US3534822A - Well circulating device - Google Patents

Well circulating device Download PDF

Info

Publication number
US3534822A
US3534822A US672255A US3534822DA US3534822A US 3534822 A US3534822 A US 3534822A US 672255 A US672255 A US 672255A US 3534822D A US3534822D A US 3534822DA US 3534822 A US3534822 A US 3534822A
Authority
US
United States
Prior art keywords
pipe
passage
drill
dual
circulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US672255A
Inventor
John David Campbell
Harvey E Mallory
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Walker Neer Manufacturing Co Inc
Original Assignee
Walker Neer Manufacturing Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walker Neer Manufacturing Co Inc filed Critical Walker Neer Manufacturing Co Inc
Application granted granted Critical
Publication of US3534822A publication Critical patent/US3534822A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/14Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using liquids and gases, e.g. foams
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/12Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using drilling pipes with plural fluid passages, e.g. closed circulation systems

Definitions

  • a passage pipe string The annular passage References Cited UNITED STATES PATENTS 12/1919 Carmichael,................. 7/1925 Arbonnm... 11/1966 Kellner........... 5/1968 Canalizo et a1.
  • R. Purser Howard E. Moore and Gerald G. Crutsinger A method and device for reducing the static uid acting against a subsurface formation.
  • a passage circulating sub is adapted to be interposed between a lower single drill pipe string a concentric dual er pipe of the circulating sub is blocked ofi and ports are provided in the outer pipes. The drilling liquid is cirthrough the inner pipe and on through to the pe string.
  • a gas is circulated through the outer e and out through the ports of selected sizes to uid in the bore hole annulus and, hence, reduce Primary Examiner- Ernest A ttorneys ABSTRACT: head of drilling fl circulating dual around the inn culated down lower single pi annular passag mix with the H its density.
  • Sheet 2 of 2 I I x g JOHN DAV/0 CAMPBELL HARVEY E MALLOPY INVENTORS WELL Clltt CIJLATING DEVICE DESCRIPTION
  • This invention relates to a device for circulation of well drilling fluid and, more particularly, to a device for introducing a gas into the returning fluid in the bore hole annulus in order to reduce its density and the total static head.
  • a single drill pipe string carrying a cutting bit at the lower end thereof is rotated at the surface of the well while a circulating fluid is pumped from the surface down through the drill string to cool the bit and carry the cuttings back to the surface through the hole annulus, Le. the annular space between the drill pipe and the wall of the well bore.
  • air is occasionally used as a circulating medium, by far the majority of wells being drilled utilize a relatively heavy drilling fluid for circulation.
  • Additives in such drilling fluids perform various useful functions such as caking the wall of the well bore to seal it off against seepage, and floating of cuttings to the surface.
  • the hydrostatic pressure created by the fluid column in the annulus on occasion creates more difficulties than it cures.
  • FIG. l is an enlarged vertical section view of the special circulating sub comprising a feature of this invention.
  • FIG. i we have illustrated a drilling mast or derrick 2 of a size and design strength to hoist a dual pipe swivel 4i together with a composite drill pipe string 5 comprising a string of dual concentric drill pipe is near the top of the bore B, and conventional drill string on the lower portion of the bore. At the lower end of the composite string 5 is secured a conventional drill bit It). While our invention is not restricted to any specific structure of drill pipes, the dual passage pipe is preferably of the type described in Henderson U.S. Pat. No. 3,208,539 granted Sept. 28, 1965. interposed between the dual passage dual pipe 3 and the conventional single drill pipe string 6 is the circulation adapter sub 4 hereinafter to be described in greater detail.
  • drilling mud is circulated from a sludge sump 14 through the suction pipe l5 of a pump 16 to a delivery line I8 which circulates the drilling fluid through the inner tube passage 20 formed by the inner pipe 22! (Jill string 6.
  • the liquid flows through the inner tube passage 22 of the circu lation adapter sub 12, it flows directly into the single drill pipe 5 which is secured to the adapter sub by a conventional threaded joint 24. From this point the circulating fluid proceeds in conventional manner through the drill bit ill, cooling the bit and collecting bit cuttings to return them to the earth surface.
  • the dual pipe swivel may be self-driven by hydraulic, pneumatic or mechanically powered means, or the dual passage drill pipe 6 may simply include as an upper section a dual passage kelly which may be driven by a conventional rotary table (not shown).
  • the dual pipe swivel l permits rotation of dual passage drill pipe is by some suitable power means to transmit rotation to the dual passage drill pipe and then through the conventional single pipe 5 to rotate the bit 10.
  • the inner tube 40 is seated on a shoulder 44 extending radially inward from the outer pipe so that the annular outer passage 36a is effectively closed off at the lower end of the sub 12.
  • the outer pipe 38 is threaded to the upper end of the single pipe drill string 8 in a conventional drill pipe joint.
  • Stabilizer webs or fins 46 are preferably secured to the inner pipe 41 to insure that the inner tube will be centrally and coaxially disposed within the adapter sub body 38.
  • Port 50 is also a drilled and tapped hole with a plug 54 having an orifice of selected size for desired flow.
  • a counterbore provides a valve seat for a ball check valve 57 which is urged into seating engagement as by means of a spring. The spring may be adjusted by threading the plug 54 so that it will open only after a predetermined pressure is reached.
  • the ball check 57 prevents intrusion of drilling mud into the gas passage and hence avoids the necessity of displacing the fluid before the system is functional.
  • a device for circulation of well drilling fluid comprising:
  • an inner tubular member disposed within the said outer tubular body, said outer tubular body and said inner tubular member being arranged to form an inner flow passage through the inner tubular member and an annular flow passage between the outer tubular body and the inner tubular member;
  • an outwardly opening check valve in the port allowing flow of gas from the annular flow passage into the well bore outside of the outer tubular body, while preventing flow from the bore into the annular passage.

