US3539284A - Two-chamber fuel burner - Google Patents

Two-chamber fuel burner Download PDF

Info

Publication number
US3539284A
US3539284A US806357A US3539284DA US3539284A US 3539284 A US3539284 A US 3539284A US 806357 A US806357 A US 806357A US 3539284D A US3539284D A US 3539284DA US 3539284 A US3539284 A US 3539284A
Authority
US
United States
Prior art keywords
chamber
burner
air
sleeve
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US806357A
Inventor
John J Wolfersperger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3539284A publication Critical patent/US3539284A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection

Definitions

  • the first chamber has a fuel inlet for gas or oil and a first cylindrical bafiie spaced axially from the end wall and radially from the housing to provide an annular air inlet chamber.
  • Air scoops connect air from the space between the housing and bafile into the interior space inside the baffle.
  • a second baffle is spaced near the end of this first baflie, with an overlap, and is of greater diameter. It terminates near a first conical shell that leads into a second chamber, where it is surrounded by a further cylindrical baflle, also spaced from the housing to provide an annular chamber, into which the air inlet for that chamber opens.
  • This further bafiie terminates near a second frustoconical shell that leads into a boiler or other such device.
  • This invention relates to an improved burner; one form is used for burning oil, another for burning gas, and a third form for burning either oil or gas.
  • the invention may be considered as constituting an improvement over the burner shown in my U.S. Pat. 2,787,318 and also as an improvement over the burners shown in my Pats. 3,266,549 and 3,276,693.
  • the two-chamber burner of U.S. Pat. No. 2,787,318 was primarily designed for use in drying forage crops and vegetables. These materials required that a large volume of excess air be mixed with the hot products of combustion in order to cool the products of combustion, so that the material being dried would not catch fire or be burned or scorched.
  • the volume of the flame discharged from the first chamber into the second chamber was only a small fraction of the volume of the excess air that was introduced into the second chamber; the result was that in the second chamber the spirally flowing air thoroughly enveloped the flame until the flame and the air were finally thoroughly mixed and were combined in passing through the outlet throat.
  • a single chamber oil burner such as shown in my US. Pat. No. 3,276,693 will burn completely all the older types of conventional fuel oil, and it will burn completely what is known as No. 1 diesel oil, if this oil is atomized at a pressure of 250 to 300 psi. However, the single chamber burner will not properly accommodate No. 2 diesel oil (even at a higher 300 psi. atomizing pressure).
  • the twochamber burner of this invention will burn all of these fuel oils completely and will discharge products of complete combustion that are thoroughly mixed with high percentages of excess air, a cooled mixture that can be used to dry combustible material by direct contact without heat damage to the materials.
  • the burner of this invention makes it possible to obtain a utilization of a single-pass dryer drum.
  • One of the main features of the two-chamber burner of this invention is that practically all the heat developed by the combustion that takes place in the second chamber, is augmented by practically all the heat developed in the first chamber, and none of this total is spread out and transferred to water until all combustion is completed and passed through the second chamber outlet throat.
  • the single chamber burner With the single chamber burner, the flame and hot gases, after passing through the restricted outlet throat, are spread, and some heat (mostly radiant heat) is trans ferred through the water-jacketed walls of a combustion chamber during completion of combustion.
  • the lighter, easier-to-burn oils can spare this heat efficiently because they are volatile at lower temperatures.
