330 *19 Feb 199127 Jul 1993Price William EResuscitation and inhalation device
US5287846 *22 May 199122 Feb 1994Medreco A.S.Resuscitation device
US5398714 *8 Jul 199321 Mar 1995Price; William E.Resuscitation and inhalation device
US5399148 *3 Jul 199121 Mar 1995Baswat Holdings Pty. Ltd.External cardiac massage device
US5490820 *12 Mar 199313 Feb 1996Datascope Investment Corp.Active compression/decompression cardiac assist/support device and method
US5513647 *3 May 19947 May 1996Childrens Hospital IncMethod for measuring adult-type pulmonary function tests in sedated infants and apparatus therefor
US5630789 *7 Oct 199420 May 1997Datascope Investment Corp.Active compression/decompression device for cardiopulmonary resuscitation
US5657751 *23 Jul 199319 Ago 1997Karr, Jr.; Michael A.Cardiopulmonary resuscitation unit
US5693005 *22 Sep 19942 Dic 1997Vistung; WillyMobile cardiac massage apparatus
US5823185 *4 Abr 199720 Oct 1998Chang; Tien-TsaiManual pressing and automatic air breathing cardiopulmonary resuscitation first-aid device
US5891062 *11 Oct 19966 Abr 1999Datascope Investment Corp.Active compression/decompression device and method for cardiopulmonary resuscitation
US6155257 *7 Oct 19985 Dic 2000Cprx LlcCardiopulmonary resuscitation ventilator and methods
US6397843 *17 Feb 20004 Jun 2002Chang Tien-TsaiElectrical and manual pressing device of automated air blowing for first-aid cardiopulmonary resuscitation
US6461315 *16 Mar 19998 Oct 2002Siemens-Elema AbApparatus for improving the distribution of gas in the lungs of a patient receiving respiratory treatment
US6648841 *16 Nov 199918 Nov 2003Stefan SesslerDevice for reanimating patients suffering from cardiac arrest
US6926007 *29 Jul 20049 Ago 2005Simon J FrankMedical device for overcoming airway obstruction
US708064810 Nov 200525 Jul 2006Simon Jacob FrankMedical device for overcoming airway obstruction
US7108666 *7 Ene 200319 Sep 2006Sensormedics CorporationMethod and apparatus for performing a forced expiratory maneuver in an infant
US712475610 Nov 200524 Oct 2006Simon Jacob FrankMedical device for overcoming airway obstruction
US712475710 Nov 200524 Oct 2006Simon Jacob FrankMedical device for overcoming airway obstruction
US7226427 *6 Jun 20035 Jun 2007Jolife AbSystems and procedures for treating cardiac arrest
US77343442 Dic 20038 Jun 2010Uab Research FoundationMethods, systems and computer program products to inhibit ventricular fibrillation during cardiopulmonary resuscitation
US78419964 Nov 200430 Nov 2010Jolife AbPositioning device for use in apparatus for treating sudden cardiac arrest
US20110201979 *14 Feb 201118 Ago 2011Advanced Circulatory Systems, Inc.Guided active compression decompression cardiopulmonary resuscitation systems and methods
US20110301513 *2 Jun 20118 Dic 2011Zoll Medical CorporationDynamically Adjusted CPR Compression Parameters
WO1994026229A1 *2 May 199424 Nov 1994Markku MoilanenResuscitation apparatus
WO2005009318A2 *14 Jul 20043 Feb 2005Inst Of Critical Care MedicineControlled chest compressor
WO2005046558A14 Nov 200426 May 2005Jolife AbPositioning device for use in apparatus for treating sudden cardiac arrest
WO2006125982A1 *24 May 200630 Nov 2006Smiths Group PlcResuscitators
Clasificaciones
Clasificación de EE.UU.137/87.4, 128/204.18, 251/28, 128/202.16, 251/29, 601/41, 137/624.14
Clasificación internacionalA61H31/00, A61M16/00
Clasificación cooperativaA61H31/006, A61M16/00, A61H2201/1238
Clasificación europeaA61H31/00H4, A61M16/00
Eventos legales
FechaCódigoEventoDescripción
14 Jun 1996ASAssignment
Owner name: INTERNATIONALE NEDERLANDEN (U.S.) CAPITAL CORPORAT
Free format text: COLLATERAL ASSIGNMENT AND SECURITY AGREEMENT (PATE;ASSIGNOR:BRUNSWICK BIOMEDICAL CORPORATION;REEL/FRAME:007894/0004
Effective date: 19960415