Description

nd an upper,
passage pipe string. The annular passage References Cited UNITED STATES PATENTS 12/1919 Carmichael,................. 7/1925 Arbonnm... 11/1966 Kellner........... 5/1968 Canalizo et a1. R. Purser Howard E. Moore and Gerald G. Crutsinger A method and device for reducing the static uid acting against a subsurface formation. A passage circulating sub is adapted to be interposed between a lower single drill pipe string a concentric dual er pipe of the circulating sub is blocked ofi and ports are provided in the outer pipes. The drilling liquid is cirthrough the inner pipe and on through to the pe string. A gas is circulated through the outer e and out through the ports of selected sizes to uid in the bore hole annulus and, hence, reduce Primary Examiner- Ernest A ttorneys ABSTRACT: head of drilling fl circulating dual around the inn culated down lower single pi annular passag mix with the H its density.
ng Company,
175/69, 175/205 E2lb 21/00 175/205. 69, 72, 324; 103/261 United States Patent 7 2] Inventors John David Campbell [21-] Appl. No.
[22] Filed [73] Assignee 54] WELL CIRCULATING DEVICE [51] Int.
Patented Oct. 20, 1970 3,534,822
Sheet 1 of2 3 3 JOHN DAV/D CAMPBELL HARVEY EMALLORY C mvzumns BY: Arromsvs Patented Oct. 20, 1970 3,534,822
Sheet 2. of 2 I I x g JOHN DAV/0 CAMPBELL HARVEY E MALLOPY INVENTORS WELL Clltt CIJLATING DEVICE DESCRIPTION This invention relates to a device for circulation of well drilling fluid and, more particularly, to a device for introducing a gas into the returning fluid in the bore hole annulus in order to reduce its density and the total static head.
In conventional rotary well drilling, a single drill pipe string carrying a cutting bit at the lower end thereof is rotated at the surface of the well while a circulating fluid is pumped from the surface down through the drill string to cool the bit and carry the cuttings back to the surface through the hole annulus, Le. the annular space between the drill pipe and the wall of the well bore. While air is occasionally used as a circulating medium, by far the majority of wells being drilled utilize a relatively heavy drilling fluid for circulation. Additives in such drilling fluids perform various useful functions such as caking the wall of the well bore to seal it off against seepage, and floating of cuttings to the surface. However, in a fairly deep well, the hydrostatic pressure created by the fluid column in the annulus on occasion creates more difficulties than it cures. For example, many subsurface formations are susceptible to fracturing or intrusion under high hydrostatic heads. Continued drilling in such formations may simply result in loss of a circulating fluid into the fractured or permeable formation. If this occurs, not only are the benefits of fluid circulation, including lubrication of the rotating drill pipe, lost, the escaping circulating fluid may promote additional fractures in the surrounding formation.
When the drill bit penetrates a formation which has a structural strength or resistence to permeation less than the hydrostatic head, the formation may collapse completely and slough off the walls of the well bore. With portions of the fractured formations falling into the annulus between the pipe and the well bore, the drill string may become firmly lodged in the well. If the pipe is firmly stuck in the well, both the pipe and the well may be total losses. When the drill bit penetrates an oil producing formation the oil tends to flow into the well bore for recovery. However, if the pressure of the drilling fluid ex ceeds the pressure of the gas which tends to force the oil into the well bore, the oil is not recovered and penetration of the oil zone may go undetected. The advantages of reducing hydrostatic head are presently known and one method involves the injection of air into the fluid system prior to pumping it down the drill pipe. However, such method requires an excessively large air compressor and has not proved economically feasible.
It is, therefore, an object of this invention to provide a device and method for reducing the hydrostatic head in the hole annulus to provide greater economy in drilling.
It is a further object of this invention to provide a method and device for reducing the hydrostatic head in the hole annulus to reduce the tendency of fluid to be forced into porous formations.
It is a further object of this invention to provide a method and device for reducing the hydrostatic head by introduction of a gas into the returning circulating fluid without requiring it to traverse the complete circulatory system.
In carrying out this invention, I provide a composite drill string which is made up of a single pipe drill string to which the bit is attached at the lower portion of the bore hole and a dual passage drill pipe at the upper portion of the hole. Interconnecting the two drill strings is a special circulating sub constituting a feature of this invention, and which constitutes essentially a dual passage drill pipe. However, the annular flow passage between the inner and outer pipes is blocked off toward the lower end of the section and a series of ports or oriflees are formed in the outer wall so that the air or other gas circulating in the outer annular passage exits through the ports to mingle with the fluid rising through the hole annulus. In practicing the method of this invention, the liquid circulating medium is pumped down through the inner passage of the dual concentric drill pipe string through the circulating sub to flow into the single pipe drill string as in conventional circulation. In the outer annular passage of the dual passage drill pipe, we pump a gas such as compressed air which flows rapidly down through the annular passage to the circulating sub wherein further passage is blocked and it, therefore, flows out through the ports to flow into the rising liquid forming air bubbles which greatly reduce the density of the liquid and, hence, the hydrostatic head of the fluid in the well bore.