  • a further advantage of the two-chamber burner of this invention is that it is not limited, in conversion use, to conventional fire-tube boilers, for it can be beneficially used in greatly increasing the capacity of all types of water-tube boilers and all types of unconventional oilfired and gas-fired boilers and heaters.
  • the baflle sleeve of the first chamber is modified along the lines of the split sleeve design of my US. Pat. No. 3,276,693 to give a new result in a two-chamber burner.
  • an important new baffle sleeve is added in the second chamber of the two-chamber burner of this invention.
  • This new bafiie sleeve is spaced to take about one-thirdof the air passing through the second chamber inside the sleeve and about two-thirds around its outer 3 surface.
  • the tangential air inlets of the first and second chambers are both made to extend practically the full length of their burner tubes in order to deliver the highest ve locity air around the flame at each end of the bafiie sleeves.
  • the vertical measurements of these air inlets are made such that the air from the fan is split and is delivered in the volumes desired for each chamber.
  • FIG. 1 is a view in side elevation of a burner embodying the principles of the present invention and connected to a boiler housing, of which only a fragment is shown.
  • FIG. 2 is an enlarged view in elevation and partly in section of the oil burner unit proper of FIG. 1.
  • FIG. 3 is a view in the scale of FIG. 2 in side elevation of the burner unit.
  • FIG. 4 is a view in end elevation looking from the left-hand end of FIG. 3.
  • FIG. 5 is a view in side elevation and in section of a modified form of burner embodying the principles of this invention, namely, a combination for burning either gas or oil.
  • FIG. 6 is a view similar to FIG. 5 of another modified form of burner embodying the principles of this invention for burning only gas.
  • a burner 10 of this invention in essence employs two combustion chambers '11 and 12 and may have separate cylindrical housings 13 and 14 therefor, so that a housing 14 may be assembled to a housing 13 to convert a standard single combustion chamber burner unit 11 into the double-chamber burner 10 of this invention, but the housing may instead be made in a single piece if that is desirable, though it is certainly less eflicient.
  • the housing 13 for the first chamber 11 is preferably joined by a flange 15 to a flange 16 of the housing 14 for the second chamber 12, and each of these chambers 11 and 12 have their respective end flanges 17 and 18.
  • the first chamber 11 has its end flange 17 joined to an end member 19.
  • first cylindrical bafiie or sleeve 20 which is spaced from the end plate 19 and also is spaced by an annular chamber 21 from the outer housing 13; the spacing may be provided by an anchor strap 29, welded to the sleeve and bolted to the housing 13 and by a plurality (preferably three) of round steel spacer 29a Welded at one end to the sleeve 20 only.
  • a second annulus, baflle or sleeve 23 is spaced from the sleeve 20 by a plurality (preferably four) short, round spacers or supporting members 24, which are preferably welded to both sleeves 20 and 23 and provide a passage 25 in between the two sleeves 20 and 23 Where they overlap.
  • a plurality (preferably three) of round steel spacing rods 29b are welded to the outer surface of the sleeve 23 to continue the annular space 21 between the sleeve 23 and the housing 13.
  • the second sleeve 23 terminates at an edge 26 near, but spaced from the frusto- 4 conical shell or baflle 27 which leads into the second chamber 12 and terminates at an end 28 well inside another long sleeve 30, a third cylindrical sleeve or baflle from which it is spaced.
  • An additional cylindrical baflle or sleeve 30 is the single sleeve in this chamber 12 and is spaced from the housing 14 by an anchor strap 31 and a plurality (preferably two sets of three each) of round steel spacers 31a and 31b near each end, to provide an annular air passage 32 around the sleeve 30.
  • an anchor strap 31 preferably two sets of three each
  • round steel spacers 31a and 31b near each end, to provide an annular air passage 32 around the sleeve 30.
  • At the far end 33 of the sleeve 30 is another frustoconical shell 34 leading into the head of a boiler 35 and terminating well inside at an end 36.