Other objects and advantages of this invention will become apparent from the description following when read in conjunction with the accompanying drawing wherein FlG. i is a more or less schematic view in vertical section showing our complete fluid circulating system with a circulating device of our invention included;
FIG. 2 is a horizontal section view taken along line 22 of FIG. ll;
FIG. 3 is a horizontal section view taken along line 3-3 of FIG. I1; and
FIG. l is an enlarged vertical section view of the special circulating sub comprising a feature of this invention.
Referring now more specifically to FIG. i we have illustrated a drilling mast or derrick 2 of a size and design strength to hoist a dual pipe swivel 4i together with a composite drill pipe string 5 comprising a string of dual concentric drill pipe is near the top of the bore B, and conventional drill string on the lower portion of the bore. At the lower end of the composite string 5 is secured a conventional drill bit It). While our invention is not restricted to any specific structure of drill pipes, the dual passage pipe is preferably of the type described in Henderson U.S. Pat. No. 3,208,539 granted Sept. 28, 1965. interposed between the dual passage dual pipe 3 and the conventional single drill pipe string 6 is the circulation adapter sub 4 hereinafter to be described in greater detail.
In operation, drilling mud is circulated from a sludge sump 14 through the suction pipe l5 of a pump 16 to a delivery line I8 which circulates the drilling fluid through the inner tube passage 20 formed by the inner pipe 22! (Jill string 6. When the liquid flows through the inner tube passage 22 of the circu lation adapter sub 12, it flows directly into the single drill pipe 5 which is secured to the adapter sub by a conventional threaded joint 24. From this point the circulating fluid proceeds in conventional manner through the drill bit ill, cooling the bit and collecting bit cuttings to return them to the earth surface.
The dual pipe swivel may be self-driven by hydraulic, pneumatic or mechanically powered means, or the dual passage drill pipe 6 may simply include as an upper section a dual passage kelly which may be driven by a conventional rotary table (not shown). In any event, the dual pipe swivel l permits rotation of dual passage drill pipe is by some suitable power means to transmit rotation to the dual passage drill pipe and then through the conventional single pipe 5 to rotate the bit 10.
At the earth surface the drilling fluid flows through the return line 26 and then through a suitable shaker screen 2% or the like where cuttings are separated out before the mud is returned to the sludge pit M for recirculation.
The method thus far described is not appreciably different from that practiced in conventional drilling, and we will now describe the method and device by which the hydrostatic head of the fluid in the hole annulus A is reduced in order to accomplish the objects set forth herein.
A source of pressurized gas, such as an air compressor 30 is connected through a gas delivery pipe 32 to an upper packing portion 34, of the rotating swivel 4 to deliver a gas to the annular passage as between the inner pipe 21 and the outer pipe 357 of the dual passage drill pipe. This flow of gas passes unimpeded through the annular space without mixing with the fluid until it reaches the circulating sub I12 from which it is delivered to the hole annulus. The circulating sub f2 comprises an outer pipe 3% which is threadedly connected at its upper end 40 to the outer pipe 37 of the dual passage drill pipe 6 and on inner pipe 451, the upper end of which is telescopically received in sealed engagement at 42 with the lower end of the inner tube of the lowermost dual pipe drill section.
At the lower end of the adapter sub 12, the inner tube 40 is seated on a shoulder 44 extending radially inward from the outer pipe so that the annular outer passage 36a is effectively closed off at the lower end of the sub 12. Also at the lower end of the sub, the outer pipe 38 is threaded to the upper end of the single pipe drill string 8 in a conventional drill pipe joint. Stabilizer webs or fins 46 are preferably secured to the inner pipe 41 to insure that the inner tube will be centrally and coaxially disposed within the adapter sub body 38.
A series of circulation ports 48, 49 and 50 are provided through the sub body 38 and the ports are preferably inclined upwardly to facilitate flow upward through the returning drill fluid in the hole annulus A. While we have illustrated ports of three different types of construction, it is to be understood that this is done for purposes of illustration only and that in practice only one type of gas exit port willbe employed. Port 48 is simply a drilled hole of a predetermined diameter to provide the desired flow capacity. Port 49 is a drilled and tapped hole into which a plug 52 is threadably received. The plug 52 has an orifice drilled through it and the orifice is of a selected size so that a series of plugs may be provided to permit the driller to select the total orifice area in order to achieve the gas flow capacity desired.
Port 50 is also a drilled and tapped hole with a plug 54 having an orifice of selected size for desired flow. In addition, a counterbore provides a valve seat for a ball check valve 57 which is urged into seating engagement as by means of a spring. The spring may be adjusted by threading the plug 54 so that it will open only after a predetermined pressure is reached. In addition, the ball check 57 prevents intrusion of drilling mud into the gas passage and hence avoids the necessity of displacing the fluid before the system is functional.
Referring again to H6. 1, we may also provide a bypass gas flow line 320 with a valve 33 interposed therein so that compressed air from pump 30 may be delivered directly to the circulating mud at the mud delivery pipe 18 to decrease the density of the fluid throughout the entire circulatory system, further to decrease the static head.
In operation, the drilling liquid is delivered by the pump through the intake line 18 and then through the inner passage 20 of the dual passage drill pipe 6. At the same time, the compressor 30 delivers compressed air through the outer annular passage 36 of the dual passage drill pipe until it reaches the circulating sub 12. At the circulating sub, the drilling mud simply flows out the bottom into the single drill pipe string 8 and, at the bit 10, it jets out into the hole annulus A to carry the cuttings C upward. The compressed air does not travel the full length of the composite drill pipe unless a portion is admitted through bypass valve 33, but simply flows down to the level of the circulating sub 12 and out through the ports 48, 49 and 50 where it mixes with the circulating liquid. As the gas enters the liquid, it forms substantial air bubbles greatly to reduce the density of the liquid and, hence, the hydrostatic head, resulting in a reduced overall hydrostatic head acting against the formation throughout the depth of the well bore.
We are not restricted to any relative ratio between the dual passage pipe and the single passage pipe, i.e. the ratio between the lightened liquid and the circulating liquid, but we have found satisfactory results wherein a dual passage drill pipe of approximately 4,000 feet has been employed in drilling a well at a depth of approximately 12,000 feet.
We claim:
1. A device for circulation of well drilling fluid comprising:
a dual passage drill pipe section having an outer pipe and a smaller diameter inner pipe within said outer pipe;
said inner pipe forming an inner flow passage for a liquid drilling fluid;
said inner and outer pipes forming between them an annular flow passage for a lighter drilling fluid;
means on one end of said outer pipe for connecting it rigidly to the outer pipe ofa dual passage drillfpipe; means on said one end of the inner pipe or connecting it to the inner pipe of a dual passage drill pipe;
means on the other end of said outer pipe for connecting it to a single drill pipe;
means displaced from said one end of the inner and outer pipes blocking flow through said annular flow passage; means forming at least one port through the wall of said outer pipe section upstream of said flow blocking means; means in the port for regulating the flow of drilling fluid through the port;
a valve seat in the port;
a ball in said port;
resilient means to urge the ball inwardly through the port toward the seat to allow flow through the port from the annular flow passage and to prevent flow through the port into the annular flow passage; and
a threaded plug having an orifice therethrough in the outer end of the port in adjustable contact with the resilient means.
2. In a circulation sub for wells, the combination of:
an outer tubular body;
an inner tubular member disposed within the said outer tubular body, said outer tubular body and said inner tubular member being arranged to form an inner flow passage through the inner tubular member and an annular flow passage between the outer tubular body and the inner tubular member;
means for securing the inner tubular member relative to the outer tubular body;
means for connecting the upper end of the sub to a dual passage pipe;
means for connecting the lower end of the sub to a downwardly extending pipe;
said outer tubular body having an upwardly directed port through the wall thereof arranged to direct gas pumped between the outer tubular body and the inner tubular member upwardly through a well bore in which the sub is disposed; and
an outwardly opening check valve in the port allowing flow of gas from the annular flow passage into the well bore outside of the outer tubular body, while preventing flow from the bore into the annular passage.
3. The combination called for in claim 2 with the addition of means in the upwardly directed port to regulate the flow rate of gas therethrough.
4. The combination called for in claim 2 with the addition of a plug in said port having an orifice therethrough; and wherein the outwardly opening check valve comprises, a seat in said port; a ball in said port; and a spring between said ball and said plug to urge the ball inwardly toward the seat.
US672255A 1967-10-02 1967-10-02 Well circulating device Expired - Lifetime US3534822A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US67225567A 1967-10-02 1967-10-02