  • An air compressor or fan 46 may be used to supply the air, having an inlet 47 and an outlet conduit 48.
  • the outlet conduit 48 is provided with a Y-fitting 37 that is fully open and contains no dampers or other obstruction.
  • the Y'fitting 37 branches into two, also unobstructed, conduits 38 and 39 which lead by two long rectangular inlets 40 and 41 (see FIG. 3) into the annular spaces 21 and 32 (see FIG. 2) around the respective shells 20 and 30 of the first and second chambers.
  • These inlets 40 and 41 send the air in whirling because they are tangential.
  • Both inlets 40 and 41 are substantially rectangular in cross section at the inlet port and extend almost the full length of their respective housings 13 and 14 and the full width of their respective air-inlet fittings.
  • a series of air scoops 42 like those of US. Pat. 3,266,549 carry fractional splits of the air from the space 21 into the center portion of the first burner where the oil is fed in through a conduit 43 and nozzle 44 and where an igniter 45 is provided to insure ignition.
  • the combination burner of FIG. 5 is identical to the burner 10 of FIGS. 1-4, except that it also incorporates a gas burner 51 like that of my US. Pat. No. 3,266,549 and a suitable gas igniter 52.
  • the second baflle 23 in the devices of FIGS. 15 delivers high-maximum velocity air around the inside of the forward sleeve 23- and thereby prevents the deposit of catalyst slag on the inside surface of the auxiliary sleeve 23.
  • the long rectangular air inlets 40 and 41 cut in the burner tube or housing 13, have narrow vertical dimensions, (e.g., about 1% by 10%" long, though this may be changed to go along with diiferent burner capacities), and they deliver the air at maximum velocity for the full length of both chambers 11 and 12. This prevents the deposition of catalyst slag from fuel oil on the inside surface of the first chamber sleeve 23. Elimination of all dampers from the fan 46 to the inlets 40 and 41 prevents formation of an undesirable turbulence in the tangential air flow. There are no dampers in the Y 37 or in any of the conduits 48, 38, and 39.
  • FIG. 6 shows a burner for gas only, difi'ering principally in the elimination of the oil nozzle 44 and igniter 45 and in the provision of a single cylindrical sleeve 61, longer than the sleeve 20, in the first chamber 11.
  • a fuel burner including in combination,
  • cylindrical housing means having an end wall
  • a first cylindrical bafiie in said first chamber and spaced axially from said end wall and radially from said housing, to provide an annular air inlet chamber, said air inlet chamber having a long narrow air inlet extending substantially the full length of said first chamber,
  • first frustoconical shell having a central opening smaller in diameter than said first cylindrical baflie and extending from said housing and constituting the end of said first chamber
  • an additional cylindrical bathe in said second chamber having a first end adjacent and spaced from said first shell and of substantially the same diameter as said first cylindrical baflie, and spaced from said housing to provide a second annular air inlet chamber having second inlet means that is also long and narrow and rectangular and extending substantially the full length of said second chamber, and
  • a second frustoconical shell of approximately the same size and shape of said first shell, terminating said second chamber and spaced from and close to said additional cylindrical baflle and having a central opening of smaller diameter than said additional baffle and lying beyond it.
  • said housing means comprises a first housing for said first chamber and a second housing for said second chamber, each said housing having flange means joining them together at where said first shell meets the housing means.
  • the burner of claim 1 having an air compressor and conduits for connecting said air compressor to both said air inlets, said conduits being completely unobstructed,
  • said air compressor having an inlet damper constituting the only means, except for the motor of said compressor, for regulating air flow to said air inlets.