Publications (1)

Publication Number Publication Date
US3534822A true US3534822A (en) 1970-10-20

Family

ID=24697798

Family Applications (1)

Application Number Title Priority Date Filing Date
US672255A Expired - Lifetime US3534822A (en) 1967-10-02 1967-10-02 Well circulating device

Country Status (1)

Country Link
US (1) US3534822A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667555A (en) * 1970-05-11 1972-06-06 Wayland D Elenburg Air drilling method using controlled split stream
US3682262A (en) * 1970-06-18 1972-08-08 William Guier Oil well drilling apparatus
DE2632456A1 (en) * 1975-10-14 1977-04-28 Walker Neer Mfg Co LOWERABLE INJECTOR FOR A TWIN TUBE DRILL STRING
US4060130A (en) * 1976-06-28 1977-11-29 Texaco Trinidad, Inc. Cleanout procedure for well with low bottom hole pressure
US4194567A (en) * 1977-10-27 1980-03-25 Compagnie Francaise Des Petroles Method and apparatus for balancing pressures in an oil well
US4351400A (en) * 1980-10-31 1982-09-28 Faulkner Ben V Method of preventing drill string overflow
US4394880A (en) * 1980-10-31 1983-07-26 Faulkner Ben V Method of preventing drill string overflow
US4615564A (en) * 1985-02-11 1986-10-07 Hydrofoam Mining, Inc. Foam process for recovering underground rock fragments
US4718503A (en) * 1985-12-23 1988-01-12 Shell Oil Company Method of drilling a borehole
US5249635A (en) * 1992-05-01 1993-10-05 Marathon Oil Company Method of aerating drilling fluid
US5873420A (en) * 1997-05-27 1999-02-23 Gearhart; Marvin Air and mud control system for underbalanced drilling
WO2001057353A3 (en) * 2000-02-01 2002-04-22 Tracto Technik Hard rock drilling device and method
US7073595B2 (en) 2002-09-12 2006-07-11 Cdx Gas, Llc Method and system for controlling pressure in a dual well system
US7090009B2 (en) 2002-09-12 2006-08-15 Cdx Gas, Llc Three-dimensional well system for accessing subterranean zones
US20060180351A1 (en) * 2005-02-11 2006-08-17 Anthony Paul G Air injection collar
US7100687B2 (en) 2003-11-17 2006-09-05 Cdx Gas, Llc Multi-purpose well bores and method for accessing a subterranean zone from the surface
US20060207795A1 (en) * 2005-03-16 2006-09-21 Joe Kinder Method of dynamically controlling open hole pressure in a wellbore using wellhead pressure control
US7134494B2 (en) 2003-06-05 2006-11-14 Cdx Gas, Llc Method and system for recirculating fluid in a well system
US20060283593A1 (en) * 2002-09-09 2006-12-21 Robichaux Kip M Double swivel apparatus and method
US7207395B2 (en) 2004-01-30 2007-04-24 Cdx Gas, Llc Method and system for testing a partially formed hydrocarbon well for evaluation and well planning refinement
US7222670B2 (en) 2004-02-27 2007-05-29 Cdx Gas, Llc System and method for multiple wells from a common surface location
US7264048B2 (en) 2003-04-21 2007-09-04 Cdx Gas, Llc Slot cavity
US20080049544A1 (en) * 2006-08-23 2008-02-28 M-I Llc Process for mixing wellbore fluids
US7360595B2 (en) 2002-05-08 2008-04-22 Cdx Gas, Llc Method and system for underground treatment of materials
US20090194331A1 (en) * 2008-02-05 2009-08-06 Baker Hughes Incorporated Vacuum feed supply system for drilling fluid additives
US7571771B2 (en) 2005-05-31 2009-08-11 Cdx Gas, Llc Cavity well system
US8196650B1 (en) 2008-12-15 2012-06-12 Mako Rentals, Inc. Combination swivel and ball dropper
US8291974B2 (en) 1998-11-20 2012-10-23 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8297350B2 (en) 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface
US20130008647A1 (en) * 2010-03-23 2013-01-10 Halliburton Energy Services, Inc. Apparatus and Method for Well Operations
US8376052B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for surface production of gas from a subterranean zone
US8376039B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8434568B2 (en) 1998-11-20 2013-05-07 Vitruvian Exploration, Llc Method and system for circulating fluid in a well system
US9316052B2 (en) * 2012-01-20 2016-04-19 Strada Design Limited Dual circulation drilling system
US20180258720A1 (en) * 2017-03-13 2018-09-13 Wen J Whan Vacuum assisted aerated drilling
US11608719B2 (en) 2016-11-15 2023-03-21 Schlumberger Technology Corporation Controlling fluid flow through a valve
US11639648B2 (en) * 2015-05-21 2023-05-02 Schlumberger Technology Corporation Downhole turbine assembly

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667555A (en) * 1970-05-11 1972-06-06 Wayland D Elenburg Air drilling method using controlled split stream
US3682262A (en) * 1970-06-18 1972-08-08 William Guier Oil well drilling apparatus
DE2632456A1 (en) * 1975-10-14 1977-04-28 Walker Neer Mfg Co LOWERABLE INJECTOR FOR A TWIN TUBE DRILL STRING
US4060130A (en) * 1976-06-28 1977-11-29 Texaco Trinidad, Inc. Cleanout procedure for well with low bottom hole pressure
US4194567A (en) * 1977-10-27 1980-03-25 Compagnie Francaise Des Petroles Method and apparatus for balancing pressures in an oil well
US4351400A (en) * 1980-10-31 1982-09-28 Faulkner Ben V Method of preventing drill string overflow
US4394880A (en) * 1980-10-31 1983-07-26 Faulkner Ben V Method of preventing drill string overflow
US4615564A (en) * 1985-02-11 1986-10-07 Hydrofoam Mining, Inc. Foam process for recovering underground rock fragments
US4718503A (en) * 1985-12-23 1988-01-12 Shell Oil Company Method of drilling a borehole
US5249635A (en) * 1992-05-01 1993-10-05 Marathon Oil Company Method of aerating drilling fluid
US5873420A (en) * 1997-05-27 1999-02-23 Gearhart; Marvin Air and mud control system for underbalanced drilling
US8464784B2 (en) 1998-11-20 2013-06-18 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8297377B2 (en) * 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8291974B2 (en) 1998-11-20 2012-10-23 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8297350B2 (en) 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface
US9551209B2 (en) 1998-11-20 2017-01-24 Effective Exploration, LLC System and method for accessing subterranean deposits
US8376039B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8813840B2 (en) 1998-11-20 2014-08-26 Efective Exploration, LLC Method and system for accessing subterranean deposits from the surface and tools therefor
US8376052B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for surface production of gas from a subterranean zone
US8511372B2 (en) 1998-11-20 2013-08-20 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface
US8316966B2 (en) 1998-11-20 2012-11-27 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8505620B2 (en) 1998-11-20 2013-08-13 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8479812B2 (en) 1998-11-20 2013-07-09 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8371399B2 (en) 1998-11-20 2013-02-12 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8434568B2 (en) 1998-11-20 2013-05-07 Vitruvian Exploration, Llc Method and system for circulating fluid in a well system
US8469119B2 (en) 1998-11-20 2013-06-25 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
WO2001057353A3 (en) * 2000-02-01 2002-04-22 Tracto Technik Hard rock drilling device and method
US6814165B2 (en) 2000-02-01 2004-11-09 Tracto-Technik Gmbh Hard rock drilling device and method
US7360595B2 (en) 2002-05-08 2008-04-22 Cdx Gas, Llc Method and system for underground treatment of materials
US7281582B2 (en) * 2002-09-09 2007-10-16 Mako Rentals, Inc. Double swivel apparatus and method
US8047290B1 (en) * 2002-09-09 2011-11-01 Mako Rentals, Inc. Double swivel apparatus and method
US20060283593A1 (en) * 2002-09-09 2006-12-21 Robichaux Kip M Double swivel apparatus and method
US7090009B2 (en) 2002-09-12 2006-08-15 Cdx Gas, Llc Three-dimensional well system for accessing subterranean zones
US7073595B2 (en) 2002-09-12 2006-07-11 Cdx Gas, Llc Method and system for controlling pressure in a dual well system
US7264048B2 (en) 2003-04-21 2007-09-04 Cdx Gas, Llc Slot cavity
US7134494B2 (en) 2003-06-05 2006-11-14 Cdx Gas, Llc Method and system for recirculating fluid in a well system