Description

19570 J. J- WOLFERSFERGER 3,539,284
TWO-CHAMBER FUEL BURNER 3 Sheets-Sheet l Filed March 12, 1989 FIG 2 INVENTOR. JOHN J. WOLFERSPERGER ATTORNEYS Nov. 10, 1970 J. J. WOLFERSPERGER 3,539,284
TWO-CHAMBER FUEL BURNER Filed March 12, 1969 3 Sheets-Sheet 2 E 3 /4 U R INVENTOR. JOHN J. WOLFERSPERGER BY 0%, WM was ATTORNEYS 1970 J. J. WOLFERSPERGER 3,539,234 I TWO-CHAMBER FUEL BURNER Filed March 12, 1969 3 Sheets-Sheet 3 FIG 5 United States Patent US. (:1. 431-173 7 Claims ABSTRACT OF THE DISCLOSURE This two-chamber burner delivers completed combustion. Two flanged housings are joined together, one for each chamber, and both chambers having long narrow rectangular tangential air inlets into their cylindrical hous ing. The first chamber has a fuel inlet for gas or oil and a first cylindrical bafiie spaced axially from the end wall and radially from the housing to provide an annular air inlet chamber. Air scoops connect air from the space between the housing and bafile into the interior space inside the baffle. When using oil as the fuel, a second baffle is spaced near the end of this first baflie, with an overlap, and is of greater diameter. It terminates near a first conical shell that leads into a second chamber, where it is surrounded by a further cylindrical baflle, also spaced from the housing to provide an annular chamber, into which the air inlet for that chamber opens. This further bafiie terminates near a second frustoconical shell that leads into a boiler or other such device.
This invention relates to an improved burner; one form is used for burning oil, another for burning gas, and a third form for burning either oil or gas.
The invention may be considered as constituting an improvement over the burner shown in my U.S. Pat. 2,787,318 and also as an improvement over the burners shown in my Pats. 3,266,549 and 3,276,693.
The previous burners, which are very good ones, have in some instances encountered problems for which they were not adapted and which the present invention solves. For example, the two-chamber burner of U.S. Pat. No. 2,787,318 was primarily designed for use in drying forage crops and vegetables. These materials required that a large volume of excess air be mixed with the hot products of combustion in order to cool the products of combustion, so that the material being dried would not catch fire or be burned or scorched. Hence, the volume of the flame discharged from the first chamber into the second chamber was only a small fraction of the volume of the excess air that was introduced into the second chamber; the result was that in the second chamber the spirally flowing air thoroughly enveloped the flame until the flame and the air were finally thoroughly mixed and were combined in passing through the outlet throat. When at tempts were made to use the two-chamber burner of US. Pat. No. 2,787,318, in conjunction with a boiler where the desirable maximum of excess air for good efiiciency does not exceed 20% to 30%, it was found that the amount of air that could be spared from the first chamber for introduction into the second chamber was so small that its spiral flow was immediately nullified by the larger volume of fast centrally flowing flame, and that this small flow of spirally moving air passed through the chamber outlet stratified on one side of the flame, whereas on the other side of the flame a carbon deposit was built up on the tube sheet. The present invention solves this problem and gives, without any further addition of air and therefore without any interference with complete combustion, an operation which does not cause any carbon deposit to build up on the tube sheet or in the tubing of the succeeding boiler or heat exchanger.
In my US. Pat. No. 2,787,319 there were a circular tangential air inlet to the first chamber and a rectangular tangential air inlet to the second chamber; each of these inlets was close to the rear end of its chamber and delivered spirally flowing air which enveloped the flame, but with a diminishing velocity toward the forward end of the burner tubes. This weaker velocity was satisfactory with the distilled fuel oil formerly in use, but with currently available fuel oils it is not strong enough to prevent the deposition of catalyst slag in the forward portion of the first chamber sleeve. Also, in the second chamber this diminished velocity was not strong enough at the forward end of the chamber to insure proper mixture of the air and the fuel needed for final completion of the combustion. In the present invention the air is delivered at maximum velocity for the full length of each chamber and these difficulties have been overcome.
In addition, there is easier access to the inside of each chamber and adjustment is simplified.