US7100687B2 (en) 2003-11-17 2006-09-05 Cdx Gas, Llc Multi-purpose well bores and method for accessing a subterranean zone from the surface
US7207395B2 (en) 2004-01-30 2007-04-24 Cdx Gas, Llc Method and system for testing a partially formed hydrocarbon well for evaluation and well planning refinement
US7222670B2 (en) 2004-02-27 2007-05-29 Cdx Gas, Llc System and method for multiple wells from a common surface location
US20090205872A1 (en) * 2005-02-11 2009-08-20 Anthony Paul G Air Injection Collar
US7516803B2 (en) * 2005-02-11 2009-04-14 Paul G Anthony Air injection collar
US20060180351A1 (en) * 2005-02-11 2006-08-17 Anthony Paul G Air injection collar
US8127866B2 (en) 2005-02-11 2012-03-06 Anthony Paul G Air injection collar
GB2426017B (en) * 2005-03-16 2011-04-06 Prec Energy Services Ltd Method of dynamically controlling open hole pressure in a wellbore using wellhead pressure control
GB2426017A (en) * 2005-03-16 2006-11-15 Prec Energy Services Ltd Method of dynamically controlling open hole pressure in a wellbore
US20060207795A1 (en) * 2005-03-16 2006-09-21 Joe Kinder Method of dynamically controlling open hole pressure in a wellbore using wellhead pressure control
US7407019B2 (en) 2005-03-16 2008-08-05 Weatherford Canada Partnership Method of dynamically controlling open hole pressure in a wellbore using wellhead pressure control
US7571771B2 (en) 2005-05-31 2009-08-11 Cdx Gas, Llc Cavity well system
US8622608B2 (en) * 2006-08-23 2014-01-07 M-I L.L.C. Process for mixing wellbore fluids
US20080049544A1 (en) * 2006-08-23 2008-02-28 M-I Llc Process for mixing wellbore fluids
US7712551B2 (en) * 2008-02-05 2010-05-11 Baker Hughes Incorporated Vacuum feed supply system for drilling fluid additives
US20090194331A1 (en) * 2008-02-05 2009-08-06 Baker Hughes Incorporated Vacuum feed supply system for drilling fluid additives
WO2009099730A1 (en) * 2008-02-05 2009-08-13 Baker Hughes Incorporated Vacuum feed supply system for drilling fluid additives
US8047305B2 (en) 2008-02-05 2011-11-01 Baker Hughes Incorporated Vacuum feed supply system for drilling fluid additives
US20100243329A1 (en) * 2008-02-05 2010-09-30 Baker Hughes Incorporated Vacuum feed supply system for drilling fluid additives
US8356661B1 (en) 2008-12-15 2013-01-22 Mako Rentals, Inc. Combination swivel and ball dropper
US8893773B2 (en) 2008-12-15 2014-11-25 Mako Rentals, Inc. Combination swivel and ball dropper
US8590611B2 (en) 2008-12-15 2013-11-26 Mako Rentals, Inc. Combination swivel and ball dropper
US8196650B1 (en) 2008-12-15 2012-06-12 Mako Rentals, Inc. Combination swivel and ball dropper
US20130008648A1 (en) * 2010-03-23 2013-01-10 Halliburton Energy Services, Inc. Apparatus and Method for Well Operations
US9279301B2 (en) * 2010-03-23 2016-03-08 Halliburton Energy Services, Inc. Apparatus and method for well operations
US20130008647A1 (en) * 2010-03-23 2013-01-10 Halliburton Energy Services, Inc. Apparatus and Method for Well Operations
US10533387B2 (en) 2010-03-23 2020-01-14 Halliburton Energy Services, Inc. Apparatus and method for well operations
US9316052B2 (en) * 2012-01-20 2016-04-19 Strada Design Limited Dual circulation drilling system
US20160108686A1 (en) * 2012-01-20 2016-04-21 Ian Speer Dual circulation drilling system
US9970245B2 (en) * 2012-01-20 2018-05-15 Strada Design Limited Dual circulation drilling system
US11639648B2 (en) * 2015-05-21 2023-05-02 Schlumberger Technology Corporation Downhole turbine assembly
US11608719B2 (en) 2016-11-15 2023-03-21 Schlumberger Technology Corporation Controlling fluid flow through a valve
US20180258720A1 (en) * 2017-03-13 2018-09-13 Wen J Whan Vacuum assisted aerated drilling
US10502010B2 (en) * 2017-03-13 2019-12-10 Wen J Whan Vacuum assisted aerated drilling