A single chamber oil burner, such as shown in my US. Pat. No. 3,276,693 will burn completely all the older types of conventional fuel oil, and it will burn completely what is known as No. 1 diesel oil, if this oil is atomized at a pressure of 250 to 300 psi. However, the single chamber burner will not properly accommodate No. 2 diesel oil (even at a higher 300 psi. atomizing pressure). The twochamber burner of this invention will burn all of these fuel oils completely and will discharge products of complete combustion that are thoroughly mixed with high percentages of excess air, a cooled mixture that can be used to dry combustible material by direct contact without heat damage to the materials. By delivering complete com bustion, the burner of this invention makes it possible to obtain a utilization of a single-pass dryer drum.
One of the main features of the two-chamber burner of this invention is that practically all the heat developed by the combustion that takes place in the second chamber, is augmented by practically all the heat developed in the first chamber, and none of this total is spread out and transferred to water until all combustion is completed and passed through the second chamber outlet throat. This makes all the heat available to be utilized for complete burning of the heavier and harder-to-burn oils. With the single chamber burner, the flame and hot gases, after passing through the restricted outlet throat, are spread, and some heat (mostly radiant heat) is trans ferred through the water-jacketed walls of a combustion chamber during completion of combustion. The lighter, easier-to-burn oils can spare this heat efficiently because they are volatile at lower temperatures.
A further advantage of the two-chamber burner of this invention is that it is not limited, in conversion use, to conventional fire-tube boilers, for it can be beneficially used in greatly increasing the capacity of all types of water-tube boilers and all types of unconventional oilfired and gas-fired boilers and heaters.
Also, my gas burner of US. Pat. No. 3,266,549 and my combination oil and gas burner of US. Pat. No. 3,276,693, while generally giving excellent results cannot give the improved results obtainable by the burning of the present invention, especially where space is at a premium.
In the oil burner and in the combination burner of this invention, the baflle sleeve of the first chamber is modified along the lines of the split sleeve design of my US. Pat. No. 3,276,693 to give a new result in a two-chamber burner. Then, an important new baffle sleeve is added in the second chamber of the two-chamber burner of this invention. This new bafiie sleeve is spaced to take about one-thirdof the air passing through the second chamber inside the sleeve and about two-thirds around its outer 3 surface. Thereby, a strong velocity of flow, entering the conical outlet fitting, breaks up the statified flow and solves the problem already noted, so that no carbon deposits build up on the tube sheet or in the tubing.
The tangential air inlets of the first and second chambers are both made to extend practically the full length of their burner tubes in order to deliver the highest ve locity air around the flame at each end of the bafiie sleeves. The vertical measurements of these air inlets are made such that the air from the fan is split and is delivered in the volumes desired for each chamber. Thus, dampers can be eliminated from the Y-fitting connecting the fan to the two chambers, and the air in both chambers can then be adjusted by a single damper in the fan inlet. Two separate burner tubes, joined together with flanges, take the place of the continuous single burner tube of former burners.
With oil burners and with combination burners when oil is being burned, these improved air inlets cooperate with a baflle sleeve modification in the first chamber that delivers high-maximum velocity air around the inside of the forward auxiliary sleeve, to prevent catalyst slag deposition on the inside surface of the auxiliary sleeve, thereby solving that problem too.
Other objects, advantages and features of the invention will appear from the following description of a preferred embodiment.
FIG. 1 is a view in side elevation of a burner embodying the principles of the present invention and connected to a boiler housing, of which only a fragment is shown.
FIG. 2 is an enlarged view in elevation and partly in section of the oil burner unit proper of FIG. 1.
FIG. 3 is a view in the scale of FIG. 2 in side elevation of the burner unit.
FIG. 4 is a view in end elevation looking from the left-hand end of FIG. 3.
FIG. 5 is a view in side elevation and in section of a modified form of burner embodying the principles of this invention, namely, a combination for burning either gas or oil.
FIG. 6 is a view similar to FIG. 5 of another modified form of burner embodying the principles of this invention for burning only gas.
A burner 10 of this invention in essence employs two combustion chambers '11 and 12 and may have separate cylindrical housings 13 and 14 therefor, so that a housing 14 may be assembled to a housing 13 to convert a standard single combustion chamber burner unit 11 into the double-chamber burner 10 of this invention, but the housing may instead be made in a single piece if that is desirable, though it is certainly less eflicient. Thus, the housing 13 for the first chamber 11 is preferably joined by a flange 15 to a flange 16 of the housing 14 for the second chamber 12, and each of these chambers 11 and 12 have their respective end flanges 17 and 18. The first chamber 11 has its end flange 17 joined to an end member 19.