Similar Documents

Publication Publication Date Title
US3534822A (en) Well circulating device
US3208539A (en) Apparatus for drilling wells
US2946565A (en) Combination drilling and testing process
US5890538A (en) Reverse circulation float equipment tool and process
US3052298A (en) Method and apparatus for cementing wells
US7204327B2 (en) Reverse circulation directional and horizontal drilling using concentric drill string
US6877571B2 (en) Down hole drilling assembly with independent jet pump
US2537605A (en) Drilling bore holes
US4368787A (en) Arrangement for removing borehole cuttings by reverse circulation with a downhole bit-powered pump
US3419092A (en) Well drilling method
US3385382A (en) Method and apparatus for transporting fluids
US3747696A (en) Subterranean slurry mining apparatus
US4373592A (en) Rotary drilling drill string stabilizer-cuttings grinder
US4474243A (en) Method and apparatus for running and cementing pipe
US2136518A (en) Pipe cutter
CN106460491A (en) Forming multilateral wells
US3907046A (en) Reclosable downhole bypass valve
US6899188B2 (en) Down hole drilling assembly with concentric casing actuated jet pump
AU2005311157B2 (en) Diverter tool
US3599733A (en) Method for directional drilling with a jetting bit
US3799278A (en) Well circulation tool
US20050133269A1 (en) Adjustabel hole cleaning device
WO1991017339A1 (en) Method and apparatus for drilling and coring
US3280925A (en) Method and apparatus for impact drilling of overburden
US3070010A (en) Drilling boreholes with explosive charges