Inside the first chamber 11 (see FIG. 2) is a first cylindrical bafiie or sleeve 20, which is spaced from the end plate 19 and also is spaced by an annular chamber 21 from the outer housing 13; the spacing may be provided by an anchor strap 29, welded to the sleeve and bolted to the housing 13 and by a plurality (preferably three) of round steel spacer 29a Welded at one end to the sleeve 20 only. At the far end 22 of the sleeve 20, a second annulus, baflle or sleeve 23 is spaced from the sleeve 20 by a plurality (preferably four) short, round spacers or supporting members 24, which are preferably welded to both sleeves 20 and 23 and provide a passage 25 in between the two sleeves 20 and 23 Where they overlap. A plurality (preferably three) of round steel spacing rods 29b are welded to the outer surface of the sleeve 23 to continue the annular space 21 between the sleeve 23 and the housing 13. At the far end, the second sleeve 23 terminates at an edge 26 near, but spaced from the frusto- 4 conical shell or baflle 27 which leads into the second chamber 12 and terminates at an end 28 well inside another long sleeve 30, a third cylindrical sleeve or baflle from which it is spaced.
An additional cylindrical baflle or sleeve 30 is the single sleeve in this chamber 12 and is spaced from the housing 14 by an anchor strap 31 and a plurality (preferably two sets of three each) of round steel spacers 31a and 31b near each end, to provide an annular air passage 32 around the sleeve 30. At the far end 33 of the sleeve 30 is another frustoconical shell 34 leading into the head of a boiler 35 and terminating well inside at an end 36.
An air compressor or fan 46 may be used to supply the air, having an inlet 47 and an outlet conduit 48. The outlet conduit 48 is provided with a Y-fitting 37 that is fully open and contains no dampers or other obstruction. The Y'fitting 37 branches into two, also unobstructed, conduits 38 and 39 which lead by two long rectangular inlets 40 and 41 (see FIG. 3) into the annular spaces 21 and 32 (see FIG. 2) around the respective shells 20 and 30 of the first and second chambers. These inlets 40 and 41 send the air in whirling because they are tangential. Both inlets 40 and 41 are substantially rectangular in cross section at the inlet port and extend almost the full length of their respective housings 13 and 14 and the full width of their respective air-inlet fittings. A series of air scoops 42 like those of US. Pat. 3,266,549 carry fractional splits of the air from the space 21 into the center portion of the first burner where the oil is fed in through a conduit 43 and nozzle 44 and where an igniter 45 is provided to insure ignition.
The combination burner of FIG. 5 is identical to the burner 10 of FIGS. 1-4, except that it also incorporates a gas burner 51 like that of my US. Pat. No. 3,266,549 and a suitable gas igniter 52.
As in my US. Pat. 3,726,693, the second baflle 23 in the devices of FIGS. 15, delivers high-maximum velocity air around the inside of the forward sleeve 23- and thereby prevents the deposit of catalyst slag on the inside surface of the auxiliary sleeve 23.
By the addition of the additional sleeve 30 in the second chamber '12 and spacing it to take about one-third of the second-chamber air through the sleeve 30 and about two-thirds around the sleeve 30, the stronger velocity of flow entering the conical outlet fitting 34 breaks up any Stratified flow and avoids carbon deposits.
The long rectangular air inlets 40 and 41 cut in the burner tube or housing 13, have narrow vertical dimensions, (e.g., about 1% by 10%" long, though this may be changed to go along with diiferent burner capacities), and they deliver the air at maximum velocity for the full length of both chambers 11 and 12. This prevents the deposition of catalyst slag from fuel oil on the inside surface of the first chamber sleeve 23. Elimination of all dampers from the fan 46 to the inlets 40 and 41 prevents formation of an undesirable turbulence in the tangential air flow. There are no dampers in the Y 37 or in any of the conduits 48, 38, and 39. This also simplifies adjusting for operating, the only adjustment then required being to obtain the known requirement in pressure for the first chamber 1 1, by means of an air inlet damper 49 for the fan 46. The areas of the burner tubes air inlets are correctly proportioned in each specific size of burner unit 10, to supply the needed flow required by each chamber.
By using the flanges 15 and 16 and the two housings 13 and 14, it becomes easier to get inside each of the chambers 11 and 12, should that become desirable for maintenance or repair.
FIG. 6 shows a burner for gas only, difi'ering principally in the elimination of the oil nozzle 44 and igniter 45 and in the provision of a single cylindrical sleeve 61, longer than the sleeve 20, in the first chamber 11. There is no baffle corresponding to the baffle 23. There being no catalyst that could cause a deposit of slag when gas is burned, there is no need for the baflie 23 in a gas-only burner, though it does no harm, as shown by the combination burner 50.
In textbooks and in technical journals, it has been stated that a fair average volume of combustion space is two cubic feet per boiler horsepower. In the two-chamber burner of this invention, the volume of combustion space is less than 0.04 cubic feet per boiler horsepower. This remarkable and unpredictable reduction in combustion space to only one-fiftieth of what was heretofore believed to be necessarytwo percent of what was heretofore requiredis accomplished by keeping the flame and all the heat of combustion wrapped around, throughout travel through the burner, by high-velocity, relatively thin sheets of spirally flowing combustion air in pre-planned splits. At the same time, the combustion air air-cools the burner and eliminates all need for insulation and refractory linings. These impressive results point up the significance of the structural changes and method procedures that comprise this invention.
To those skilled in the art to which this invention relates, many changes in construction and Widely differing embodiments and applications of the invention will suggest themselves without departing from the spirit and scope of the invention. The disclosures and the description herein are purely illustrative and are not intended to be in any sense limiting.
I claim:
1. A fuel burner, including in combination,
cylindrical housing means having an end wall,
a first chamber inside and bounded by said housing means leading from said end wall,
a second chamber beyond said first chamber, bounded by said housing,
a first cylindrical bafiie in said first chamber and spaced axially from said end wall and radially from said housing, to provide an annular air inlet chamber, said air inlet chamber having a long narrow air inlet extending substantially the full length of said first chamber,
air scoop means adjacent said end wall for leading air from said air inlet chamber radially into the interior of said first cylindrical baffie,
fuel conduit and igniting means coming in through said end wall to the interior of said first cylindrical baflle,
a first frustoconical shell having a central opening smaller in diameter than said first cylindrical baflie and extending from said housing and constituting the end of said first chamber,
an additional cylindrical bathe in said second chamber having a first end adjacent and spaced from said first shell and of substantially the same diameter as said first cylindrical baflie, and spaced from said housing to provide a second annular air inlet chamber having second inlet means that is also long and narrow and rectangular and extending substantially the full length of said second chamber, and
a second frustoconical shell of approximately the same size and shape of said first shell, terminating said second chamber and spaced from and close to said additional cylindrical baflle and having a central opening of smaller diameter than said additional baffle and lying beyond it.
2. The burner of claim 1 wherein said housing means comprises a first housing for said first chamber and a second housing for said second chamber, each said housing having flange means joining them together at where said first shell meets the housing means.
3. The burner of claim 1 having an air compressor and conduits for connecting said air compressor to both said air inlets, said conduits being completely unobstructed,
said air compressor having an inlet damper constituting the only means, except for the motor of said compressor, for regulating air flow to said air inlets.
4. The burner of claim 1 having in said first chamber a second cylindrical bafiie of larger diameter than said first cylindrical baffle, but smaller in diameter than said housing adjacent the end of said first cylindrical baflie further from said end wall and overlapping it and extending beyond it, said first shell being spaced from, but not far from, the end of said second baflie.
5. The burner of claim 4 wherein said fuel conduit and igniting means comprise both a gas fuel conduit and igniting means therefor and an oil fuel conduit and igniting means therefor.
6. The burner of claim 1 wherein said first cylindrical baffle extends substantially the full length of said first chamber and terminates closely adjacent to but spaced from said first shell.
7. The burner of claim 1 wherein the volume of the space wherein ignition, combustion, and completion of the combustion of the fuel and air take place, is no greater than 0.04 cubic feet per boiler horsepower.
References Cited UNITED STATES PATENTS 2,518,364 8/1950 Owen. 2,617,255 11/1952 Niehus. 2,787,318 4/ 1957 Wolfersperger 431-9 3,276,693 10/ 1966 Wolfersperger 431-5 XR 3,352,106 11/ 1967 Pianko 60-3965 FREDERICK L. MATTESON, JR., Primary Examiner R. A. DUA, Assistant Examiner US. Cl. XR, 0 3 ,6 5 2 1.
US806357A 1969-03-12 1969-03-12 Two-chamber fuel burner Expired - Lifetime US3539284A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80635769A 1969-03-12 1969-03-12

Publications (1)

Publication Number Publication Date
US3539284A true US3539284A (en) 1970-11-10

Family

ID=25193864

Family Applications (1)

Application Number Title Priority Date Filing Date
US806357A Expired - Lifetime US3539284A (en) 1969-03-12 1969-03-12 Two-chamber fuel burner

Country Status (2)

Country Link
US (1) US3539284A (en)
CA (1) CA919577A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0012778A1 (en) * 1978-12-30 1980-07-09 G. Kromschröder Aktiengesellschaft Gas heated tunnel burner for raising the temperature in melting furnaces or crucibles
ES2126464A1 (en) * 1995-10-17 1999-03-16 Buhlmann Marco Laudati A burner
US20110185986A1 (en) * 2009-12-01 2011-08-04 International Thermal Investments Ltd. Propane or diesel powered heater with common burner opening
WO2021130784A1 (en) * 2019-12-24 2021-07-01 RAYRAMESH, Hossein A novel high-efficiency two-chamber boiler using turbulent reverse flow of combustion gases

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2518364A (en) * 1946-10-19 1950-08-08 Surface Combustion Corp Direct fired air heater
US2617255A (en) * 1947-05-12 1952-11-11 Bbc Brown Boveri & Cie Combustion chamber for a gas turbine
US2787318A (en) * 1949-11-04 1957-04-02 John J Wolfersperger Burner with tangential air admission and restricted throat
US3276693A (en) * 1964-12-02 1966-10-04 John J Wolfersperger Burner
US3352106A (en) * 1964-12-23 1967-11-14 Pianko Marc Combustion chamber with whirling slots

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2518364A (en) * 1946-10-19 1950-08-08 Surface Combustion Corp Direct fired air heater
US2617255A (en) * 1947-05-12 1952-11-11 Bbc Brown Boveri & Cie Combustion chamber for a gas turbine
US2787318A (en) * 1949-11-04 1957-04-02 John J Wolfersperger Burner with tangential air admission and restricted throat
US3276693A (en) * 1964-12-02 1966-10-04 John J Wolfersperger Burner
US3352106A (en) * 1964-12-23 1967-11-14 Pianko Marc Combustion chamber with whirling slots

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0012778A1 (en) * 1978-12-30 1980-07-09 G. Kromschröder Aktiengesellschaft Gas heated tunnel burner for raising the temperature in melting furnaces or crucibles
ES2126464A1 (en) * 1995-10-17 1999-03-16 Buhlmann Marco Laudati A burner
US20110185986A1 (en) * 2009-12-01 2011-08-04 International Thermal Investments Ltd. Propane or diesel powered heater with common burner opening
WO2021130784A1 (en) * 2019-12-24 2021-07-01 RAYRAMESH, Hossein A novel high-efficiency two-chamber boiler using turbulent reverse flow of combustion gases

Also Published As

Publication number Publication date
CA919577A (en) 1973-01-23

Similar Documents

Publication Publication Date Title
US2787318A (en) Burner with tangential air admission and restricted throat
US2357301A (en) Fuel burning method and apparatus
US3105540A (en) Method of and apparatus for burning low heat content fuel
US2126417A (en) Burner installation for boilers
US2823628A (en) Multi-fuel burner
US2264226A (en) Domestic boiler
US3007512A (en) Burner for the burning of regenerator flue gas
US2070859A (en) Radiant cell gas burner
US4187835A (en) Indirect heat transfer apparatus
US3539284A (en) Two-chamber fuel burner
US3342241A (en) Combustion apparatus
US2053003A (en) Combustion apparatus
US3677532A (en) Two chamber fuel burner
US1751534A (en) Boiler
US2544600A (en) Multiple tube gas heating furnace
US3226038A (en) Combustor for a steam generator
US3180394A (en) Gas burner
US2486481A (en) Liquid fuel burner
ES390338A1 (en) Steam generator having at least one combustion chamber for burning solid, liquid and/or gaseous fuels
US1924209A (en) Boiler
US2998807A (en) Water tube boiler or steam generator
US3115120A (en) Apparatus for burning low heat value fuels
US2600020A (en) Forced air flow air-heating furnace
US3149614A (en) Steam generator
US3413968A (en) Liquid fuel heater for motor vehicle